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Abstract. We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of the nonlinear Schrödinger
equation perturbed simultaneously by linear and nonlinear gain/loss terms. We derive the corresponding perturbed complex Toda
chain in the case of a combination of linear, cubic, and/or quintic terms. We show that the soliton interactions dynamics for this
reduced PCTC model compares favorably to full numerical results of the original perturbed nonlinear Schrödinger equation.

INTRODUCTION

The nonlinear Schrödinger (NLS) equation [1] is a universal model describing the dynamics of envelope waves in
dispersive media [2, 3, 4, 5]. The universality of the NLS derives from the fact that it is the simplest model incorpo-
rating nonlinearity that is able to propagate envelope waves and, therefore, the NLS can be considered as the normal
form for nonlinear envelope wave propagation. Endowed by this normal form universality, the NLS finds its niche in
a wide range of applications including optics [6, 7, 8, 9], Bose-Einstein condensation [10, 11, 12, 13], fluid dynamics
and plasma physics [14], and many more. While the Hamiltonian (conservative) version of the NLS has been widely
studied and applied in a wide range of scientific disciplines, it has been less studied in the more realistic scenario when
loss and/or gain is present in the system under consideration. For instance, the NLS equation is tightly related to other
dissipative models, such as the complex Ginzburg-Landau equation [15, 16], which have been extensively used in the
context of pattern formation [17, 18] and its applications.

One of the most appealing aspects of the NLS equation is that it supports stable localized solutions in the form
of solitons in one space dimension (1D) [2, 14, 19, 20, 21, 22]. These building block solutions come in two different
flavors depending on the sign of the nonlinearity. For repulsive (or defocusing) cubic nonlinearity the NLS in 1D
admits dark soliton solutions [13], while for attractive (or focusing) cubic nonlinearity the basic nonlinear solution is
the bright soliton. In the present paper we aim to study the dynamics of interacting bright solitons in the presence of
non-conservative terms. Specifically, we consider the focussing NLS equation:

iut +
1
2
uxx + |u|2u(x, t) = iR[u]. (1)

with, non-conservative, perturbations of the form:

iR[u] = i
(
γu + β|u|2u + η|u|4u

)
. (2)
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This perturbed NLS (PNLS) includes linear, cubic and quintic nonlinear gain/loss terms via the coefficients γ, β, and
η, respectively. A positive coefficient corresponds to gain and a negative one to loss.

Our main tool for analyzing soliton interactions in the PNLS is based on the method first developed by Karp-
man and Solov’ev [23] for the 2-soliton interactions. Later this method was generalized to N-soliton interactions
[24, 25, 26] with iR[u] = 0 and it was found that a chain of bright solitons can be accurately described (under the
right assumptions) by a complex Toda chain (CTC). Further generalizations include treating the Manakov model
(or vector NLS equation), as well as treating the effects of various perturbations (mainly external potentials), see
[27, 28, 29, 30, 31, 32] and the references therein. By extending the above methodologies to encompass the effects
of linear and nonlinear (polynomial) gain/loss perturbation, we will derive effective equations of motion for a chain
of bright solitons. These perturbations result in additional perturbative terms that modify the original CTC model. In
Section 2 we derive the perturbed CTC (PCTC) taking into account the perturbations (2). In Section 3 we compare
the predictions of the PCTC with the numerical solutions of the full PNLS. Finally, in Section 3.2 we present our
conclusions and give possible avenues for further research.

2 DERIVATION OF THE PERTURBED COMPLEX TODA CHAIN

2.1 Derivation of the Generic Perturbed CTC
Lets us consider an N-soliton train as an initial condition to the perturbed NLS. By N-soliton train we mean a chain
of several well-separated solitons whose parameters comply with the adiabatic approximation:

u(x, t = 0) =
N∑
k=1
�uk(x, t = 0), uk(x, t) =

2νkeiφk
cosh(zk)

,

zk = 2νk(x − ξk(t)), ξk(t) = 2μkt + ξk,0,

φk =
μk

νk
zk + δk(t), δk(t) = 2(μ2k + ν

2
k)t + δk,0.

(3)

For completeness, let us start by formulating the results of Karpman and Solov’ev’s method [23] for general pertur-
bation R[u] and later specify the specific form for the perturbation (2). The adiabatic approximation holds true if the
soliton parameters satisfy [23]:

|νk − ν0| � ν0, |μk − μ0| � μ0, |νk − ν0||ξk+1,0 − ξk,0| � 1, (4)

where ν0 = 1
N
∑N
k=1 νk and μ0 =

1
N
∑N
k=1 μk are, respectively, the average amplitude and velocity of the soliton chain.

Thus, in the adiabatic approximation, one considers a chain of well-separated solitons with amplitudes and velocities
that vary slightly from their averages. In fact, we define the following two scales:

|νk − ν0| � ε1/20 , |μk − μ0| � ε1/20 , |ξk+1,0 − ξk,0| � ε−10 .

Skipping the details, we cast the perturbed CTC corresponding to generic perturbations iR[u] [23]:

dνk
dt
= 16ν30

(
e−2ν0(ξk+1−ξk) sin(δ′k+1 − δ′k) − e−2ν0(ξk−ξk−1) sin(δ′k − δ′k−1)

)
+ Nk[u],

dμk
dt
= −16ν30

(
e−2ν0(ξk+1−ξk) cos(δ′k+1 − δ′k) − e−2ν0(ξk−ξk−1) cos(δ′k − δ′k−1)

)
+ Mk[u],

dξk
dt
= 2μk + Ξk[u],

dδk
dt
= 2(ν2k + μ

2
k) + Xk[u],

(5)

with δ′k − δ′n = −2μ0(ξk − ξn) + δk − δn, and where the perturbative terms are given by [23]:

Nk[u] =
1
2
Re
∫ ∞
−∞

dzk
cosh zk

R[uk]e−iφk , Mk[u] =
1
2
Im
∫ ∞
−∞

dzk tanh zk
cosh zk

R[uk]e−iφk ,

Ξk[u] =
1
4ν2k

Re
∫ ∞
−∞

dzk zk
cosh zk

R[uk]e−iφk , Dk[u] =
1
2νk

Im
∫ ∞
−∞

dzk (1 − zk tanh zk)
cosh zk

R[uk]e−iφk ,
(6)
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and Xk[u] = 2μkΞk[u] + Dk[u]. It is important to mention that, in deriving the PCTC, the following assumptions were
used:

ξ1 < ξ2 < · · · < ξN ; Δk,k+1 = 2ν0(ξk+1 − ξk), e−|ΔN,N+1 | ≡ e−|Δ0,1| ≡ 0;
as well as the following approximations:

zk − zn � 2ν0(x − ξk(t) − x + ξn(t)) � −2ν0(ξk0 − ξn0) = Δkn,
φk − φn �

μ0

ν0
(zk − zn) + δk0 − δn0 � −2μ0(ξk0 − ξn0) + δk0 − δn0 = δ′k − δ′n,

(7)

and, therefore, ezk+1 = ezke−|Δk,k+1 | and ezk−1 = ezke|Δk,k−1 |. Also, we only keep terms of order of ε0 � e−|Δkn | and neglect all
terms of higher orders. Typically, the terms Ξk[u] and Dk[u] contribute to the right hand sides of Eqs. (5) with terms
of the order of ε0 that can be neglected as compared to the ‘leading’ terms 2μk and 2(μ2k + ν

2
k). Therefore, we finally

obtain the generic perturbed CTC of the form:

dλk
dt
= −4ν0

(
eqk+1−qk − eqk−qk−1 ) + Mk + iNk, eq1−q0 = 0, eqN+1−qN = 0,

dqk
dt
= −4ν0λk + 2i(μ0 + iν0)Ξk − iXk, k = 1, . . . ,N,

(8)

where λk = μk + iνk, Xk = 2μkΞk + Dk and

qk = −2ν0ξk + k ln 4ν20 − i(δk + δ0 + kπ − 2μ0ξk),

ν0 =
1
N

N∑
s=1
νs, μ0 =

1
N

N∑
s=1
μs, δ0 =

1
N

N∑
s=1
δs.

(9)

Obviously, if no perturbation is present, iR[u] = 0, then Nk = 0, Mk = 0, Ξk = 0, Dk = 0 and the system (8) falls back
to the original CTC.

2.2 The Effect of Linear and Nonlinear Gain/Loss on the CTC
Let us now calculate explicitly the terms Nk, Mk, Ξk and Xk corresponding to the specific perturbative terms as in
Eq. (2). That means: (i) first in iR[u] we have to replace u by

∑N
p=1 up(x, t) and then, (ii) we have to sort the terms in

the integrals for Nk[u], . . . , Xk[u] and, in particular, neglect the terms that are of order higher than ε0. Through this
process, two different types of leading terms arise. The first type corresponds to ‘local’ (same k) terms involving:

R(0)k [u]e−iφk =
2νk

cosh(zk)
γ +

8ν3k
cosh3(zk)

β +
32ν5k

cosh5(zk)
η. (10)

The corresponding integrals can be straightforwardly computed with the result that only the integral Nk[u](0) leads to
a nonvanishing contribution:

Nk[u](0) =
1
2
Re
∫ ∞
−∞

dzk
cosh zk

R[uk](0)e−iφk = 2νk
(
γ +

8
3
βν2k +

128
15
ην4k

)
. (11)

The other integrals in this approximation vanish:

Mk[u](0) =
1
2
Im
∫ ∞
−∞

dzk tanh zk
cosh zk

R[uk](0)e−iφk = 0, Ξk[u](0) =
1
4ν2k

Re
∫ ∞
−∞

dzk zk
cosh zk

R[uk](0)e−iφk = 0,

Dk[u](0) =
1
2νk

Im
∫ ∞
−∞

dzk (1 − zk tanh zk)
cosh zk

R[uk](0)e−iφk = 0.

(12)
The second type of terms correspond to ‘nonlocal’ interaction terms between adjacent solitons. The perturbation linear
in u obviously does not contribute to the ‘nonlocal’ terms R(1)k,n[u]. Since we only keep terms of order of ε0, we restrict
our attention to nearest neighbor, n = k ± 1, interactions. This yields the following interaction terms:

R(1)k [u] =
∑
n=k±1

[
β
(
u2ku
∗
n + 2|uk|2un

)
+ η
(
2|uk|2u2ku∗n + 3|uk|4un

)]
, (13)
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and, therefore,

R(1)k [u]e−iφk =
∑
n=k±1

⎡⎢⎢⎢⎢⎣β 8ν2kνk+1
cosh2(zk) cosh(zk+1)

(
ei(φk−φk+1) + 2e−i(φk−φk+1)

)

+η
32ν4kνk+1

cosh4(zk) cosh(zk+1)

(
2ei(φk−φk+1) + 3e−i(φk−φk+1)

)⎤⎥⎥⎥⎥⎦ . (14)

Now, the integrations over space need to be performed. Keeping only the terms of order ε0 yields (see the Appendix
for details on the integrals involved):

N(1)
k [u] � 16ν30

⎛⎜⎜⎜⎜⎝3β + 40ν20
3
η

⎞⎟⎟⎟⎟⎠ (cos(δ′k − δ′k−1)e−|Δk,k−1 | + cos(δ′k − δ′k+1)e−|Δk,k+1 |) , (15)

M(1)
k [u] � 16ν30

3

⎛⎜⎜⎜⎜⎝β + 8ν20
5
η

⎞⎟⎟⎟⎟⎠ (sin(δ′k − δ′k−1)e−|Δk,k−1 | − sin(δ′k − δ′k+1)e−|Δk,k+1 |) , (16)

for k = 2, . . . ,N − 1 (i.e., solitons inside the chain) and, for solitons on the edges of the chain,

N(1)
1 [u] = 16ν30

⎛⎜⎜⎜⎜⎝3β + 40ν20
3
η

⎞⎟⎟⎟⎟⎠ cos(δ′1 − δ′2)e−|Δ2,1|, N(1)
N [u] = 16ν30

⎛⎜⎜⎜⎜⎝3β + 40ν20
3
η

⎞⎟⎟⎟⎟⎠ cos(δ′N − δ′N−1)e−|ΔN,N−1 |,
M(1)

1 [u] = −16ν
3
0

3

⎛⎜⎜⎜⎜⎝β + 8ν20
5
η

⎞⎟⎟⎟⎟⎠ sin(δ′1 − δ′2)e−|Δ2,1|, M(1)
N [u] =

16ν30
3

⎛⎜⎜⎜⎜⎝β + 8ν20
5
η

⎞⎟⎟⎟⎟⎠ sin(δ′N − δ′N−1)e−|ΔN,N−1 |.
(17)

The Ξk[u](1) and Dk[u](1) contributions can also be calculated. However, as mentioned above, we will neglect
them when compared to the leading terms 2μk and 2(μ2k + ν

2
k). Therefore, the relevant PCTC for N solitons takes the

form:
dλ1
dt
= −4ν0eq2−q1 + M1 + iN1,

dλN
dt
= 4ν0eqN−qN−1 + MN + iNN ,

dλk
dt
= −4ν0 (eqk+1−qk − eqk−qk−1 ) + Mk + iNk, k = 2, . . . ,N − 1

dqk
dt
= −4ν0λk, λk = μk + iνk.

(18)

In order to render the mutual interactions between solitons more transparent, we explicitly cast the above PCTC for
the special case of two solitons:

dν1
dt
= 2ν1P(ν1) + 16ν30e

−2ν0(ξ2−ξ1)
⎛⎜⎜⎜⎜⎝sin(δ′1 − δ′2) +

⎛⎜⎜⎜⎜⎝3β + 40ν20
3
η

⎞⎟⎟⎟⎟⎠ cos(δ′1 − δ′2)
⎞⎟⎟⎟⎟⎠ ,

dν2
dt
= 2ν2P(ν2) − 16ν30e−2ν0(ξ2−ξ1)

⎛⎜⎜⎜⎜⎝sin(δ′1 − δ′2) −
⎛⎜⎜⎜⎜⎝3β + 40ν20

3
η

⎞⎟⎟⎟⎟⎠ cos(δ′1 − δ′2)
⎞⎟⎟⎟⎟⎠ ,

dμ1
dt
= 16ν30e

−2ν0(ξ2−ξ1)
⎛⎜⎜⎜⎜⎝cos(δ′1 − δ′2) − 1

3

⎛⎜⎜⎜⎜⎝β + 8ν20
5
η

⎞⎟⎟⎟⎟⎠ sin(δ′1 − δ′2)
⎞⎟⎟⎟⎟⎠ ,

dμ2
dt
= −16ν30e−2ν0(ξ2−ξ1)

⎛⎜⎜⎜⎜⎝cos(δ′1 − δ′2) + 1
3

⎛⎜⎜⎜⎜⎝β + 8ν20
5
η

⎞⎟⎟⎟⎟⎠ sin(δ′1 − δ′2)
⎞⎟⎟⎟⎟⎠ ,

(19)

and in addition:
dξ1
dt
= 2μ1,

dδ1
dt
= 2(μ21 + ν

2
1),

dξ2
dt
= 2μ2,

dδ2
dt
= 2(μ22 + ν

2
2),

(20)

where the local dynamics for the soliton height is prescribed through

P(νk) = γ +
8
3
βν2k +

128
15
ην4k = c0 + c1ν

2
k + c2ν

4
k . (21)

It is important to mention that, unlike the CTC, the PCTC is not integrable. In particular, ν1+ν2 = 2ν0 and μ1+μ2 = 2μ0
now may depend on time.
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2.3 Analysis of the Leading Terms in the PCTC
Let us first consider the leading terms responsible for the perturbations in the chain. Specifically, these leading terms
affect all the amplitudes of the solitons:

dνk
dt
= 2νkP(νk), (22)

where P(ν) is defined above in Eq. (21). Focusing on the above leading terms (only present in the soliton amplitudes),
there are two classes of solutions corresponding to the following two choices of the perturbation parameters γ, β and
η:

(a) c21 − 4c2c0 > 0, i.e., P(νk) has 4 real roots,
(b) c21 − 4c2c0 < 0, i.e., P(νk) has 2 pairs of mutually complex conjugate roots.

(23)

For practical applications one needs to restrict parameters such that the solution for νk which remains ‘physical’ (i.e.,
does not blow up or vanish quickly) for long times. The relevant condition (a) or (b) will provide a constraint for the
perturbation parameters which ensure such behavior of νk. Such analysis would be interesting and will be left to a
future publication. Nonetheless, in what follows, we consider in more detail the case η = 0 where the quintic gain/loss
term is absent. Thus, in the absence of quintic gain/loss, the leading terms of the perturbations, corresponding to
purely cubic gain/loss and a combination of linear and cubic gain/loss case, yield, respectively:

(A)
dνk
dt
=

16β
3
ν3k , (24)

(B)
dνk
dt
= 2γνk +

16β
3
ν3k . (25)

It is evident that the gain/loss coefficients affect strongly the amplitudes of the solitons. In fact, the above systems
have the following explicit solutions:

(A) νk(t) =
3√

9C0 − 96βt
, (26)

(B) νk(t) =

√
3γ

3γC1 exp(−4γt) − 8β
, (27)

where the integration constants C0 and C1 are determined by the initial soliton heights.
This means, as mentioned above, that the average amplitude ν0 is no longer constant, but depends on t. Therefore,

for generic choices of β and γ, the amplitudes νk may decrease or increase substantially, which is not compatible with
the adiabatic approximation.

3 NUMERICAL RESULTS

3.1 Soliton Amplitude Dynamics
Before focusing on the soliton chain, let us consider the leading term in the PCTC system: the decay/growth of the
soliton amplitude. Therefore, let us consider first a single soliton and follow its evolution according to the PCTC. Fig-
ure 1 depicts the comparison of the analytical solutions (26) and (27) and full numerical simulations of the perturbed
NLS (1)-(2). The full numerical PDE solutions where obtained by integrating an initial bright soliton solution of the
form (3) (i.e., the solution when no gain/loss terms are present) using a combination of second order finite-differences
in space and Runge-Kutta in time. We typically used the spatial domain [−80, 80] with 1024 spatial mesh points and
a temporal time step of Δt = 0.0025 to ensure numerical stability [33]. The PCTC numerics were obtained using
the ode45 package in Matlab. Figure 1(a) depicts the evolution of the soliton height for the case when only the cubic
loss/gain term is present (γ = η = 0) for different values of the cubic coefficient including gain (β > 0) and loss (β < 0)
and for an initial soliton of initial height 2ν(0) = 1. As the panels shows, there is very good agreement between the
perturbative solution (line) and the full PDE dynamics (circles) for both cubic gain (β > 0) and loss (β < 0). Similarly,
Figure 1(b) depicts a similar scenario when both linear gain and cubic loss are present. In this case we fix γ = 0.001
and β = −0.01 and vary the initial height of the seeded soliton. As expected, the soliton evolves towards the steady
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FIGURE 1. Growth/decay for a single soliton in the presence of higher order loss/gain terms. The solid (blue) lines correspond
to the analytical solutions (26) and (27) for, respectively, the ODE models (24) and (25), while the (red) circles correspond to full
numerical PDE solutions of the perturbed NLS (1)-(2). The numerical PDE solutions where started with the exact soliton solution
in the absence of any gain/loss terms (i.e., solution (3)). (a) Only the cubic loss/gain is present (γ = η = 0). The different values
for the cubic gain/loss are indicated where β > 0 and β < 0 correspond, respectively, to gain and loss. All the initial solitons where
seeded with height 2ν = 1. (b) Soliton amplitude for linear gain and cubic loss corresponding to γ = 0.001 and β = −0.01. Each
curve corresponds to initializing the system with a soliton of a different amplitude: ν(t = 0) = 1

2 (2, 1, 0.3863, 0.2, 0.1) from top to
bottom. The value 2ν =

√
3/5/2 � 0.3863 corresponds to the fixed point ν∞ of Eq. (25). (c) Same as in panel (b) but for γ = 0.01

and β = −1.5γ and initial amplitude ν(t = 0) = 1
2 (2, 1, 0.5, 0.2). (d) Dynamics of the full PDE evolution starting with the soliton

solution with ν(0) = 1
2 0.2 < ν∞ = 1. The snapshots show the magnitude of the field |u(x, t)| at the indicated times. The integration

domain is [−80, 80] while the plotting range is the subset [−49, 49]

state height given by the, non-trivial, fixed point solution ν∞ ≡ ν(t → ∞) =
√

3γ
−8β . In Figure 1(c) we depict a very

similar scenario as the one for Figure 1(b) but for the larger value of the nonlinear gain/loss parameters: γ = 0.01 and
β = −1.5γ. In this case, when the amplitude of the soliton is higher, or slightly lower, than ν∞ = 1/2 there is again
excellent agreement between the ODE model and the PDE dynamics. However, when the initial height of the soliton
is small, the soliton grows and starts developing oscillations in the tails (and the height) as shown in panel (d). This is
due to the fact that we are initializing our PDE system with a soliton solution of the NLS without gain/loss terms. As a
result the wings of the soliton unexpectedly acquire mass and induce the oscillations. These oscillations are long-lived
but transitory as the system eventually settles to the exact soliton solution corresponding to the parameter values at
hand. Nonetheless, despite the spurious oscillations, the PDE dynamics follows the main trend of the ODE model as
expected.

It is important to mention at this stage that the PDE dynamics for the case of linear gain and cubic loss is always
unstable as the zero background solution u(x, t) = 0, where the solitons are embedded, suffers from modulational
instability due to the linear gain. In all of the relevant results with linear gain presented above and below, we are
assuming that this instability is weak and therefore negligible. In fact, in all numerical experiments reported here, no
instability of the background state was visible on the time scale of our runs. A natural way to rid the system of the
inherent modulational instability of the background state is to treat the full linear, cubic, and quintic gain/loss model
with (i) a linear loss that suppresses the modulational instability of the background state and (ii) a competition of a
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cubic gain and a quintic loss so that stable solitons can ensue [35]. This topic falls outside the scope of the current
manuscript and it is currently under investigation; the relevant results will be published elsewhere.

FIGURE 2. Soliton-soliton interaction dynamics. Shown are the surface plots of |u(x, t)| vs. (x, t) obtained from the full integration
of the NLS (1). We also depict, see (green) thick curve closely following the peak of the solitons, for the same initial conditions, the
corresponding reduced dynamics of the PCTC (19)-(20). The parameters of the NLS are given by: γ = 0.01, β = −1.5γ, and η = 0.
Panel (a) corresponds to two solitons with initial conditions: ξ1(0) = −4.5, ξ2(0) = +4.5, 2ν1(0) = 2ν2(0) = 1.5 (corresponding to
solitons that are 50% higher than the steady state height 2ν∞ = 1), μ1(0) = μ2(0) = 0, and δ2(0) − δ1(0) = 0.2. Panel (b) has the
same initial condition as in panel (a) with the exception that δ2(0) − δ1(0) = 0; namely, the two solitons are initially in phase. Note
the excellent agreement between the full NLS numerics and the reduced PCTC model

3.2 Soliton-Soliton Interactions
Having shown in the previous section that the local amplitude dynamics under the presence of linear and cubic
gain/loss terms prescribed by perturbation is an accurate model for a single soliton, we now turn our attention to
the dynamics of soliton interactions. In the interest of brevity, we will compare the reduced perturbation dynamics
with the full NLS evolution for a pairwise interaction between two solitons. Therefore, let us focus on the system
of equations (19)-(20) describing the soliton parameters evolution for two well-spaced solitons. Figure 2 depicts two
typical scenarios for the interaction dynamics between two solitons. Panel (a) depicts the case of two solitons with
heights higher than the equilibrium 2ν∞ and with a relative phase shift of 0.2π. As the panel shows, the dynamics
of the full NLS numerical solution (see colored surface plot) is in excellent agreement with the reduced dynamics
(19)-(20) shown by the (green) thick curve following the peak of the solitons. Similarly, in panel (b) we show the
case corresponding to the same initial condition as in panel (a) but with the initial relative phase being zero. In this
case as well, the reduced dynamics is in excellent agreement with the full NLS numerics for times before the collision
between solitons. As our reduced ODEs are not valid (during or) after the collision, we stop the ODE dynamics when
the solitons collide.

In order to compare in a more qualitative manner the full NLS dynamics and the reduced PCTC model, we have
also extracted the shape parameters of the NLS solitons by performing a standard nonlinear square fitting routine to
each snapshot with an ansatz consisting of the sum of two bright solitons of the form (3). Figure 3 presents a couple
of typical cases where the NLS parameters extracted by the above fitting are depicted by small circles and the reduced
PCTC results are depicted by the colored solid curves. For guidance, we also include (see thin black curves) the
corresponding results when the gain/loss terms are absent (γ = β = η = 0). Figure 3(a) corresponds to the case shown
in panel (a) of Figure 2. As it is clear from this panel, despite some oscillations in the full NLS dynamics, the soliton
height from the reduced PCTC model is in very good agreement with the full NLS numerics. These small oscillations
of the amplitude (and width) of the NLS solitons are similar to the ones described previously for Fig. 1(c)-(d) and
are, naturally, absent in the PCTC model. Nonetheless, despite the oscillations, the main trend (after averaging out the
oscillations) is very well described by the reduced PCTC. Also note the contrast between the Hamiltonian dynamics
when all loss/gain terms are absent (see thin black lines). Panel (b) in Figure 3 depicts a similar scenario to panel (a)
but where the solitons are initialized with the precise equilibrium height 2ν∞. Again, as in the previous case, there
is very good agreement between the full NLS model and its corresponding PCTC ODE reduction. It is interesting
that although in this case we start with the correct height for the solitons, the shape is still not very close to the exact
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FIGURE 3. Comparing the soliton-soliton dynamics between the full NLS model and its PCTC reduction. The different panels
depict soliton shape parameters: height (top), position (middle), and phase (bottom) for two interacting solitons. The thick colored
lines correspond to the PCTC ODE model while the the circle to the full NLS PDE numerics. The shape parameter for the NLS
numerics are extracted by numerically fitting the ansatz (3). For all the cases we chose γ = 0.01, β = −1.5γ, and η = 0. Also,
for comparison, the thin black curves correspond to the Hamiltonian case γ = β = η = 0. The different cases correspond to the
set following of initial conditions. (a) ξ1(0) = −4.5, ξ2(0) = +4.5, 2ν1(0) = 2ν2(0) = 1.5 (corresponding to solitons that are
50% higher that the steady state height 2ν∞ = 1), μ1(0) = μ2(0) = 0, and δ2(0) − δ1(0) = 0.2. (b) Same as in panel (a) but with
2ν1(0) = 2ν2(0) = 2ν∞ = 1, corresponding to solitons with a height equal to the steady state height. In panels (a) and (b) the initial
condition for the NLS PDE is constructed using the ansatz (3). (c) Same as in panel (b) but in this case we initialize each NLS PDE
soliton with the numerically exact one-soliton solution obtained using the nonlinear Newton-Krylov solver nsoli [34]. Then, the
two solitons are seeded by displacing this numerically exact profile to the initial positions and imprinting their phases as necessary
by multiplying (before adding them together) each soliton by its corresponding eiδk (0) phase term

solution as our ansatz (3) is not an exact solution for the steady state with linear gain and cubic loss. In fact, by
applying a standard fixed point algorithm, we have found the numerically exact steady states for given choices of
the gain/loss parameters. After using this numerically exact profile and seeding it in the NLS numerical integrator at
the desired location with the desired phases (by multiplying each soliton by its corresponding eiδk(0) phase term), we
are able to initialize the system with solitons that do not display the oscillation in height (and width) present in the
previous two cases. The dynamics corresponding to the same case as in Figure 3(b), but by using the numerically
exact solitons when the gain/loss parameters are present, is depicted in Figure 3(c). This panel shows that the height
oscillations are now nicely suppressed.

CONCLUSIONS AND OUTLOOK

We have derived reduced equations of motion for chains of bright solitons in the NLS perturbed with linear and non-
linear gain/loss terms. By generalizing the soliton perturbation methodology, we have obtained a perturbed complex
Toda chain (PCTC) for the soliton’s shape parameters (height, width, positions, velocity, and phase). The dynamics
of this PCTC is in very good agreement with the full numerics of the original perturbed NLS model. In particular, we
have corroborated that the PCTC is indeed in very good agreement for the case of (i) single soliton solutions and (ii)
soliton-soliton interactions. For these single soliton solutions, we have observed that starting away from the steady
state height 2ν∞ (where linear gain is balanced by cubic loss) induces a relaxation dynamics towards the equilibrium
2ν∞. We have also observed that, starting with solitons in the full NLS model with heights below 2ν∞, induces oscil-
lations in the soliton’s height (and width). It would be interesting to find whether these oscillation could be eliminated
by starting with a modified soliton profile. Indeed, we were able to eliminate these oscillations by starting with the
numerically exact steady state profile. However, the generalization of this to transient dynamics (particularly when a
small soliton grows towards the steady state height) may require further work.

It would be interesting to study in more detail the limitations of the PCTC, particularly when more than two
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solitons are interacting. For instance, the toy model that we used hereby has the limitation that the zero background
level is always unstable due to the modulational instability induced by the linear gain (which dominates for small
field amplitudes). However, it is worth mentioning that our perturbation approach can also be carried out with quintic
gain/loss terms. It would be interesting to analyze this more general class of models and its PCTC reductions. Particu-
larly important is the case corresponding to linear loss, cubic gain, and quintic loss [35] as this produces a stable zero
background (due to linear loss) and a fixed point soliton height where the cubic gain and quintic loss are balanced.
This topic is currently under investigation and will be reported in a future publication.

Another avenue of possible research would be to apply the non-conservative variational approximation for
NLS [36] to obtain correction terms in the soliton-soliton interaction that originate from the deviation of a sech-soliton
shape when gain and loss are present [37]. It will be important to check also whether the PCTC model describes ad-
equately the interactions of three or more solitons. Finally, another interesting trend would be to derive the PCTC
model (18) for the Manakov system with gain/loss perturbations, see Refs. [27, 28, 29, 30, 31, 32, 38]. Our hypothesis
is that the adiabatic approximation would apply to the N-soliton interactions provided the gain and loss terms balance
each other so that the soliton amplitudes stay bounded in a small interval around their average value.
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A TYPICAL INTEGRALS

Here we list the typical integrals that appear in deriving the PCTC. First we list the integrals∫ ∞
−∞

dz
cosh2(z)

= 2,
∫ ∞
−∞

dz
cosh4(z)

=
4
3
,

∫ ∞
−∞

dz
cosh6(z)

=
16
15
. (28)

needed to derive Rk[u](0). It is possible to derive analytical expressions for all integrals Rk[u](1), but these turn out to
be very involved. Below we are keeping only terms of the order of ε0:∫ ∞

−∞

dzk
cosh3(zk) cosh(zk±1)

= 4e−|Δk,k±1 | + O(ε3/20 ),
∫ ∞
−∞

dzk
cosh5(zk) cosh(zk±1)

=
8
3
e−|Δk,k±1 | + O(ε3/20 ),∫ ∞

−∞

dzk tanh(zk)
cosh3(zk) cosh(zk±1)

= ∓4
3
e−|Δk,k±1 | + O(ε3/20 ),

∫ ∞
−∞

dzk tanh(zk)
cosh5(zk) cosh(zk±1)

= ∓ 8
15
e−|Δk,k±1 | + O(ε3/20 ),∫ ∞

−∞

dzk zk
cosh3(zk) cosh(zk±1)

= ∓2e−|Δk,k±1 | + O(ε3/20 ),
∫ ∞
−∞

dzk zk
cosh5(zk) cosh(zk±1)

= ∓2
3
e−|Δk,k±1 | + O(ε3/20 ),∫ ∞

−∞

dzk (1 − zk tanh(zk))
cosh3(zk) cosh(zk±1)

= 2e−|Δk,k±1 | + O(ε3/20 ),
∫ ∞
−∞

dzk (1 − zk tanh(zk))
cosh5(zk) cosh(zk±1)

= 2e−|Δk,k±1 | + O(ε3/20 ).

(29)
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