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Localized breathing oscillations of Bose-Einstein condensates in periodic traps
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We demonstrate the existence of localized oscillatory breathers for quasi-one-dimensional Bose-Einstein
condensates confined in periodic potentials. The breathing behavior corresponds to position oscillations of
individual condensates about the minima of the potential lattice. We deduce the structural stability of the
localized oscillations from the construction. The stability is confirmed numerically for perturbations to the
initial state of the condensate, to the potential trap, as well as for external noise. We also construct periodic and
chaotic extended oscillations for the chain of condensates. All our findings are verified by direct numerical
integration of the Gross-Pitaevskii equation in one dimension.
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New techniques for generating Bose-Einstein condens
~BECs! have opened the door to the investigation of a w
range of phenomena and development of concrete app
tions such as atomic interferometers and atom lasers. Re
focus has been on BECs trapped in periodic magnetic/op
traps@1–3#, the so-called optical lattice@4#. The addition of a
periodic potential to the BEC opens the possibility to stu
exciting dynamical phenomena of BECs grown in optic
traps, such as Bloch oscillations and the Josephson e
@1–3#. One approach for the study of chains of weak
coupled condensates, in the tight-binding approximation,
duces the dynamics of the BECs to the discrete nonlin
Schrödinger equation~DNLS! @2,3,5–7#. Within this ap-
proach, each BEC wave function, centered at the minima
the potential, is modeled by thesame stationarywave func-
tion with a time-dependent amplitude. This approximati
leads to the DNLS for the local time-dependent amplitud
The dynamics described by this approach allows for va
tions in the local population of atoms, but are limited to
fixed local distribution of the condensed atoms. In this pa
we use a more general approach where the local wave f
tion evolves within an ansatz family, allowing for a wide
range of dynamical behavior. Using the treatment presen
here it is possible to include variations in the local popu
tions as well as in theshapeof the local density: height
width, position, phase, velocity, etc. In particular, we foc
our attention on position oscillations of eachlocal BEC den-
sity about its potential minimum by considering a const
population at each trough of the periodic potential. We mo
the coupled chain of oscillating condensates by a nonlin
lattice~a Toda lattice with on-site effective potentials! for the
oscillation amplitudes. We establish the existence of glo
and localized oscillations of the coupled condensates,
demonstrate the ability of condensates to store macrosc
information in localized regions of the periodic trap.

*Email address: carreter@math.sdsu.edu;
URL: http://www.rohan.sdsu.edu/;rcarrete

†URL: http://nlds.sdsu.edu/
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The wave function of a dilute BEC at low temperature
governed by the Gross-Pitaevskii equation~GPE! @8#

i\
]c

]t
5S 2

\2¹2

2m
1Vext~rW !1g0ucu2Dc, ~1!

wherec5c(rW,t) is the condensate wave function norma
ized with respect to the total number of condensed atomsN.
The atom-atom interactions~considered only binary due to
the low-temperature assumption! are accounted for by the
coupling constant@9#

g05
4p\2a

m
,

wherea is thes-wave scattering length andm is the atomic
mass. The external potentialVext(rW) is given by the sum of
the confining potentialVconf(rW) and a periodic optical poten
tial Vper(rW):

Vext~rW !5Vconf~rW !1Vper~rW !.

We consider confining traps that give rise to the so-cal
cigar-shaped condensates whose longitudinal direction
much larger than their transverse dimension, which is of
order of the healing length. In this cigar-shaped limit it
possible to reduce the GPE equation~1! to its one-
dimensional analogue@10#. Our study will be limited to the
one-dimensional model of attractive BECs. Extension of o
results to the repulsive BEC in one and higher dimensi
will be reported elsewhere. Our model applies to the dyna
ics of a chain of quasi-identical condensates, in an infin
confining trap. In practice, the harmonic external trap ha
flat central portion supporting several hundreds of periods
the periodic potential, which is sufficient to satisfy the d
sired near-periodic potential~see Fig. 1!. It is also possible to
load the condensate ontoVext and then adiabatically remov
Vconf, leaving only the periodic potential.

After rescaling, the BEC trapped inside a periodic pote
tial V is governed by the nonlinear Schro¨dinger equation
~NLS!:
©2002 The American Physical Society10-1
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iut1
1

2
uxx6uuu2u5V~x!u. ~2!

Here uu(x,t)u2 corresponds to the rescaled density of t
condensate,V(x) is the rescaled potential, and the6 sign
corresponds to attractive (1) and repulsive (2) atoms. The
nondimensionalization is obtained by scalingt→t/V, x
→(\/mV)1/2x, and uuu2→(mV/4p\uau)uuu2, where m is
the atomic mass,V is the frequency of the periodic trap, an
a is thes-wave scattering length@11#. We consider a periodic
potential V(x), with well spaced troughs, constructed b
‘‘concatenating’’ 2N11 (N@1) single-well potentials
Vj (x)5V0 tanh2(x2j0;j):

V~x!5 (
j 52N

N

Vj~x!22NV0 .

The potentials are located atj0; j5 jR, where R is the
potential-well spacing. The specific shape of the potent
Vj is not central to the construction. However, our appro
mations require that neighboring condensates, grown in
jacent wells, have small overlap. This regime correspond
large enoughR or to a small number of atoms per potent
well. The largeR limit can be achieved by tuning the wav
number of the optical trap. Alternatively, new advances
the manipulation of condensates permit the construction
traps with arbitrary spatial patterns by imprinting the patte
in a crystal by a grating method or by lithography@12#.

The present paper addresses the dynamics of a cha
coupled attractive condensates, i.e.,bright solitons. For re-
pulsive atoms—dark solitons @13#—a similar approach is
possible and the detailed analysis will be carried elsewh
Current typical lifetimes for attractive condensates ran
from hundreds to tenths of a second before collapse. Th
lifetimes correspond, for typical experimental parameters
85Rb @14#, to 103 rescaled time units, long enough to obser
10–20 oscillation periods. Moreover, new microtrap tec
niques@12# and hollow laser traps@15# hold out the possibil-
ity to increase considerably the lifetime of attractive cond
sates@16#, permitting time to prepare the train of condensa
with the desired phase configuration. It is also importan
note that collapse for attractive condensates can be arre
by controlling the number of atoms. Indeed, if the number
atoms ineach potential trough is smaller than the critic
numberNcr associated with the local potential, collapse
avoided@17,9#.

The steady state for a single condensate inside a sin
well potentialVj is a NLS soliton solution of the form@18#

FIG. 1. External potentialVext with confining (Vconf) and peri-
odic @Vper(x)# properties.
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u0; j~x,t !5A12V0 sech~x2j0; j !e
i (1/22V0)t. ~3!

We consider the dynamics of a train of condensatesu(x,t)
5(u0; j (x,t) centered at the potential troughsj0; j . For sim-
plicity of presentation, we approximate the overall dynami
focusing on two major contributions:~a! internal dynamics
due to interactions betweenu0; j and Vj and ~b! tail-tail in-
teractions between consecutive solitons. We address eac
these terms individually and use the linear superposition
forded by soliton perturbation theory@19#. Within our ap-
proximations~small tail-tail overlap! it is sensible to discard
interactions betweenu0; j and Vk for j 5” k, and interactions
between non-nearest neighbor condensates@19#.

The evolution, for small perturbations, of the steady-st
soliton u0; j inside its on-site potentialVj can be approxi-
mated by an oscillating soliton ansatzuj (x,t)5u0; j (x
2j j ,t) with constant height and width@20#. The position
j j (t) for each condensate is then described by a part
inside an effective potential

j̈ j52Veff8 ~j j2j0; j !. ~4!

The effective potentialVeff may be obtained by soliton per
turbation techniques, or alternatively, by demanding that
evolution of j j (t) in Eq. ~3! respects the invariance of th
NLS ~2! energy

E5E
2`

1`F1

2
uuxu22

1

2
uuu41uuu2V~x!Gdx. ~5!

It is well known @20# that the effective potential

Veff~j!}E
2`

1`

uu0,j~x2j!u2Vj~x!dx ~6!

is proportional to the overlapping integral between the d
placed BEC density~3! and the on-site potential. Note that i
Eq. ~6!, the on-site potentialVj is centered atx5j0; j and the
BEC densityuu0; j (x2j)u2 is centered atx5j0; j1j @see Eq.
~3!#. The exact form ofVeff depends upon the on-site pote
tial. For the particular case under consideration,Vj (x)
5V0 tanh2(x2j0;j), the effective potential admits the expa
sion Veff(x)} 4

15 x22 4
63 x41o(x6). More generally, the effec-

tive potential can be approximated, for small oscillations,

Veff~x!5
a

2
x21

b

4
x41o~x6!, ~7!

wherea andb encode the shape information ofVj . In par-
ticular, even symmetry ofVeff is inherited fromVj .

Tail-tail interactions for neighboring condensates resul
a complex version of the Toda lattice involving position a
phases@21#. It is possible to further reduce the dynami
under the assumption that relative phases for consecu
condensates are constant. This is a reasonable approxim
in the regime where the solitons are kept well apart@22#. In
particular, we consider the case of ap phase shift between
consecutive condensates, since in the steady state (j j50)
this configuration reduces to the Jacobi elliptic cosine tha
0-2
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LOCALIZED BREATHING OSCILLATIONS OF BOSE- . . . PHYSICAL REVIEW A 66, 033610 ~2002!
known to be stable@18#. In contrast, a chain of condensat
with zero phase shift reduces to the third Jacobi elliptic fu
tion, which is unstable@18#. With a relative phase ofp, the
tail-tail interactions reduce to areal Toda lattice@23# on the
positionsj̈ j54(e2(j j 2j j 21)2e2(j j 112j j )). In practice, thep
phase shift can be implemented by phase design on the in
configuration of the condensates@24#. From now on we con-
sider that the amplitudes of oscillation of the condensates
small. Thus, since the steady state is stable, we eliminate
possibility of a condensate hopping to a neighboring latt
trough.

Exploiting the linearity of soliton perturbation theory w
combine the on-site potential~4! with the tail-tail interac-
tions to find a lattice differential equation on the condens
positions,

j̈ j54~e2(j j 2j j 21)2e2(j j 112j j )!2Veff8 ~j j2j0,j !. ~8!

To find oscillatory solutions to Eq.~8!, we use an oscillating
ansatz@25#, writing the position of thej th condensate as
combination of oscillatory modesj j (t)5(kAj (k)cos(kvt)
centered atAj (0)5j0,j . For small oscillations, aone-mode
ansatz,

j j~ t !5j0,j1Aj cos~vt !, ~9!

is sufficient to capture the essential dynamics. We substi
Eq. ~9! into Eq. ~8!, expand and match terms to find a recu
rence relation between the oscillation amplitudesAj ,

Aj 115~a1bAj
2!Aj2Aj 21 , ~10!

with a522v21aeR/4 andb53beR/16. We introduceyn
5An andxn5An21, and recast the second-order recurren
relation ~10! as the two-dimensional~2D! mapM:

M :H xn115yn ,

yn115~a1byn
2!yn2xn .

~11!

Up to the approximations made to obtain Eq.~10!, solutions
of Eq. ~11! prescribe the amplitudes representing oscillat
solutions for the condensates. We remark that the oscilla
frequencyv and the form of the on-site potential are inco
porated through the parametersa andb of Eq. ~10!. In par-
ticular, one expects families of oscillatory solutions para
etrized by their frequencyv.

We are interested in constructinglocalized breathers~lo-
calized oscillations! for the condensate dynamics. These s
lutions correspond to orbits homoclinic to the origin for t
recurrence map~11!. The corresponding orbits satisfyA0
Þ0 and limn→6`An50 with an exponential decay rate.
necessary condition for the existence of a homoclinic orb
hyperbolicity of the origin. This is satisfied for alluau.2 or
equivalently u22v21aeR/4u.2. This condition provides
constraints on the intersite spacingR and breather frequenc
03361
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v for a given on-site trapVj , which determinesa. We find
numerically, for reasonable values ofR(R' a few conden-
sate widths!, that the stable (Ws) and unstable manifolds
(Wu) of the origin intersect in a homoclinic tangle~see left
panel in Fig. 2!. Consider the trajectory of the
two-dimensional mapM that starts at the intersectio
point P0PWsùWu ~see left panel in Fig. 2!. From the
invariance of the stable and unstable manifolds, e
forward and backward iteration of P0, labeled
$ . . . ,P22 ,P21 ,P0 ,P1 ,P2 , . . . % in Fig. 2, lies in the inter-
section. From area orientation it follows that this trajecto
takes each second intersection@26#. The amplitudes for the
localized oscillations are then given by the ordinates (yn
5An) of the homoclinic orbit~see right panel in Fig. 2!.

The homoclinic orbit of the 2D map induces a breather
the condensate positions through the ansatz~9!. An example
of such localized oscillations for the condensates is depic
in Fig. 3, in which a central condensate oscillates with
maximal amplitudeA0 and the condensates on either si
oscillate with amplitudesA6n that decrease exponentiall
with increasingn ~see right panel in Fig. 2!. The asymptotic
decay rate for the oscillations (l2

unu5l1
2unu) is prescribed by

FIG. 2. Left: homoclinic tangle for the two-dimensional ma
~11!. The homoclinic orbit$ . . . ,P21 ,P0 ,P1 , . . . % belongs to the
stable ~solid line! and unstable~dash line! manifolds. Right: the
corresponding configuration for the oscillation amplitudes.R
510, v517.671, andV050.1.!

FIG. 3. Localized breathing oscillation in a chain of weak
coupled condensates in a periodic potential. This localized osc
tion is obtained by full numerical solution of the Gross-Pitaevs
equation with an initial condition prescribed by our dynamical
duction. Only condensates with index 0 through 4 are shown~the
oscillations are symmetric with respect to the condensate with in
0!. The bottom plane depictsut—darker areas corresponds to r
gions whereu(x,t) undergoes greater temporal variation. (R59,
v'0.11388, andV050.025.!
0-3
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FIG. 4. Robustness of the perturbed localiz
breather in the Gross-Pitaevskii equation;~a! un-
perturbed and~b! perturbed.a1 and b1 depict a
density plot of uut(x,t)u—darker areas corre
spond to largeru(x,t) variations. Insetsa2 and
a3 depictut(x,t0) and ln(uut(x,t0)u) at t5t0 for the
unperturbed system, whereas insetsb2 andb3 de-
pict the corresponding quantities att1 for the per-
turbed systems. Same parameter values as
Fig. 3.
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the eigenvalues at the originl65(a6Aa224)/2. Note that,
because Eq.~11! hasx↔y symmetry, the breather is sym
metric with respect to the central condensate (l25l1

21).
We stress that the solution depicted in Fig. 3 is obtained
numerical integration of the full Gross-Pitaevskii equati
~1! from initial conditions prescribed by the homoclinic orb
of our reduced 2D map. Due to the approximations used
our approach, orbits of the reduced 2D map are notexact
solutions of the full GPE equation~1!. Nevertheless, if we
restrict our attention to small oscillations for weakly coupl
BECs, there is a good correspondence between the red
dynamics and the original Gross-Pitaevskii equation. T
correspondence is reinforced by the structural stability of
orbits for the reduced 2D map~see below!.

Localized breathers represent an important structure in
dynamics of the GPE equation describing a mechan
whereby energy and information can be pinned down on
periodic potential lattice. The occurrence of localized brea
ers in weakly coupled oscillatory units is a common pheno
enon. Indeed, the existence of localized breathers has
formally established in general nonlinear Hamiltonian l
tices of weakly interacting oscillators@27# by continuation
from the so-called anticontinuum limit corresponding to t
uncoupled case (R51`) @28#. The structural stability of the
homoclinic tangle, arising from the transverse nature of
intersections of the stable and unstable manifolds, imp
the persistence of the breather solution of the 2D map~11!
under parameter changes, in particular, insuring the existe
of the breather solution for the GPE. This persistence,
gether with the dynamic stability of the steady-state solut
(An50), ensures the existence of the breather solution
the GPE. Therefore, despite the various approximations u
in the reduction of the GPE to the 2D map~11!, we observe
localized breather oscillations in the original GPE dynam
~Fig. 3! for the predicted parameter values. More surpris
is the robustness of the breathing dynamics to signific
perturbations under the GPE dynamics~Fig. 4!.

To demonstrate this robustness we construct the in
configuration~IC! as a concatenation of solitons with veloc
ties, heights, widths, and positions predicted by our analy
03361
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and with ap phase shift between consecutive solitons~as in
Fig. 3!. We perturb each soliton in the chain by adding
random value to each of the initial velocities, heigh
widths, positions, and phases. The bounds for the pertu
tions correspond to~a! 15% of themaximalvelocity on ve-
locities, ~b! 10% on heights,~c! 10% on widths,~d! 15% of
the maximalamplitude (0.15A0) on positions, and~e! 15%
of p on phases. Note that the perturbations on positions
velocities are proportional to the collective maximum a
not to the individual values. After adding the perturbation
we concatenate the solitons and integrate the NLS~2! using
a pseudospectral method. Additionally, we include~f! 5%
~stationary! perturbation to the potential and~g! a noise level
of 1025 to u(x,t) at everytime step of the integration.

The total run is about 23106 iterations. Figure 4 depicts
the evolution ofut(x,t) for the unperturbed~left! and the
perturbed~right! breather from direct simulations of the GP
equation. Despite the large perturbation to the IC and
additive noise, after a brief transient, the breather set
down and retains its localization with an approximate exp
nential decay~insetb3). It is interesting to note that stronge
perturbations tou did not necessarily destroy the localiz
tion, but often resulted in a slow excursion of the localiz
region along the lattice. The possibility of breather mobil
in nonlinear lattices triggered by perturbations has been
vestigated previously@29#.

The robustness of the localized breather dynamics p
sented above opens the possibility for experimental corro
ration. The large perturbations to the IC result in an init
transient involving radiative losses, which would correspo
experimentally to a small number of atoms being spill
away from the central cloud and absorbed by the nonc
densed atoms at the periphery. After the transient,
breather settles down and retains its localization with an
proximate exponential decay~insetb3). While the breathers
we constructed are robust to a wide host of perturbatio
breathers are nongeneric in the sense that arbitrary in
conditions do not necessarily produce a breather. Also, w
large enough perturbations the breathing phenomena are
tirely destroyed.
0-4
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We may use the dynamical reduction described abov
devise other breathing phenomena of Eq.~2!. Within our
approximations, any bounded nontrivial orbit of the 2D m
M ~11! gives rise to complex oscillatory behavior of the co
densates in Eq.~2!. In particular, periodic points ofM corre-
spond toglobal oscillations. The mapM has three fixed
points: the origin,F5(x* ,x* ) andF85(2x* ,2x* ), where
x* 5A(22a)/b ~see Fig. 5!. The fixed point at the origin
gives rise to the trivial stationary solutionAn50. The fixed
points F and F8 yield solutions in which all condensate
oscillate in phase with the same amplitudex* . The corre-
sponding global breather for the original system~2! is de-
picted in Fig. 6~a!. Other interesting orbits arise from highe
order periodic points. For example, the period-2 orbitG25

2M (G1)5M2(G2) ~see Fig. 5!, where G15( x̂,2 x̂) and

FIG. 5. Typical phase space for the reduced 2D map~11!. Left:
some periodic orbits and the homoclinic tangle.F andF8 are fixed
points, $G1 ,G2% is a period-2 orbit. Some higher order period
orbits are period 3~triangles and filled squares! and period 4~open
squares!. Right panel shows the behavior near the fixed poinF
~diamond!. The map displays quasiperiodic orbits that disappea
the separatrix originating from the manifolds of a period-11 or
~crosses!. Outside this separation, a single chaotic orbit is depic
~small dots!.

FIG. 6. Global oscillations of the condensates from simulatio
of the GPE equation. These global oscillations arise from perio
points of the reduced dynamics~11!. ~a! In-phase oscillations cor
responding to the nontrivial fixed pointF ~see Fig. 5!. ~b! Antiphase
oscillations corresponding to a period-2 cycle of Eq.~11! with al-
ternating amplitude sign.
03361
to

G25(2 x̂,x̂) with x̂5A2(21a)/b. This period-2 orbit cor-

responds to an amplitude configuration$ . . . ,x̂,2 x̂,x̂,

2 x̂, . . . %, i.e., antiphase oscillations@see Fig. 6~b!#. It is in
principle possible to construct more complex patterns for
global oscillations from higher-order periodic orbits of th
2D map~cf. Fig. 5!.

The 2D map also predicts global oscillations that are q
siperiodic in site indexn. These orbits exist near the fixe
point F ~see Fig. 5, right panel!. The corresponding breathe
for the full periodic NLS~2! has an in-phase global oscilla
tion with a small modulation of the amplitudes~given by the
rotation number of the quasiperiodic orbit aroundF). An
interesting possibility for the dynamics of coupled conde
sates is the prospect of chaotic evolution. In a neighborh
of the fixed pointF, there is a region containing chaot
orbits corresponding to chaotic oscillations for the cond
sates~see right panel in Fig. 5!. This corresponds to chaoti
oscillations for the condensates@see Fig. 7~c!#. It should be
possible, in principle, to find the onset of chaos for the co
densates by analyzing in more detail the reduced dynamic
Eq. ~11!.

We have constructed a variety of global and localiz
oscillatory behaviors of BECs in periodic potentials, iden
fying these solutions with orbits of a reduced 2D map. A k
ingredient of the construction of localized oscillations is t
existence of a homoclinic tangle. We demonstrate the
prising robustness of these solutions to perturbations. S
BEC experiments are quite delicate, we do not expect
direct manipulation could produce an exact initial conditi
corresponding to a localized oscillation. Nonetheless, we
lieve that localized oscillations may be observed in wea
coupled condensates that are appropriately engineered
then permitted to radiate away spurious energy. The te
niques presented here can, in principle, be extended to
tices in higher dimensions such as vortex lattices. This
possible implications to modeling the interactions of ato
in optical traps that could potentially be used for quantu
computing@30#.

We are grateful to J. N. Kutz, B. Deconinck, P. G
Kevrekidis, P. Engels, and W. P. Reinhardt for providi
stimulating discussions and relevant references. The aut
acknowledge support from the Pacific Institute for the Ma
ematical Sciences and the NSERC Grant No. 611255 du
the completion of this work.
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FIG. 7. Chaotic global oscillations of the condensates from G
dynamics corresponding to the chaotic orbit of the reduced m
~11! ~see Fig. 5!.
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