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We study the chaotic properties of steady-state traveling-wave solutions of the particle number density of a
Bose-Einstein condensate with an attractive interatomic interaction loaded into a traveling optical lattice of
variable shape. We demonstrate theoretically and numerically that chaotic traveling steady states can be
reliably suppressed by small changes of the traveling optical lattice shape while keeping the remaining param-
eters constant. We find that the regularization route as the optical lattice shape is continuously varied is fairly
rich, including crisis phenomena and period-doubling bifurcations. The conditions for a possible experimental
realization of the control method are discussed.
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I. INTRODUCTION

The combination of a Bose-Einstein condensate �BEC�
�see, e.g., the reviews �1,2�� and an optical lattice provides a
unique scenario for exploring new quantum phenomena and
their classical manifestations. In particular, the presence of
chaos in BECs has become a subject of great interest, partly
because of its technological implications. As is well known,
a cause of the quantum suppression of chaos is that the �clas-
sical� chaos generally appears in nonlinear systems while the
corresponding quantum Schrödinger equations are linear �3�.
The possible existence of �classical� chaos in BECs comes
from the fact that the dynamics of dilute atomic BECs, close
to zero temperature, can be well approximated by a nonlin-
ear Schrödinger equation—the so-called Gross-Pitaevskii
equation �GPE� �1,2,4,5�. Indeed, diverse manifestations of
temporal �6,7�, spatial �8,9�, and spatiotemporal �10,11�
chaos in BECs have been reported recently, including the
process of BEC collapse �12,13� and open BECs �14�. It
would therefore seem clear that a fundamental problem to
address when considering applications of BECs is the pre-
diction and control of chaos. A recent study in this respect,
for example, showed the suppressive effects of dissipation
and the velocity of a traveling optical lattice �11�.

The aim of the present work is to show that the dissipative
chaotic dynamics of a BEC loaded into a moving optical
lattice exhibits great sensitivity to small changes of the lat-
tice shape and can thus be reliably controlled by Fourier-
synthesizing suitable lattice shapes. It is worth mentioning
that this technique has been successfully used to control
quantum transport of an atomic BEC �15�. Moving optical
lattices �16–18� and dissipative effects �6,19,20� have also
been studied recently.

II. ANALYTICAL TREATMENT

Let us consider the case of a quasi-one-dimensional �1D�
BEC that is tightly confined in two transverse directions �the
so-called cigar-shaped condensate� described by the follow-
ing 1D GPE:

��i + ��
��

�t
= −

�2

2ma

�2�

�x2 + g0���2� + V0sn2���;m�� , �1�

where V0sn2��� ;m� is the periodic moving optical lattice; �
=x+�t / �2k� is the space-time variable with � being the fre-
quency difference between the two Fourier-synthesized
counter-propagating laser beams and k=2� /� the laser wave
vector which determines the velocity of the traveling lattice
as vL=� / �2k�; ma is the atomic mass; g0=4��2a /ma charac-
terizes the attractive �a	0 being the s-wave scattering
length� interatomic interaction strength; �=2K�m�k /� with
K�m� being the complete elliptic integral of the first kind;
sn�· ;m� is the Jacobian sine elliptic function of parameter
m� �0,1�; and ���� /�t is a dissipation term �20–23�. The
static version of the elliptic optical lattice in Eq. �1� has been
studied extensively �24–30�.

For the sake of simplicity, we shall here concentrate only
on the traveling-wave solutions of Eq. �1� in the form of a
Bloch-like wave

� = 
���exp�i��x + �t�� , �2�

where � and � are real constants to be determined. Note that
this choice implies that the traveling wave 
��� has the same
velocity as the elliptic optical lattice. After inserting Eq. �2�
into Eq. �1� and normalizing the function 
 by the factor k3/2

and the variable � by the factor 2K�m� /�, one straightfor-
wardly obtains the ordinary differential equation
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where g=8�ak	0 �a	0 since we are considering an attrac-

tive condensate�, =��, v=2mavL / ��k�, �̃=� /k, �̃=�� /Er,

and Ṽ0=V0 /Er, with Er=�2k2 / �2ma� being the recoil energy.
Following Ref. �11�, we express the complex function


�� in the form 
��=R��ei���, and consider the simple
situation where the phase ��� has a linear dependence on the

dimensionless space-time variable: d� /d=−�̃ /v=−�v /2
+ �̃� �36�. Note that R2 represents the particle number den-
sity, whose chaotic dynamics we wish to suppress by reshap-
ing the optical lattice potential. In this case, Eq. �3� reduces
to a damped, parametrically and anharmonically driven, Duf-
fing equation for the amplitude R:

d2R

d2 − �v2

4
+ Ṽ0p� 

2�
;m�	R − gR3 = − �v

dR

d
, �4�

where we introduce the potential

p�x;m� 
 sn2�4K�m�x;m� . �5�

When m=0, then p( / �2�� ;m)=sin2��=sin2�k��, i.e., one
recovers the previously studied case of a pure trigonometric
optical lattice �11�, while at the limiting value m=1 the el-
liptic optical lattice becomes constant except on a set of
points of Lebesgue measure zero, i.e., one recovers a case
with no moving periodic lattice where spatially chaotic
steady states are no longer possible �see Fig. 1�. Therefore,
starting from a chaotic state at m=0, one would expect to
observe a regularization of the traveling-wave steady states
as m→1 while keeping the remaining parameters constant.
To keep the analysis close to a possible experimental realiza-
tion, we expand the elliptic optical lattice in the form

sn2�;m� = �
j=1

�

bj−1 sin2� j�

2K
� , �6�

where the first Fourier coefficients are approximately given
by �see the Appendix for details�

b0 �
4�2q�1 − q + q2 − q3 + q4�

mK2�1 − q − q5 + q6�
,

b1 �
8�2q2�1 − q4�

mK2�1 − q3 − q5 + q8�
,

b2 �
4�2q3

mK2�1 − q3�2�1 +
2�1 − q3�2

�1 − q��1 − q5�� , �7�

over the range 0�m�0.99, and where K=K�m�, and q
=q�m�
exp�−�K�1−m� /K�m�� is the nome �31�. It will be
useful to define the truncated Fourier expansion of order k
for the elliptic optical lattice potential as

p�k��;m� 
 �
j=1

k

bj−1 sin2� j�

2K
� , �8�

such that p( / �2�� ;m)=limk→�p�k�� ;m�.
To obtain an analytical estimate of the chaotic threshold in

parameter space, let us assume in the following that the dis-
sipation term and the optical lattice potential in Eq. �4� are
small-amplitude perturbations of the underlying integrable
two-well Duffing equation �32�, i.e., they satisfy the Melni-
kov method �MM� requirements �32,33�, and that, in the lim-
iting case m=0, the perturbed Duffing equation �4� exhibits
homoclinic chaos. Figure 2 depicts a comparison between
the full potential �5� and its truncated Fourier expansion �8�,
when only the two first terms of the approximation for the
elliptic parameter m=0.9 are retained. Figure 3 depicts the
same comparison as in Fig. 2 but for a larger elliptic param-
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FIG. 1. Potential function p�x ;m� �cf. Eq. �5�� for m=0 �thick
line�, 0.995 �medium line�, and 1−10−14 �thin line�. The quantities
plotted are dimensionless.
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FIG. 2. �Color online� Top panel: Relative error �p�x ;m�
− p�2��x ;m�� / p�x ;m� with p as in Eq. �5� and p�2� corresponding to
its two-term Fourier expansion as in Eq. �8�. Shape parameter in the
range m� �0,0.9�. Bottom panel: Functions p�x ;m=0.9� �thick
line� and p�2��x ;m=0.9� �thin line�, showing their proximity. The
quantities plotted are dimensionless.
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eter m=0.99 when retaining three terms in the expansion �8�.
It is clear that using only the first two terms in the expansion
is enough to accurately capture the main deviation of the
Jacobian elliptic potential from a purely trigonometric one
for values of the elliptic parameter up to m�0.9. Therefore,
for the sake of simplicity, we only retain the two first terms
of the expansion �6� and, after some simple algebraic ma-
nipulation, the application of the MM to Eqs. �4�–�7� yield
the Melnikov function

M��� =
�v4

6g
+

2�b0Ṽ0

g
csch�2�

v
�sin�2�

+
8�b1Ṽ0

g
csch�4�

v
�sin�4� , �9�

where the plus �minus� sign corresponds to the right �left�
homoclinic orbit of the unperturbed Duffing equation. Since
b0�m=0�=1, b1�m=0�=0 �cf. Eq. �7��, the hypothesis of ho-
moclinic chaos for a single-humped �pure� trigonometric op-

tical lattice �m=0� implies that 2�b0Ṽ0 csch�2� /v���v4 /6,
which is a necessary condition for M��� to present simple
zeros at m=0. Thus, to analyze the suppressive effect of an
elliptic optical lattice �m�0� we shall consider in the follow-
ing the normalized Melnikov function

Mn
��� = 1 + �0 sin�2� + �0�b0 − 1�sin�2� + ��0b1 sin�4� ,

�10�

where

Mn
��� 


M���
�v4/�6g�

,

�0 

12�Ṽ0 csch�2�/v�

�v4 ,

� 

4 sinh�2�/v�
sinh�4�/v�

. �11�

Next, we study the appearance of simple zeros of Mn
���

with the constraint �0�1 �i.e., there exists homoclinic chaos
at m=0� by considering the zeros of the quartic polynomial
in z which arises from Eq. �10� after the substitution z
=sin�2�. Solving this quartic equation, one straightfor-
wardly obtains that a necessary condition for Mn

��� �and
hence for M���� to present simple zeros is

�0
2�144�2b0

2b1
2 + 1152�4b1

4 + 2�b0
2 − 4�2b1

2�2�2

� 4�48�2b1
2 + �0

2�b0
2 − 4�2b1

2�2�3, �12�

where the equality provides the boundary function in the
parameter space, and hence one obtains the chaotic threshold

function U�m ,v� such that Ṽ0 /��U�m ,v� provides a neces-
sary condition for the perturbed Duffing equations �4�–�7� to
exhibit homoclinic chaos �34�. Recalling that the Melnikov
function �9� is approximately valid over the range 0�m
�0.9 and that b1�b0 over this range �cf. Eq. �7��, one can
drop the terms proportional to any power of b1 in Eq. �12� to
finally obtain an approximate necessary condition for the
perturbed Duffing equations �4�–�7� to exhibit homoclinic
chaos:

Ṽ0

�
� Ũ�m,v� 


Ũ0�m = 0,v�
b0�m�

, �13�

where

Ũ0�m = 0,v� 

v4 sinh�2�/v�

12�
�14�

is the chaotic threshold function associated with a pure trigo-
nometric optical lattice �m=0� �11�.

Remarkably, the simplicity of condition �13� does not im-
ply, however, a significant loss of accuracy with respect to

the condition Ṽ0 /��U�m ,v�. Indeed, Fig. 4 indicates that

the differences between the chaotic threshold functions Ũ
and U are noticeable only for values of the shape parameter
very close to 1. The top panel of Fig. 5 shows a plot of the

dimensionless function Ũ�m ,v�. One sees that Ũ�m
=const,v� presents a single minimum as a function of the
dimensionless lattice velocity �see, Fig. 5, bottom panel�,
while Ũ�m ,v=const� presents a monotonically increasing
behavior as a function of the shape parameter �see Fig. 5,
middle panel�, as expected. Therefore, if one considers fixing
the parameters �V0, �, k, vL, and hence v� for the particle
number density of the BEC to exhibit chaos at m=0, then as
m is increased a window of regular dynamics will appear,
provided the initial chaotic state is sufficiently near the cha-
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FIG. 3. �Color online� Top panel: Relative error �p�x ;m�
− p�3��x ;m�� / p�x ;m�, with p as in Eq. �5� and p�3� corresponding to
its three-term Fourier expansion as in Eq. �8�. Shape parameter in
the range m� �0,0.99�. Bottom panel: Functions p�� ;m=0.99�
�thick line� and p�3��� ;m=0.99�, �thin line� showing their proximity.
The quantities plotted are dimensionless.
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otic threshold associated with the single-humped trigonomet-
ric optical lattice �cf. Eq. �14��. It is worth noting that very
similar quantitative predictions are obtained for a moving
periodic optical lattice given by V0cn2��� ;m�, where cn�· ;m�
is the Jacobian elliptic cosine function of parameter m. Math-
ematically, this is because of the fundamental relationship
cn2�· ;m�+sn2�· ;m�=1 together with the fact that the periodic
lattice acts as a parametric excitation in Eq. �4� �and hence
the Melnikov integral corresponding to the unity term of the
fundamental relationship vanishes�. Physically, one has in-
deed that in the limiting case m=1 the elliptic optical lattice
cn2��� ;m� vanishes except on a set of points of Lebesgue
measure zero, i.e., one again recovers a case with no moving
periodic lattice where chaotic dynamics is no longer pos-
sible.

We next compare the MM analytical predictions with nu-
merical results �bifurcation diagrams�, but with the added
caveat that one cannot expect too good a quantitative agree-
ment between the two kinds of findings because the MM is a
perturbative method generally related to transient chaos,
while bifurcation diagrams provide information solely con-
cerning steady chaos. A typical example is shown in Fig. 6
where the particle number density R2= �
�2= ���2 is plotted vs
the shape parameter m for the experimental parameters �18�
ma=23mp with mp the proton mass, �0=589 nm, �=0.05,

Ṽ0=2, and vL=3�10−2 m /s such that v=2.03 and g=
−0.75. Typically, the BEC traveling-wave steady state goes
from a chaotic state which propagates in the direction of the
motion of the optical lattice to a steady-state equilibrium

associated with a static and uniform optical lattice as the
shape parameter increases from 0 to 1. The progression of
the steady states is characterized by the particle number den-
sity undergoing an inverse period-doubling route as the
shape parameter is increased, which is preceded by diverse
crises �see Fig. 6, bottom panel�. We found similar regular-
ization routes for other sets of experimentally realizable pa-
rameters, and would therefore emphasize that the present
reshaping-induced control method could be implemented in
experiments. Indeed, the two-term-approximation potential
p�2��� ;m�=b0 sin2�2�� /��+b1 sin2�4�� /�� �cf. Eq. �8�� used
in the above theoretical analysis can be obtained from the
two Fourier-synthesized counterpropagating laser beams

E1�r,t� =
b0

1/2�m�
2

Re��e−i��t−kx+�/2��

+
b1

1/2�m�
2

Re��e−i��t−2kx+�/2�� ,
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FIG. 4. �Color online� Top panel: Relative error �U�m ,v�
− Ũ�m ,v�� /U�m ,v� �cf. Eqs. �12� and �13�� for the parameters in the
ranges m� �0,0.99� and v� �1,2.5�. Bottom panel: Functions

U�m ,v=2� �thick line� and Ũ�m ,v=2� �thin line� in the range m
� �0.9,0.99�. The quantities plotted are dimensionless.
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E2�r,t� =
b0

1/2�m�
2

Re��e−i��t+�t+kx−�/2��

+
b1

1/2�m�
2

Re��e−i��t+2�t+2kx−�/2�� ,

where � is the common polarization �35�.

III. SUMMARY

In summary, we have discussed a reshaping-induced
method to suppress the existence of spatially chaotic steady-
state traveling waves of a BEC with attractive interatomic
interaction loaded into a traveling optical lattice of variable
shape. We demonstrated theoretically and numerically that
traveling spatially chaotic steady states of the particle num-
ber density can be reliably suppressed by small changes of

the traveling optical lattice shape while keeping the remain-
ing parameters constant. Finally, we provided an explicit ex-
pression for the two Fourier-synthesized counterpropagating
laser beams for possible experimental realization of the con-
trol method.

APPENDIX: DERIVATION OF FORMULAS (6)

Using the Fourier expansion of sn�· ;m� �31�, one has

sn2�;m� =
4�2

mK2�m��n=0

�

�
l=0

�

an�m�al�m�

�sin� �2n + 1��

2K�m� �sin� �2l + 1��

2K�m� � , �A1�

where an�m�
qn+1/2�1−q2n+1�−1 with q=q�m�

exp�−�K�1−m� /K�m�� being the nome �31�. After apply-
ing the trigonometric relationships 2 sin � sin �=cos��−��
−cos��+�� and cos �=1−2 sin2�� /2� to Eq. �A1�, one
straightforwardly obtains Eq. �6� with

b0 =
4�2

mK2�m�
a0

2�m� − 2a1�m��a0�m� + a2�m��

+ O�a1�m�a2�m��� ,

b1 =
4�2

mK2�m�
2a0�m��a1�m� − a2�m�� + O�a0�m�a2�m��� ,

b2 =
4�2

mK2�m�
a1

2�m� + 2a0�m�a2�m� + O�a0�m�a2�m�,a1
2�m��� .

�A2�

Since an�m�=csch��n+1 /2��K�1−m� /K�m�� /2, one sees
that limn→�an�m�=0, ∀m� �0,1�. Thus, for the purposes of
the present work, Eq. �A2� can be approximated by Eq. �7�
and the remaining coefficients bn with n�2 are negligible
over the range 0�m�0.99.
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