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A B S T R A C T

Health interventions using real-time sensing technology are characterized by intensive longitudinal data, which
has the potential to enable nuanced evaluations of individuals’ responses to treatment. Existing analytic tools
were not developed to capitalize on this opportunity as they typically focus on first-order findings such as
changes in the level and/or slope of outcome variables over different intervention phases. This paper introduces
an exploratory, Markov-based empirical transition method that offers a more comprehensive assessment of
behavioral responses when intensive longitudinal data are available. The procedure projects a univariate time-
series into discrete states and empirically determines the probability of transitioning from one state to another.
State transition probabilities are summarized separately in phase-specific transition matrices. Comparing tran-
sition matrices illuminates intricate, quantifiable differences in behavior between intervention phases. Statistical
significance is estimated via bootstrapping techniques. This paper introduces the methodology via three case
studies from a secondhand smoke reduction trial utilizing real-time air particle sensors. Analysis enabled the
identification of complex phenomena such as avoidance and escape behavior in response to punitive con-
tingencies for tobacco use. Additionally, the largest changes in behavior dynamics were associated with the
introduction of behavioral feedback. The Markov approach‘s ability to elucidate subtle behavioral details has not
typically been feasible with standard methodologies, mainly due to historical limitations associated with in-
frequent repeated measures. These results suggest that the evaluation of intervention effects in data-intensive
single-case designs can be enhanced, providing rich information that can ultimately be used to develop inter-
ventions uniquely tailored to specific individuals.

1. Introduction

Interventions aimed at changing behavior are often implemented on
an individual level in studies known as single case designs (SCDs) [1].
Within an SCD, a treatment approach is typically evaluated over time
by observing an individual within two or more distinct phases (intervals
of time), both with and without an active treatment in place. The basic
framework includes a baseline phase (A), comprised of several repeated
observations of the dependent variable without an active treatment.
This baseline phase is usually followed by an intervention phase (B),
defined by a discrete point in time where the independent variable
begins to be experimentally manipulated for the duration of the phase,

concurrent with continued observations of the dependent variable. The
frequency of observations within SCDs makes them an attractive option
for researchers aiming to observe the precise nuances of how people
interact with treatment protocols [2], specifically those that in-
corporate highly-individualized shaping procedures.

Mobile sensing instruments such as fitness trackers, wearable glu-
cose monitors, and devices within the Internet of Things are beginning
to enable behavioral responses and the physiological/environmental
contexts in which they occur to be assessed continually, in near real
time [3]. The longitudinal data produced by this technology offers the
possibility of deploying behavior interventions within SCDs that are
characterized by an unprecedented amount of data. Analytic
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approaches capable of navigating such data-rich longitudinal studies
have not yet been fully developed. For example, in the popular text
Models for Intensive Longitudinal Data [4], nearly all data sets were
generated by ecological momentary assessments (EMAs), diaries, or a
reviews of historical data. Generally, the most intense observation
frequencies were associated with EMAs, which generated data points
episodically a few times per day. Similar data intensity is noted in the
text Intensive Longitudinal Methods [5], where the measurement fre-
quency ranged in duration from 10 through 29 observations. The data
sets used within these texts are representative of the current status quo,
as demonstrated by a meta-analysis of 409 SCDs, which reported that
the average number of observations in the baseline phase was 10.22
[6]. In contrast, real-time sensors deployed in studies routinely assess
data at frequencies on the order of several times per minute over the
course of weeks or months. This increased data volume should enable
the effects of interventions on behavioral dynamics to be detailed at a
much finer resolution, provided that analytic tools are developed for
this purpose.

In addition to increasing the precision of behavioral assessments,
technological advancement has the potential to fundamentally change
the nature of interventions away from static procedures towards just-in-
time adaptive behavioral interventions (JITAIs) [7]. JITAIs enable
treatments to be provided on an ongoing basis and to automatically
adapt in response to participants’ varying behaviors, environmental
contexts, and past history. In contrast to the historic paradigm, where a
small number of study phases demarcate time intervals of interest, JI-
TAIs do not have well-defined intervention on/off time intervals and
instead are hypothesized as an ongoing interaction between patients
and providers. In static interventions, the delineation between inter-
vention on/off phases has resulted in analytic evaluations that are ne-
cessarily focused on identifying global differences between study
phases, often by quantifying changes in level, trend, variability,
overlap, and/or immediacy of effect [8–12]. These analyses were not
developed to elucidate the subtleties of behavioral responses to con-
tinuously-adapting interventions, making them insufficient for evalu-
ating JITAIs.

To fully realize mobile-sensing technology’s potential to increase
the resolution of outcomes, it is necessary to develop analytic techni-
ques that (i.) capture the nuances of individual responses to treatment
and (ii.) are capable of assessing ongoing interventions that are fre-
quently encountered by participants throughout the course of a trial.
This manuscript describes the development of a Markov-based, transi-
tion matrix methodology that has the potential to meet these chal-
lenges. For a given case, this approach evaluates the intervention by
comparing each observation, throughout the entire course of the trial,
to a second observation located within close temporal proximity. The
timescales considered are on the order of seconds, allowing detailed
profiles of individual responses to the intervention to be created.
Additionally, because the frequency of assessment is much higher than
in typical behavioral interventions, there are sufficient observations of
the dependent variable to evaluate continual exposure to intervention
stimuli. The proposed analytic approach is non-parametric and ex-
ploratory, characteristics that have been suggested to be valuable for
revealing behavioral dynamics [13].

The use of the techniques developed herein requires a very high
sampling frequency, meaning it is not appropriate for most current
studies. However, intense sampling frequencies are becoming increas-
ingly more common as real-time sensing technology becomes more
ubiquitous in multiple contexts [14]. Health promotion interventions
characterized by streaming technology and intensive measurement
frequency have already begun to be implemented [15–17]. It is these
types of studies, likely representing an increasing proportion of beha-
vioral interventions in the future, that the procedures described in this
manuscript were developed to analyze.

2. Background

2.1. Project fresh air

The methodologies in this paper are generalizable to any study with
a sufficient number of observations. Project Fresh Air (PFA), a sec-
ondhand smoke (SHS) reduction trial characterized by streaming data
and intensive data measurements, was used as a prototype throughout
this manuscript (see Ref. [17] for the full details of this study). This trial
aimed to ameliorate SHS exposure by leveraging punitive con-
tingencies, which are defined as aversive stimuli contingent on a be-
havior(s) that makes the behavior(s) less likely to be emitted in the
future. Approximately 300 homes were enrolled in this trial, each of
which contained at least one adult who generated SHS (typically via
indoor cigarette smoking) and at least one child under 14 years old
living in the home. To monitor indoor air quality, two Dylos DC1700 air
particle quality monitors were installed inside of each home. The
monitors were calibrated to detect particles with sizes ranging from 0.5
to 2.5 μm, which is consistent with SHS as well as non-tobacco aerosol
sources [18]. One monitor was installed in the room nearest to where
most smoking took place and another was placed in the child’s bed-
room; measurements from only the main smoking room monitor are
included in the current analysis. The monitors measured the air particle
concentration every ten seconds. In approximately half of the homes,
the air particle monitors were fitted with devices that were pro-
grammed to deliver aversive visual and auditory feedback (yellow/red
lights and tones) when air particle concentrations exceeded 60 μg

m3 ,
which previous research indicated was consistent with indoor cigarette
smoking [18]. The intensity of the aversive feedback increased [19] if a
second 120 μg

m3 threshold was breached. For these homes, the trial was
stratified into two phases: (1.) Baseline – a period during which feed-
back was not active and (2.) Treatment – the period during which the
feedback was activated, representing an AB logic. Previously, linear
mixed-effects analyses demonstrated that the intervention, on average,
significantly reduced particle-related and tobacco-related outcomes
between the Baseline and Treatment phases [17], but did not separately
examine precise outcomes for individual homes. The aim of the ana-
lyses presented below is to investigate the individualized effect of the
first ( )60 μg

m3 threshold on a small subset of homes from PFA.

3. Methods

3.1. Markov chains and transition matrices

The methodology underlying this analysis is based on Markov
chains. Markov chains (or processes) are discrete systems that, at any
given time, can be characterized as being in a particular state, where
the states are mutually exclusive and exhaustive. They are also mem-
oryless, meaning that the probability distribution of the system’s next
state is determined entirely by the current state. If there are n states, the
transition matrix T is an n-by-n structure summarizing these prob-
abilities over all states.Ti j, , the element of matrix T corresponding to the
ith row and jth column, is the probability that a system in State i at a
given time will be in State j at the next time step. For instance,T1,1 is the
probability that a system in State 1 remains in State 1 at the next time.
T1,2 is the probability that a system in State 1 moves to State 2, and so
on. One row for each state is constructed and, by the law of total
probability, the sum of each row must be 1. As an example, consider the
matrix

= ⎛

⎝
⎜

⎞

⎠
⎟T

0 1 0
0.5 0 0.5
0.5 0.25 0.25

.

In this case, when in State 1 at time ti, the system will move to State
2 at time +ti 1 with probability 1. When in State 2 at time ti, the system
has a 0.5 probability of moving to State 1 and a 0.5 probability of
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moving to State 3 at time +ti 1. At time ti, if the system is in State 3, then
at time +ti 1, the system will move to State 1 with probability 0.5, to
State 2 with probability 0.25, and remain in State 3 with probability
0.25.

Markov models are extremely dexterous and have been widely ap-
plied to longitudinal data for many purposes including the transition of
a system among several states [20], the clustering of multivariable time
series [21], and to assess pre/post treatment results [22]. The versatility
of Markov modeling allows it to be used for the present task of assessing
an ongoing behavioral intervention.

3.2. Empirical transition matrices

The approach detailed herein proceeds by empirically calculating
transition matrices for each phase (A and B) of the intervention. In
terms of PFA, for each home one transition matrix was calculated for
both the Baseline phase and Treatment as follows. Each data point in
the air particle time series was assigned to one of eight states corre-
sponding to the air particle concentration ranges summarized in
Table 1. While these states do not necessarily correspond to distinct
system characteristics, as is often the case with Markov modeling, this
procedure is useful for characterizing system behavior at various levels
of particle generation. States were denoted as Sj for = …j S1 6; 4 re-
presents a particle concentration that has breached the 60 μg

m3 threshold,
thereby activating the aversive feedback. The selection of the bound-
aries that delineate the states must be specifically determined for each
study. Section 3.4 details metrics to aid with this selection and to
evaluate the effect that state boundary selection has on overall results.

To populate the transition matrix, a lag l was selected, which defines
the time interval at which state transitions are evaluated. si was defined
as the state of the system at time i and +si l was defined as the state of the
system l units later at time +i l. (The last −l 1 observations were
eliminated from this analysis since the system’s state l units later was
not observed.) We call the si’s source states and the +si l’s destination
states. A schematic of this process is depicted in Fig. 1 for a single point
where =s Si 2 and =+s Si l 3. For each Sj, consider all of the si’s such that

=s Si j, i.e., all of the observations in Sj. We then determined +si l, the
destination state, for each of these observations. The raw counts were
divided by S| |j , the total number of observations contained in state j, to
convert them into probabilities describing the transition from each state
into every other state. This information was summarized in an em-
pirical transition matrix, which described the probability of moving
from one state to another after a lag l has elapsed.

TB was defined as the empirically-determined transition matrix for
the Baseline phase of the intervention when the visual and audio
feedback was not yet activated and TT was defined as the empirically-
determined transition matrix for the Treatment phase once the feedback
had been activated. If present, intervention effects should manifest

themselves as differences between these two matrices, which can be
summarized by ≡ −T T TT BΔ . T T,B T , and TΔ were calculated for Home 1,
Home 2, and Home 3, three households in the PFA study. As will be
demonstrated in Section 4.1.1, these homes were chosen since they
exemplify different analytic results of interest. In each case, a lag of

=l 6 measurements, or one minute, was used. The rationale for this
choice of lag will is discussed in Section 3.4.

3.3. Significance of the differences between TB and TT

It is important to determine whether differences summarized in TΔ

matrices were statistically significant and, therefore, likely reflective of
distinctive dynamics in different study phases. Bootstrapped confidence
intervals for each element of TΔ were calculated to make this assess-
ment. This procedure took advantage of the fact that each row of the
transition matrix defines a multinomial distribution with n categories
(each of the n destination states). The probability of the system moving
into a given category (typically called a successful trial in a multinomial
distribution) was given by the empirically-calculated, discrete dis-
tribution summarized in the row. Statistical software can easily gen-
erate any number of values at random from a multinomial distribution.
For the multinomial distribution defined by the row associated with a
given S S, | |j j values were randomly generated. These random values
were then grouped according to the destination state into which they
fell. Dividing the number of elements in each group by S| |j turns the
randomly-generated values into a randomly-generated row of a tran-
sition matrix. This procedure was repeated ≡B 10, 000 times for both
the Baseline and Treatment phase matrices and, for each run, the dif-
ference between the distributions was calculated, resulting in B TΔ-like
difference matrices. Each element of the TΔ matrices was considered
separately and the B values were sorted from lowest to highest. The

B0.025 th and B0.975 th value define a 95% confidence interval. If the
resulting confidence interval did not contain zero, then the change as-
sociated with this element in TΔ was considered significant.

Table 1
Range of particle concentrations for each of the states used in the Markov
analysis along with the number of observations in each state for each of the
three homes under consideration (Home 1, Home 2, Home 3). S4 has an asterisk
since it represents the first state where a particle concentration has breached
the first threshold and activated aversive feedback.

State Conc. range ( )μg
m3

# Observations

Home 1 Home 2 Home 3

<S1 <30 715,806 405,519 809,962
S1 30–40 6881 10,837 2644
S2 40–50 1790 3488 589
S3 50–60 685 1509 224

∗S4 60–70 396 868 158
S5 70–80 486 544 112
S6 80–90 277 276 173

>S6 >90 654 1478 1399
State 1

State 2

State 3

State n

.

.

.

ti ti+l

.
.

l

Time

P
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tic
le
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Fig. 1. Schematic of the mechanism used to populate Markov process transition
matrices based on an air particle time series. Time is shown on the x-axis and
particle concentration is shown on the y-axis. At time ti, the system is in state S2.
After a lag of l time units, denoted by the red double arrow, the system is in S3.
This process is performed for every observation so that the probability of
moving from every state to every other state can be summarized. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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3.4. Selection of analytic parameters

Several components of the Markov transition matrix are free para-
meters that must be chosen. These include the use of {30,40,…,90} as
the boundaries defining the states, Sj, and the use of a lag, l, of one
minute between measurements. The selection of these parameters can
be informed by theoretical and/or empirical criteria. In Appendix B,
methodologies from both of these perspectives that aided in choosing
parameters are detailed. The effect of parameter selection on overall
results is also investigated. It should be noted that the stratification
point between the Baseline and Treatment matrices can also be con-
sidered a parameter. Given the strong rationale for selecting the onset
of the intervention as this boundary, we discuss this choice as a validity
check.

3.5. Validity investigation

The methodologies outlined above reflect the stratification of
measurements based on whether they are in the Baseline or Treatment
phase of the study followed by an analysis of the difference between
transition matrices associated with each phase. As a validity check, this
section details analyses that explore whether this delineation choice
leads to larger effects than delineating the data by some other criterion.
If the largest changes are indeed associated with stratifying by inter-
vention phase, this will increase the evidence for interpreting the re-
sults as a definitive demonstration of the effectiveness of the PFA in-
tervention.

3.5.1. Convergence of the Markov system
Before investigating validity, it is necessary to first determine the

number of measurements required for the system to converge to ‘mean’
dynamics. Our strategy is to consider increasingly larger subsets of the
data and determine how many observations are required for results to
be consistent. For a given home, this process begins by defining the first
time point at which the intervention has been activated, which is de-
signated as the tI

th observation. Those ti values with <i I are in the
Baseline phase and those ti values with ⩾i I are in the Treatment phase.
The empirically-calculated probabilities described in Section 3.2 will be
calculated using all of the measurements in the Baseline and Treatment
phases, but the convergence process seeks to identify a subset of these
observations that yields similar dynamics.

The first subset of Baseline phase observations considered consisted
of the 10% of all Baseline observations that were temporally closest to
tI . Similarly, the 10% of the Treatment phase observations that were
temporally closest to the onset of the intervention were also selected.
This process is illustrated in the bottom row of Fig. 2. The process de-
scribed in Section 3.2 was then repeated for this subset of data by
forming the empirical transition matrices TB and TT and calculating the
difference matrix TΔ

10, where the superscript indicates that 10% of the
Baseline/Intervention data was used. To determine the concordance of
TΔ

10 with TΔ
100, i.e., the results when using all observations, the Frobenius

norm −T T|| ||FΔ
100

Δ
10 was calculated. The Frobenius norm (||. || )F is the L2

norm of a vectorized version of the matrix. When performing this cal-
culation, all non-significantTΔ values were set to zero. To determine the
number of observations required for the system to converge, the process
described above was repeated when considering 20%, 30%,…100% of
the observations from each phase’s time series that were closest to the
tI

th observation.

3.5.2. Optimal boundary between TB and TT
Once the number of measurements required for the dynamics to

converge has been established, a validity check that considers the effect
of alternate boundaries between the TB and TT matrices can proceed.
Define mB and mT , respectively, as the number of measurements

required for convergence in the Baseline and Treatment phases. An
iterative procedure was implemented where the number of observa-
tions used to form the matrices TB and TT was held constant at mB and
mT over all iterations, while the boundary defining the two matrices
varied. For the first iteration, the transition matrix TB was generated
from the 1st through the mB

th observations in the study and TT was
generated from the +m( 1)B

th through the +m m( )B T
th observations.

This process is illustrated in the bottom row of Fig. 3. The associated TΔ

matrix summarizing the difference between these two transition ma-
trices was then calculated. In a sliding window-type procedure, the
observation indices were then shifted by some value δ such that a new
TB and TT were defined. (See the second from bottom row of Fig. 3.) TΔ

was again calculated for these two matrices. This procedure was re-
peated (observations were shifted by δ) as long as there were a suffi-
cient number of observations to accommodate shifting the data
window. δ was chosen such that after five shifts, the boundary between
TB and TT exactly matched tI , the boundary between the Baseline and
Treatment phases.

Fig. 2. Schematic of the procedure used to evaluate the number of measure-
ments for the Markov analysis to converge. The dashed line tI indicates the
onset of the intervention characterized by the availability of aversive monitor
feedback. For =n T1, B was formed using only a small subset of the data ad-
jacent and just prior to tI . This is denoted by the small orange rectangle on the
lowest row. The small blue rectangle on the lowest row illustrates the small
subset of data just after tI that was used to constructTT . For =n 2, the amount of
data used to populate the transition matrices was expanded by 10% of the total
number of measurements in each phase. This process continued until =n 10,
when all of the data in each phase of the intervention were used to construct the
transition matrices, which is the case that is illustrated in Fig. 4. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. Schematic of the procedure used to evaluate optimal boundary between
the Baseline and Treatment transition matrices. For the first iteration, the 1st
through +m m( )B T

th observations were used, with a boundary at mB. For each
subsequent iteration, the window of observations considered is shifted by δ ,
which is chosen so that at the fifth iteration, the boundary between the two
phases aligns with tI . For each iteration, transition matrices were empirically
calculated and TΔ, the difference between these matrices, was also determined.
n is the iteration number.
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4. Results

4.1. Empirical transition matrices

Fig. 4 illustrates the empirical transition matrices calculated for
Homes 1 through 3. The first and second column of panels depictTB and
TT , respectively, while the third column of panels depicts TΔ. Only sig-
nificant changes (as determined via the methodology described in
Section 3.3) with an effect size (i.e. difference between matrix prob-
abilities) greater in absolute value than 0.05 are denoted in the TΔ

matrices; these probabilities are outlined in blue. Generally speaking,
the transition matrices have the largest probabilities along the diagonal,
meaning that the source state si and the destination state +si l are the
same. In other words, one minute after any given measurement, the air
particle concentration is most likely to have not changed by an amount

large enough for it to have transitioned into different state. For Home 1
and Home 2, the intervention had the effect of increasing the prob-
abilities in the subdiagonal entries, which represent, on average, a
decrease in particle concentrations after l time units have elapsed.
These increased subdiagonal values came at the expense of decreasing
probabilities on the diagonal and superdiagonal. This result can be seen
by examining the transition matrices TB and TT themselves or by ob-
serving the sign and location of significant differences highlighted inTΔ.
For these homes, the intervention had the effect of creating downward
pressure on states, where, once a state had been reached, air particle
concentrations were more likely to decrease in the Treatment phase
compared to the Baseline phase. In Home 3, there was no systematic
pattern and only four of the source–destination pairs in TΔ were sig-
nificant.

Fig. 4. Transition matrices for three homes in PFA. The rows of each matrix represent the source states and the columns represent the destination states. The value of
Ti j, represents the empirically-calculated probability of the system being in State Sj when it was in Si l units earlier. The left column of the figure contains baseline
transition matrices TB, the center column contains treatment transition matrices TT , and the right column contains TΔ, the difference between these two matrices. The
rows of panels correspond, from top to bottom, to Home 1, Home 2, and Home 3. For TΔ, only those values determined to be statistically significant with an effect
greater than |0.05| are shown. These cells are highlighted in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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4.1.1. Behavioral interpretation of results
From the standpoint of behavior science, detailed conclusions about

the dynamics of a household can be extracted from the transition ma-
trices. The treatment included lights and tones emanating from the
monitor once air particle concentrations exceeded a threshold. This
behavior-stimulus association is an example of an aversive/punishing
contingency. By definition, an aversive/punishing contingency occurs
when the presentation of a stimulus made contingent on a specific
behavior results in a reduction of the behavior that led to the generation
of the stimulus. This reduction can occur in two ways, escape behavior or
avoidance behavior. In the escape paradigm, an individual performs
behaviors to immediately alleviate the aversive stimulus associated
with its action. For example, in PFA, once the aversive alarm has
sounded, an individual may respond by extinguishing a cigarette or by
moving outside in order reduce the air particle concentration triggering
the sound. Avoidance behavior, on the other hand, is when an in-
dividual has discriminated the condition(s) that led to the aversive
stimulus and avoids the behavior or environment altogether. In PFA,
after several instances of being exposed to aversive monitor feedback as
a result of particle-generating behavior, an individual may move out-
doors before or just after lighting a cigarette so that particle con-
centrations do not trigger the monitor’s feedback.

The TΔ matrices appear to indicate that Home 1 exhibited escape
behavior while Home 2 exhibited avoidance behavior. For Home 1, the
reduction in the value of the diagonal probabilities and associated in-
crease in subdiagonal probabilities only occurred for states S4 through
S6, precisely those states that triggered the monitor feedback. That is,
household members in Home 1 appear to be seeking relief from the
aversive stimuli, once it has been activated. In Home 2, though, the
effect was present along diagonal and subdiagonal entries for all states,
including those prior to the activation of feedback. This can be inter-
preted inferentially as the household adjusting their behavior in order
to avoid triggering the alarm rather than reacting to the alarm once it
has become engaged.

4.2. Validity investigation

The results of the convergence analysis described in Section 3.5.1
are shown in Fig. 5 for each of the three homes under consideration. In
these figures, convergence is represented by the asymptoting of

−T T|| ||n
FΔ

100
Δ values; the dip for =n 100 is expected as there is an exact

match between matrices. For Home 1, the results converged for all
⩾n 70, which corresponds to using 125,864 measurements in the

Baseline phase and 382,635 measurements in the Treatment Phase. For
Homes 2 and 3, the system begins to converge at =n 40 and =n 60,
respectively. For consistency and in an effort to be conservative, we
consider each of these systems to have converged when using 70% of the
data. Table 2 summarizes the number of measurements required to
converge for each home.

For the three homes under consideration, Fig. 6 illustrates T|| ||FΔ for

the various stratification points between the two transition matrices, as
detailed in Section 3.5.2. Larger norms indicate a greater difference
between TB and TT and, therefore, a greater difference between the
dynamics summarized by the matrices. tI , the boundary between the
Baseline and Treatment phases, is denoted as iteration 0 and all other
windows are reported in terms of their iteration offset from tI . For Home
2, the maximum of the norm is exactly at tI , while for Home 1, the
maximum occurs when the breakpoint is slightly offset from tI . For
Home 3, the pattern was slightly different and the norm was relatively
low until it spiked when the breakpoint was offset by two iterations past
tI . In these cases, the norms are larger for stratification points that,
generally speaking, most closely align with the breakpoint between the
Baseline and Treatment phases. This indicates that stratifying by the
intervention phase led to larger difference in dynamics than alternate
boundaries, demonstrating the influence of the PFA intervention in
affecting household dynamics and adding validity to the behavioral
findings.

While the Frobenius norm provides a measure of the total action of a
matrix, it yields no information about the structure of the values within
a matrix. It is possible for two matrices to have the same norm and
completely different structures. (As a trivial example, the identity ma-
trix and a matrix of the same dimensions with 1’s on the anti-diagonal
and 0’s elsewhere have the same norm, but, at most, one element in
common.) For the above sliding-window analysis, it only makes sense
to compare the norms of transition matrices across different boundaries
if the structure of the underlying matrices are similar. The TΔ matrices
that have been discussed thus far have been characterized by negative
values on the diagonal, positive values on the sub-diagonal, and nega-
tive values on the superdiagonal. Therefore, to assess the structure of
the matrices calculated during the iterative, sliding-window procedure,
the mean subdiagonal, diagonal, and superdiagonal values were re-
corded for each of the boundary iterations. These results are shown in
the bottom panels of Fig. 6. For Home 2, the characteristic signs for the
3 interior diagonals are present across all boundaries. For Home 1, the
expected structure of a negative diagonal and positive superdiagonal
does not emerge until the boundary between the two matrices aligns
with tI . This is additional evidence that the intervention was critical in
changing the dynamics of the home in a manner that is face valid. The
results for Home 3 do not follow the same pattern. Its largest norm

Fig. 5. −∗T T|| ||n
FΔ Δ for = …n 1, ,10 for the three representative homes. In the two left-most cases, note the convergence to the results associated with the full amount of

data as larger and larger subsets of data are used. Results were normalized by the largest value to make a visual comparison more tractable.

Table 2
Variable definitions for validity analysis and values for representative homes.
See text for details.

Variable Definition Home 1 Home 2 Home 3

N # observations total 726,428 424,519 815,260
tI Baseline/Treatment Phase Boundary 179,807 251,462 330,650
mB # obs. for Baseline convergence 125,864 176,022 231,453
mT # obs. for Treatment convergence 382,635 121,141 339,228
δ Shift size for validity check 13,486 18,860 24,799
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occurs at an offset of 2; however the expected pattern does not emerge
until offsets of 3 and 4 from tI . This is likely a function of the ineffec-
tiveness of the intervention for this home. Overall, this analysis pro-
vides more validity to the conclusions concerning the importance of the
PFA intervention in generating behavioral responses.

5. Discussion

This paper describes an exploratory Markov procedure that em-
pirically evaluated the individualized effects of repeated exposure to an
intervention with a level of detail not possible with standard meth-
odologies. While in the traditional paradigm differences in the level,
slope, or variation of a dependent variable are often used to arrive at a
binary determination of whether an intervention was efficacious or not,
this methodology offers the ability to identify more nuanced, in-
formative effects. In other words, whereas traditional methodologies
focus on “if” an intervention affects behavior, the empirical Markov
methodology provides a more detailed assessment of the nature of the
behavior responses to an intervention. Our example resulted in out-
come measures that can be inferred to correspond to avoidance and
escape behaviors, a characterization that likely would have been missed
by other methodologies. It is probable that different behavioral phe-
nomena will be observed when applying the empirical Markov proce-
dure to other studies. For all cases, though, the precise level of detail
offered by this approach provides an opportunity to assess interventions
in a manner that is much more consistent with established behavioral
theory. This could ultimately lead to more effective, tailored behavioral
interventions.

For each case considered herein, the results required over 100,000
observations per phase to converge. In general, this methodology re-
quires a large volume of repeated measures for a single individual with
the actual number being dependent on the variance of the observed
data. Such intensive longitudinal data have not been the norm in be-
havioral interventions thus far. This trend is changing and soon more
studies will have the requisite data measurement intensity [7,23].
Wearable devices such as the activity trackers, smart watches, and a
myriad of similar technologies enable a large number of physiological
variables to be assessed continuously in near real-time. Big data from
smart homes, networked cars, and the Internet of Things, which up-
loads data from sensors on physical devices (thermostats, washers/

dryers, etc.) to networks, allow for the measurement of additional be-
haviors and even the context in which they occur [3]. Real-time data
generated by such devices enables a more comprehensive assessment of
individuals than has ever been possible. The current trend of quantified
self tracking, where individuals record certain aspects of their daily life
with great precision, will only add to this ability [24]. As this tech-
nology becomes more ubiquitous, there will be a greater number of
opportunities to provide the type of personalized, data-intensive health
interventions that are amenable to methods such as this empirical
Markov approach [25]. This process has already begun to take hold in
studies concerning, for example, physical activity [26], dietary intake
[27], cigarette smoking cessation [28], and drug abuse [29]. It has been
suggested that current analytic approaches are not compatible with the
intensive data streams generated by these studies and, therefore, new
methodologies are needed [30]. The empirical Markov model described
herein has the potential to help fill this methodological gap.

A preponderance of data-centric studies in conjunction with ana-
lytic methodologies that are capable of elucidating detailed accounts of
behavior (such as the empirical Markov methodology) might have the
effect of increasing the prevalence of studies implementing SCDs as
opposed to traditional between-subject designs. In such studies, an in-
tervention effect may be sufficiently strong as to leave little doubt as to
the efficacy of a treatment, especially if replicated in multiple in-
dividuals. This development would have the effect of moving the eva-
luation of treatment away from the descriptions of “average”change in
behavior, which may conceal important functional relations, towards
inductive assessments of individual level outcomes [2]. This develop-
ment is likely to lead to more easily interpretable results that can better
inform treatment decisions. Furthermore, analytic results from our
methodology can also be used to inform the design and implementation
of clinical trials aiming to gain a clearer picture of the variance in pa-
tient responses to treatment.

Limitations in this approach are now outlined. Our methodology
does not allow for the inclusion of time-variant predictor and/or
mediator variables. As with all intensive longitudinal studies, proce-
dures for the management of missing/corrupt data must be developed.
Furthermore, this analysis was intended for demonstration purposes
and was only performed for three homes. Therefore, the general-
izability of the results to other homes has not yet been demonstrated,
but will be explored in future work. Applying the empirical Markov

Fig. 6. The top panel illustrates T|| ||FΔ , which summarizes the difference between the two transition matrices that are being compared for various boundaries
separating the data. The x-axis represents the number of shifts away from tI , the boundary between intervention phases. The bottom panel illustrates the mean
subdiagonal, diagonal, and superdiagonal values for each of the boundaries under consideration.
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methodology to different types of behavior should also be addressed in
the future. With a large number of SCDs, it might be possible to assess
high-level predictor/mediator variables. A key step in this process is the
development of succinct metric to summarize the TΔ matrices as op-
posed to the ad hoc descriptions of behavior that were used here.
Possibilities under consideration are a principal components decom-
position of the matrix as well as pattern recognition approaches. Such a
metric can be used to aggregate results in a way that would allow the
overall intervention efficacy to be assessed with greater precision at the
individual level of behavior.

6. Software and data availability

In accordance with the Peer Reviewers’ Openness Initiative, soft-
ware scripts used for implementing our analysis, along with the ne-
cessary data, has been made publicly available. An R package called
MarkovSCD was written explicitly to implement our methodology and
is hosted on GitHub. An example script demonstrating how to load the

package and use it to produce the figures and tables within this
manuscript is provided in Appendix A. All data included within the R
package is in a de-identified format that complies with the Institutional
Review Board that oversaw the trial.
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Appendix A. Example implementation of R Package

Prior to running this script, please check the MarkovSCD package documentation for updates.

#Install package from Github
library(devtools)
install_github("vancebee/MarkovSCD")
library(MarkovSCD)

#Load Baseline and Treatment Phase data for one home
BL = HM2$MassAve[HM2$Phase == "BL"]
TX = HM2$MassAve[HM2$Phase == "TX"]

#Define state boundaries sb = seq(30,90,10)
#Calculate empirical transition matrices
A = transmat(tseries = BL,statebounds = sb,lag = 6)
B = transmat(tseries = TX,statebounds = sb,lag = 6)

#Mirror left two columns, center row of Fig. 2
A$prob; B$prob

#Calculate delta matrix dd = deltatrans(A,B)
#Mirror right column,center row of Fig. 2
dd$prettydelta
#Calcualte the mean first passage times for Home 2 BL
#shown in Table 2
mm = mfpt(A$prob,4)

#Calculate level change function
data = HM2$MassAve[HM2$MassAve ≥ 30 & HM2$MassAve < 90]
lc = levelcross(tseries = data,npts = 20, lag = 1)
#Plot 10sec level-change function from right panel of Fig. 3
plot(lc$evalpts,lc$lvlcrs,type = "o")

#Evaluate different lags
le = lageval(tseries = TX,statebounds = sb,+
lagrange = c(1,2,seq(3,60,3)))

#Plot State 3 time series in center panel of Fig. 4
plot(le$lagrange,le$diagbylag[[3]],type = "o")

#Prepare range of state boundaries for sensitivity analysis
sbrng = list()
w = c(5,10,20)
for(ii in 1:length(w)){
sbrng[[ii]] = seq(30,90,w[ii])}
#Perform sensitivity analysis
ss = sensitivity(tseries1 = BL,tseries2 = TX,stbdyrange = sbrng,+
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lagrange = c(3,6, 30, 60, 180))
#Reproduce matrices in Fig. 6
ss$deltamats

#Determine when dynamics have converged
cv = dynamicsconv(tseries1 = BL, tseries2 = TX, nitvl = 10,+
statebounds = sb,lag = 6)

#Reproduce center panel of Fig. B.8
plot(cv$normdiff)

#Define convergence windows to search for optimal boundary between matrices
il1 = cv$ilength1[7]
il2 = cv$ilength2[7]
#Perform the vailidity check
vv = validitycheck(tseries1 = BL, tseries2 = TX, ilength1 = il1,+
ilength2 = il2, statebounds = sb,lag = 6)

#Reproduce center column of top row of Fig. B.10
plot(vv$norm,type="o")
#Reproduce center column of bottom row of Fig. B.10
matplot(1:ncol(vv$diagconfig),t(vv$diagconfig),type = "l")

Appendix B. Selection of analytic parameters

B.1. State boundaries

There are two components that must be taken into account when deciding on state boundaries, (1.) the range of values to be considered and (2.)
the discretization of this range. For PFA, theoretical considerations can be used when selecting the first component. The focus of the trial is particle
generating behavior which, by definition, result in elevated air particle concentrations. Our experience with the study data indicate that low-level
measurements < ∼ 30 μg

m3 are likely associated with background particle concentrations rather than particle-generating events. Therefore, they can be

safely ignored by setting 30 μg
m3 as the minimum of values to be considered. Our analysis focuses on the lower, 60μg

m3 aversive feedback threshold. To

avoid confounding from the activation and/or anticipation of the upper, 120μg
m3 threshold, the maximum value considered was selected as the

midpoint between the lower and upper feedback, 90μg
m3 .

Once the range of values to be encompassed by the states was selected, a theoretical rationale was not available to determine how to stratify the
states within this range; therefore, a graphical tool was used. An empirical level-crossing function, ̂ xℓ ( ), can be used to estimate a longitudinal time
series’ invariant function, and therefore the presence and number of stable equilibria, which are associated with distinct dynamics [31]. ̂ xℓ ( ) is
defined as the proportion of all observations where consecutive measurements cross x. It was calculated by considering equally-spaced x values
between 30 and 90 and counting the number of instances in which consecutive measurements crossed these values, and then dividing by the total
number of measurements. This process was repeated while counting whether lagged measurements separated by 1, 5, and 10min crossed x. The
results are illustrated in Fig. B.7 for Homes 1 and 2. When interpreting a level-crossing function, the focus is on identifying multiple modalities,
which is indicative of regions with distinct dynamics. When present, boundaries should be selected to avoid mixing these regions. This was not the
case for the PFA data, where ̂ xℓ ( ) was monotonically decreasing for lags of 10 s and 1min and was unimodal for lags of 5min and 10min. The mode
for the larger lags likely reflects a greater probability of air particle levels returning to baseline after some time has passed. In either case, the PFA
level-change function does not offer insight into the specific delineation of states. However, the results indicate that choosing parsimonious state
boundaries that are evenly-spacing between 30 and 90 μg

m3 does not present undue complications from mixing dynamical regions.

B.2. Evaluation of lag

The values along the diagonal of the transition matrices provide a metric by which to gauge the optimal value for the lag l. For smaller values of l,
the probabilities on the diagonal are expected to be larger. Taken to the extreme, if l was chosen to be one measurement (10 s for PFA), the system

Fig. B.7. Empirical level change function ̂ xℓ ( ) for various lags for Homes 1 and 2.
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will be highly autocorrelated since there has likely been an insufficient amount of time for air particle concentrations to change; therefore, changes
to a new state will be rare. As a result, transitions between states could be drowned out by a large number of source–destination observations
remaining in the same class. With larger values of l, the effect of the autocorrelation will decrease and for sufficiently large values there will be an
essentially random relationship between the concentration at ti and +ti l. These two time points would be separated by such a long period as to not
capture the same particle-generating dynamics (i.e. causal independent variables). The relationship would instead reflect an overall distribution of
the different states. The choice of l must strike a balance between the extremes of the maximally autocorrelated and the overall distribution
scenarios.

Fig. B.8 illustrates the values of each diagonal element of TT for lags ranging from 1 to 60 measurements (10 s to 10min). TT was used for this
calculation since this phase was associated with the greatest number of observations. The smallest variations occurred for S1 and S2, since these states
were most likely to be associated with background measurements that have little variance. In each home, for S3 through S6, beginning at a lag of
approximately 30 s, the diagonal probability value was relatively small (<0.5 in most cases) compared with the probabilities for the =l 10 s case
(>0.9 in most cases). This indicates that the degree of autocorrelation between source and destination observations was reduced to the point that
there were substantial numbers of transitions among states, possibly enabling patterns to emerge. Lags less than ≈l 5 min for Home 1 and ≈l 3 min
for Homes 2 and 3 were was also higher than the horizontal asymptote, which represents the mean, global distribution of probabilities associated
with large lags. This is indicative of a meaningful correlation between source and destination states and the capturing of more than just the overall
distribution of the states. The results outlined in Fig. B.8 indicate that a lag between ≈l 0.5 and ≈l 5 min will likely allow meaningful household
dynamics to be observed. We concluded that =l 1 min best balanced the competing interests of the asymptotic and pure autocorrelation scenarios, so
it was selected for all subsequent analyses. Other researchers reviewing Fig. B.8, though, could plausibly justify an alternative selection of l. The
effects that differing choices for l have on outcome analyses was explored in the sensitivity analysis discussed below.

B.3. Sensitivity analysis

The previous two sections outlined ambiguity in selecting the state boundary delineation and lag for the transition matrix methodology. The
level-change analysis did not yield an instinctive choice for state boundaries, although it did indicate that equispaced states were non-problematic.
The diagonal lag analysis provided evidence to select a lag of =l 1 min, but alternative interpretations of the optimal lag were reasonable. To address
this uncertainty in parameter selection, a sensitivity analysis was conducted to investigate the effects of different combinations of state boundaries
and lag. The results of this analysis are summarized in Figs. B.9 and B.10 for Homes 1 and 2, respectively. Lags of 0.5, 1, 5, 10, and 40min were
considered and are illustrated as the rows (from top to bottom) in these figures. The columns represent three different stratifications of particle
ranges to serve as state boundaries. From left to right, they are: {30,50,70,90}, {30,40,50,60,70,80,90}, and
{30,35,40,45,50,55,60,65,70,75,80,85,90}. Below, these cases are referred to by specifying the width of each state, i.e., ν = 20, 10, and 5, re-
spectively.

For each lag-stratification combination, Figs. B.9 and B.10 illustrate the TΔ matrix resulting from the analysis described in the previous section.
The matrix in the second column of the second row corresponds to a lag of 1min and =ν 10; these are the parameters used throughout the
manuscript. For Home 1, the aversive behavior pattern, characterized by significant negative (red) values on the diagonal and significant positive
(green) values on the subdiagonal only for states greater than 60 μg

m3 , is present for many lag-state boundary combinations. The same is true of the
avoidance behavior pattern in Home 2. For both homes, the use of a greater number of states ( =ν 5) reveals the same patterns. However, the findings
are somewhat obfuscated as the inclusion of additional states results in smaller transition values and more transitions being considered non-
significant. When using only three states ( =ν 20), the results are too blunt and avoidance and escape behaviors within the two homes cannot be
differentiated.

In Figs. B.9 and B.10, the first three rows correspond with reasonable lags, as described in the previous section. The results are qualitatively
consistent, albeit with larger lags being associated with a greater number of significant transition cells and a shifting of cells with significant values
towards destination states associated with attenuated concentrations. This is likely because the larger lags are beginning to approach global dif-
ferences between the two phases, which will be seen most in lower concentrations, since they represent the largest proportion of observations. For

=l 10 min the avoidance/escape patterns largely remain intact, with the shift mentioned above being more pronounced. For =l 40 min, as expected,
the patterns are no longer visible.

The results of this sensitivity analysis indicate that the aversive/avoidance results outlined in the previous section are robust over reasonable
choices for modeling parameters. But there is no guarantee that this will be true for other studies. While the parameterization described above is
specific to the PFA study, the tools used within this section provide an outline for inferring parameter values. The diagonal lag methodology

Fig. B.8. The value of the diagonal element corresponding to each of the 6 states for values of l ranging from 10 s to 10min for Homes 1, 2, and 3, from left to right.
The vertical dashed line represents a lag of 1min.
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summarized in Fig. B.8 provided a reasonable basis for selecting the lag. While the optimal lag value was not able to be absolutely determined, the
sensitivity analysis indicated that any reasonable interpretation of Fig. B.8 yields a lag that would lead to consistent results. When determining the
state boundaries, the level crossing function can be used to assess critical features of the data, such as the presence of stable equilibria that need to be
accounted for during stratification. Even if the multiple equilibria are not found, as was the case with PFA, the level crossing function provides a
motivation for using parsimonious, equispaced states. The sensitivity analysis indicates that there should be a proclivity for using more, rather than
less, states. This ensure that nuanced patterns can be observed. This inclination must be balanced by a need to retain the ability to easily interpret
results.

Fig. B.9. TΔ matrices for the sensitivity analysis performed on Home 1. The rows represent, from top to bottom, lags of 0.5 min, 1min, 5 min, 10min, and 40min,
respectively. The columns, from left to right, represent states with width ν of 20, 10, and 5.
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