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Localized breathing oscillations of Bose-Einstein condensates in periodic traps

R. Carretero-Gonzez"* and K. Promislo
INonlinear Dynamical Systems GroliDepartment of Mathematics & Statistics, San Diego State University,
San Diego, California 92182-7720
2Department of Mathematics & Statistics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
(Received 30 May 2001; published 20 September 2002

We demonstrate the existence of localized oscillatory breathers for quasi-one-dimensional Bose-Einstein
condensates confined in periodic potentials. The breathing behavior corresponds to position oscillations of
individual condensates about the minima of the potential lattice. We deduce the structural stability of the
localized oscillations from the construction. The stability is confirmed numerically for perturbations to the
initial state of the condensate, to the potential trap, as well as for external noise. We also construct periodic and
chaotic extended oscillations for the chain of condensates. All our findings are verified by direct numerical
integration of the Gross-Pitaevskii equation in one dimension.
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New techniques for generating Bose-Einstein condensates The wave function of a dilute BEC at low temperature is
(BECs have opened the door to the investigation of a widegoverned by the Gross-Pitaevskii equati@GPE [8]
range of phenomena and development of concrete applica- S
tions such as atomic interferometers and atom lasers. Recent -ﬁa_‘/’: _ Vo (r 2 1

. . . . . | + ext(r)+go|’r/f| 'J’a ( )

focus has been on BECs trapped in periodic magnetic/optical dt 2m
traps[1-3], the so-called optical lattidet]. The addition of a . )
periodic potential to the BEC opens the possibility to studyWhere #=¢(r.t) is the condensate wave function normal-
exciting dynamical phenomena of BECs grown in optical'zed with respect to the f[otal number of conde_nsed atdins
traps, such as Bloch oscillations and the Josephson effedf!® atom-atom interactiongonsidered only binary due to
[1-3]. One approach for the study of chains of weaklythe low-temperature assumptjoare accounted for by the

coupled condensates, in the tight-binding approximation, re(—:OUpIIng constani9]

duces the dynamics of the BECs to the discrete nonlinear Amh2a

Schralinger equation(DNLS) [2,3,5—7. Within this ap- Go=—

proach, each BEC wave function, centered at the minima of

the potential, is modeled by theame stationaryvave func-  wherea is thes-wave scattering length am is the atomic
tion with a time-dependent amplitude. This approximationo«s The external potentl‘algxt(F) is given by the sum of

leads to the DNLS for the local time-dependent amplitudes,[he confining potential r(F) and a periodic optical poten-
The dynamics described by this approach allows for varia-. gp con P P P

tions in the local population of atoms, but are limited to at'aI Vielr):
fixed local distribution of the condensed atoms. In this paper Y I(F)ZV f(F)+V ()
we use a more general approach where the local wave func- ex con pent /s

tion evolves within an ansatz family, allowing for a wider  \ye consider confining traps that give rise to the so-called
range of dynamical behavior. Using the treatment presentegigar-shaped condensates whose longitudinal direction is
here it is possible to include variations in the local popula-mych larger than their transverse dimension, which is of the
tions as well as in theshapeof the local density: height, order of the healing length. In this cigar-shaped limit it is
width, position, phase, velocity, etc. In particular, we focuspossible to reduce the GPE equatigf) to its one-
our attention on position oscillations of ealcital BEC den-  dimensional analogugl0]. Our study will be limited to the
sity about its potential minimum by considering a constantone-dimensional model of attractive BECs. Extension of our
population at each trough of the periodic potential. We modetesults to the repulsive BEC in one and higher dimensions
the coupled chain of oscillating condensates by a nonlineawill be reported elsewhere. Our model applies to the dynam-
lattice (a Toda lattice with on-site effective potentigfser the  ics of a chain of gquasi-identical condensates, in an infinite
oscillation amplitudes. We establish the existence of globatonfining trap. In practice, the harmonic external trap has a
and localized oscillations of the coupled condensates, anfiat central portion supporting several hundreds of periods of
demonstrate the ability of condensates to store macroscoptbe periodic potential, which is sufficient to satisfy the de-
information in localized regions of the periodic trap. sired near-periodic potentitédee Fig. 1 It is also possible to
load the condensate ont&,; and then adiabatically remove
Vonts l€aving only the periodic potential.
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Ugj(X,1) =1 Vg seclix—&;)e' M2 Vo, 3

We consider the dynamics of a train of condensaitest)
=2Ug;j(x,t) centered at the potential troughg; . For sim-
plicity of presentation, we approximate the overall dynamics,
focusing on two major contributionga) internal dynamics
due to interactions betwean; andV; and (b) tail-tail in-
FIG. 1. External potentiaV/,,; with confining (V. and peri-  teractions between consecutive solitons. We address each of
odic [Vpe(X)] properties. these terms individually and use the linear superposition af-
forded by soliton perturbation theofyl9]. Within our ap-
1 proximations(small tail-tail overlap it is sensible to discard
g+ EUxxi|U|2UZV(X)U- (2 interactions betweeny,; andVy for j#k, and interactions
between non-nearest neighbor condensftek
The evolution, for small perturbations, of the steady-state
soliton ug;; inside its on-site potentiaV/; can be approxi-
mated by an oscillating soliton ansatz;(x,t)=ug.;(X
—§&;,1) with constant height and widtf20]. The position
&;(t) for each condensate is then described by a particle
inside an effective potential

Vix)

Here |u(x,t)|? corresponds to the rescaled density of the
condensateY/(x) is the rescaled potential, and the sign
corresponds to attractive) and repulsive {-) atoms. The
nondimensionalization is obtained by scaling>t/Q), x
—(hImQ)Y?%, and |u|?>—(mQ/4=h|al)|u|?, wherem is
the atomic masq) is the frequency of the periodic trap, and
ais thes-wave scattering lengtfi1]. We consider a periodic E= V(£ —£0.) 4
potential V(x), with well spaced troughs, constructed by &=~ Vel &~ &oy)-

“concitenatinr%" N+1 (N>1) single-well potentials  1he effective potentiaV/qq may be obtained by soliton per-
Vj(x) =V tantt(x—&): turbation techniques, or alternatively, by demanding that the
N evolution of &(t) in Eq. (3) respects the invariance of the

V)= X Vi(x)—2NV,. NLS (2) energy
j==N

+eol ] 1
| _ | e- [ Sl St Voo jax s)
The potentials are located &f;=jR, where R is the —w |2 2

potential-well spacing. The specific shape of the potentials

V; is not central to the construction. However, our approxi-It is well known[20] that the effective potential

mations require that neighboring condensates, grown in ad-

jacent wells, have small overlap. This regime corresponds to v (é)ocf

large enougtR or to a small number of atoms per potential ef

well. The largeR limit can be achieved by tuning the wave

number of the optical trap. Alternatively, new advances inis proportional to the overlapping integral between the dis-

the manipulation of condensates permit the construction oplaced BEC density3) and the on-site potential. Note that in

traps with arbitrary spatial patterns by imprinting the patternEq. (6), the on-site potentia¥; is centered ax= ¢, and the

in a crystal by a grating method or by lithograpf2]. BEC density|ug.j(x— £)|? is centered ax= &o,j 1 & [see Eq.
The present paper addresses the dynamics of a chain @)]. The exact form oV depends upon the on-site poten-

coupled attractive condensates, iferight solitons. For re- tial. For the particular case under consideratidf)(x)

pulsive atoms-dark solitons [13]—a similar approach is =V, tanhz(x—§o;j), the effective potential admits the expan-

possible and the detailed analysis will be carried elsewherasion V4(x) = 15x°— s5x*+ 0(x%). More generally, the effec-

Current typical lifetimes for attractive condensates rangdive potential can be approximated, for small oscillations, by

from hundreds to tenths of a second before collapse. These

lifetimes correspond, for typical experimental parameters in

8Rb[14], to 10 rescaled time units, long enough to observe

10-20 oscillation periods. Moreover, new microtrap tech-

niques[12] and hollow laser trapl5] hold out the possibil- wherea and 8 encode the shape information \éf. In par-

ity to increase considerably the lifetime of attractive condendicular, even symmetry o¥/ ¢ is inherited fromV; .

sateq 16|, permitting time to prepare the train of condensates Tail-tail interactions for neighboring condensates result in

with the desired phase configuration. It is also important tca complex version of the Toda lattice involving position and

note that collapse for attractive condensates can be arrestptiases21]. It is possible to further reduce the dynamics

by controlling the number of atoms. Indeed, if the number ofunder the assumption that relative phases for consecutive

atoms ineach potential trough is smaller than the critical condensates are constant. This is a reasonable approximation

number N, associated with the local potential, collapse isin the regime where the solitons are kept well apa#]. In

avoided[17,9. particular, we consider the case ofmaphase shift between
The steady state for a single condensate inside a singleonsecutive condensates, since in the steady state(

well potentialV; is a NLS soliton solution of the forrfil8] this configuration reduces to the Jacobi elliptic cosine that is

+

Juoy (x— 6PV, (x)dx ®)

— 00

Ve X) = %x2+ §x4+o(x6), (7)
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known to be stabl¢l18]. In contrast, a chain of condensates — 5 A

with zero phase shift reduces to the third Jacobi elliptic func- *?[ 1 Ao

tion, which is unstabl¢18]. With a relative phase ofr, the 01}

tail-tail interactions reduce to al Toda lattice[23] on the oo } ) " A
positionsé; =4(e” 4~ ¢i-V— e~ (&+174)) In practice, ther 2006 /)

phase shift can be implemented by phase design on the initia | P
configuration of the condensatgzt]. From now on we con- A ’

sider that the amplitudes of oscillation of the condensates ar¢ *® Ag 4a
small. Thus, since the steady state is stable, we eliminate th o F#; R B o
possibility of a condensate hopping to a neighboring lattice 0 002 004 006 008 01 012 5 2024 s

trough.
Exploiting the linearity of soliton perturbation theory we  FIG. 2. Left: homoclinic tangle for the two-dimensional map
combine the on-site potentig#t) with the tail-tail interac-  (11). The homoclinic orbif ... ,P_;,Py,P;, ...} belongs to the
tions to find a lattice differential equation on the condensatetable (solid line) and unstabledash lingé manifolds. Right: the
positions, corresponding configuration for the oscillation amplitudeR (
=10, ®=17.671, andVy,=0.1.)

=4 GGV —e b))~ Vg —&;). (8 o foragiven on-site tra);, which determinesr. We find
numerically, for reasonable values B{R~ a few conden-
To find oscillatory solutions to Ed8), we use an oscillating sate widthy that the stable () and unstable manifolds
ansatz[25], writing the position of thgth condensate as a (W") of the origin intersect in a homoclinic tangisee left
combination of oscillatory modeg;(t) =>A;(k)coskwt) panel in Fig. 2. Consider the trajectory of the
centered ai\;(0)=¢&p; . For small oscillations, @ne-mode two-dimensional mapM that starts at the intersection
ansatz, point Poe WS NW" (see left panel in Fig. 2 From the
invariance of the stable and unstable manifolds, each
forward and backward iteration of Py, labeled
§j(t)=&o;+Aj cogwt), 9  {...P_,,P_1,Py,P1,Py, ...} in Fig. 2, lies in the inter-
. o . . . section. From area orientation it follows that this trajectory
is sufficient to capture the essential dynamics. We substitutg,yes each second intersecti®s]. The amplitudes for the

Eq. (9) into Eq.(8), expand and match terms to find a recur-|qc4jized oscillations are then given by the ordinatgs (
rence relation between the oscillation amplitudes =A,) of the homoclinic orbit(see right panel in Fig.)2

The homoclinic orbit of the 2D map induces a breather on
the condensate positions through the angaitzAn example
of such localized oscillations for the condensates is depicted
in Fig. 3, in which a central condensate oscillates with a
maximal amplitudeA, and the condensates on either side
scillate with amplitudesA.. , that decrease exponentially
with increasingn (see right panel in Fig.)2 The asymptotic
decay rate for the oscillation:i@:)\;‘”') is prescribed by

Aji1=(a+bA)A = Ay, (10)

with a=2— w?+ ae®/4 andb=3Be%/16. We introducey,
=A, andx,=A,_,, and recast the second-order recurrenc
relation (10) as the two-dimensiondPD) map M:

) Xn+1=Yn,

: (11
Ynr1=(a+ byﬁ)yn_xn .

=y
x
=

Up to the approximations made to obtain E40), solutions
of Eq. (11) prescribe the amplitudes representing oscillatory
solutions for the condensates. We remark that the oscillatior ™
frequencyw and the form of the on-site potential are incor- 0
porated through the parameterandb of Eq. (10). In par-
ticular, one expects families of oscillatory solutions param-
etrized by their frequencw.

We are mter_ested in constructifgralized br?atheriﬂo' FIG. 3. Localized breathing oscillation in a chain of weakly
calized oscillationsfor the condensate dynamics. These so-

luti its I lini h i for th coupled condensates in a periodic potential. This localized oscilla-
utions correspond to orbits homoclinic to the origin for t € tion is obtained by full numerical solution of the Gross-Pitaevskii

recurrence map1l). The corresponding orbits satis#,  equation with an initial condition prescribed by our dynamical re-
#0 and lim,_...A;,=0 with an exponential decay rate. A gyction. Only condensates with index 0 through 4 are shéhe
necessary condition for the existence of a homoclinic orbit ispscillations are symmetric with respect to the condensate with index
hyperbolicity of the origin. This is satisfied for t|>2 or ). The bottom plane depicts,—darker areas corresponds to re-
equivalently |2— w2+ «€R/4|>2. This condition provides gions whereu(x,t) undergoes greater temporal variatioR=(9,
constraints on the intersite spaciRgand breather frequency »~0.11388, and/,=0.025)

033610-3



R. CARRETERO-GONZAEZ AND K. PROMISLOW PHYSICAL REVIEW A66, 033610 (2002

4 4
2x1a0 2x:)0 —
1 N 1 I
! I ! B33
f —— - Yo R FIG. 4. Robustness of the perturbed localized
20— 5 m 20 A 5 0 20 breather in the Gross-Pitaevskii equatiéa; un-
0.02 perturbed andb) perturbed.a; andb; depict a
001 b, density plot of |u,(x,t)|—darker areas corre-
- spond to largem(x,t) variations. Insets, and
bad 0 .
5 001 az depictu(x,ty) and In{u(x.to)|) att=t, for the
' unperturbed system, whereas indeteindb; de-
"0‘0_230 _40 0 40 80 pict the corresponding quantitiestatfor the per-
= turbed systems. Same parameter values as in
% Fig. 3.
Ex
c

the eigenvalues at the origh. = (a=* \a?—4)/2. Note that, and with am phase shift between consecutive solit¢as in
because Eq(11) hasx«y symmetry, the breather is sym- Fig. 3). We perturb each soliton in the chain by adding a
metric with respect to the central Condensaxe_(:)\zl)_ random value to each of the initial velocities, heights,
We stress that the solution depicted in Fig. 3 is obtained byvidths, positions, and phases. The bounds for the perturba-
numerical integration of the full Gross-Pitaevskii equationtions correspond t¢a) 15% of themaximalvelocity on ve-
(1) from initial conditions prescribed by the homoclinic orbit locities, (b) 10% on heights(c) 10% on widths(d) 15% of
of our reduced 2D map. Due to the approximations used itthe maximalamplitude (0.18) on positions, ande) 15%
our approach, orbits of the reduced 2D map are edaict  of 77 on phases. Note that the perturbations on positions and
solutions of the full GPE equatio(l). Nevertheless, if we velocities are proportional to the collective maximum and
restrict our attention to small oscillations for weakly couplednot to the individual values. After adding the perturbations,
BECs, there is a good correspondence between the reducest concatenate the solitons and integrate the K2)Sising
dynamics and the original Gross-Pitaevskii equation. Thisx pseudospectral method. Additionally, we includg 5%
correspondence is reinforced by the structural stability of théstationary perturbation to the potential artd) a noise level
orbits for the reduced 2D majsee below. of 107° to u(x,t) at everytime step of the integration.
Localized breathers represent an important structure in the The total run is about 2 1C° iterations. Figure 4 depicts
dynamics of the GPE equation describing a mechanisnthe evolution ofui(x,t) for the unperturbedleft) and the
whereby energy and information can be pinned down on th@erturbedright) breather from direct simulations of the GPE
periodic potential lattice. The occurrence of localized breathequation. Despite the large perturbation to the IC and the
ers in weakly coupled oscillatory units is a common phenom-additive noise, after a brief transient, the breather settles
enon. Indeed, the existence of localized breathers has beélown and retains its localization with an approximate expo-
formally established in general nonlinear Hamiltonian lat-nential decayinsetb;). It is interesting to note that stronger
tices of weakly interacting oscillatof®7] by continuation  perturbations tau did not necessarily destroy the localiza-
from the so-called anticontinuum limit corresponding to thetion, but often resulted in a slow excursion of the localized
uncoupled caseR= +) [28]. The structural stability of the region along the lattice. The possibility of breather mobility
homoclinic tangle, arising from the transverse nature of thén nonlinear lattices triggered by perturbations has been in-
intersections of the stable and unstable manifolds, impliesestigated previouslj29].
the persistence of the breather solution of the 2D rtidp The robustness of the localized breather dynamics pre-
under parameter changes, in particular, insuring the existensented above opens the possibility for experimental corrobo-
of the breather solution for the GPE. This persistence, toration. The large perturbations to the IC result in an initial
gether with the dynamic stability of the steady-state solutiortransient involving radiative losses, which would correspond
(A,=0), ensures the existence of the breather solution foexperimentally to a small number of atoms being spilled
the GPE. Therefore, despite the various approximations usesvay from the central cloud and absorbed by the noncon-
in the reduction of the GPE to the 2D métl), we observe densed atoms at the periphery. After the transient, the
localized breather oscillations in the original GPE dynamicsbreather settles down and retains its localization with an ap-
(Fig. 3 for the predicted parameter values. More surprisingproximate exponential decdinsetbs). While the breathers
is the robustness of the breathing dynamics to significamive constructed are robust to a wide host of perturbations,
perturbations under the GPE dynami€&sg. 4). breathers are nongeneric in the sense that arbitrary initial
To demonstrate this robustness we construct the initiatonditions do not necessarily produce a breather. Also, with
configuration(IC) as a concatenation of solitons with veloci- large enough perturbations the breathing phenomena are en-
ties, heights, widths, and positions predicted by our analysidjrely destroyed.
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~0.1 0.06
A u] A
02} " o] T
o2 o1 2 o1 oz “%he oo xoés o FIG. 7. Chaotic global oscillations of the condensates from GPE

dynamics corresponding to the chaotic orbit of the reduced map

FIG. 5. Typical phase space for the reduced 2D rfidp. Left: (1D (see Fig. 3

some periodic orbits and the homoclinic tandfeandF’ are fixed
oints, {G,,G,} is a period-2 orbit. Some higher order periodic _(_C3 SN o oAV ; ; ;
grbits a{re lperizgd $triaggles and filled squar}aaad period 4(gpen Go=(=x.%) with x= .(2+a)/b. T_hls p(?flOd-Z 9rb|£ (ior-
squares Right panel shows the behavior near the fixed pgint €SPonds to an amplitude configuratiof. .. X, — XX,
(diamond. The map displays quasiperiodic orbits that disappear at-Xx, . ..}, i.e., antiphase oscillatiorjsee Fig. @)]. It is in
the separatrix originating from the manifolds of a period-11 orbitprinciple possible to construct more complex patterns for the
(crossek Outside this separation, a single chaotic orbit is depictedylobal oscillations from higher-order periodic orbits of the
(small dots. 2D map(cf. Fig. 5.
The 2D map also predicts global oscillations that are qua-
We may use the dynamical reduction described above teiperiodic in site indexh. These orbits exist near the fixed
devise other breathing phenomena of E2). Within our  pointF (see Fig. 5, right panglThe corresponding breather
approximations, any bounded nontrivial orbit of the 2D mapfor the full periodic NLS(2) has an in-phase global oscilla-
M (11) gives rise to complex oscillatory behavior of the con-tion with a small modulation of the amplitudégiven by the
densates in Eq2). In particular, periodic points dfl corre-  rotation number of the quasiperiodic orbit arouRdl. An
spond toglobal oscillations. The magM has three fixed interesting possibility for the dynamics of coupled conden-
points: the originF = (x*,x*) andF’=(—x*,—x*), where  gates is the prospect of chaotic evolution. In a neighborhood
x*=\(2—a)/b (see Fig. % The fixed point at the origin of the fixed pointF, there is a region containing chaotic
gives rise to the trivial stationary solutiok,=0. The fixed  orpits corresponding to chaotic oscillations for the conden-
points F and F’ yield solutions in which all condensates sateg(see right panel in Fig.)5 This corresponds to chaotic
oscillate in phase with the same amplituge. The corre-  gcillations for the condensatsee Fig. 7c)]. It should be
sponding global breather for the original systé® is de-  ngihle, in principle, to find the onset of chaos for the con-

picted in Fig. &a). Other interesting orbits arise from higher- yonqates by analyzing in more detail the reduced dynamics in
order periodic points. For example, the period-2 ofbjt= Eq. (1).

—M(G;)=M?*G,) (see Fig. 5, where G;=(x,—x) and We have constructed a variety of global and localized
oscillatory behaviors of BECs in periodic potentials, identi-
fying these solutions with orbits of a reduced 2D map. A key
ingredient of the construction of localized oscillations is the
existence of a homoclinic tangle. We demonstrate the sur-
prising robustness of these solutions to perturbations. Since
BEC experiments are quite delicate, we do not expect that
direct manipulation could produce an exact initial condition
corresponding to a localized oscillation. Nonetheless, we be-
lieve that localized oscillations may be observed in weakly
coupled condensates that are appropriately engineered and
then permitted to radiate away spurious energy. The tech-
nigues presented here can, in principle, be extended to lat-
tices in higher dimensions such as vortex lattices. This has
possible implications to modeling the interactions of atoms
in optical traps that could potentially be used for quantum
computing[30].

FIG. 6. Global oscillations of the condensates from simulations e are grateful to J. N. Kutz, B. Deconinck, P. G.

of the GPE equation. These global oscillations arise from periodid<€vrekidis, P. Engels, and W. P. Reinhardt for providing
points of the reduced dynami¢sl). (a) In-phase oscillations cor- Stimulating discussions and relevant references. The authors

responding to the nontrivial fixed poifit(see Fig. 5. (b) Antiphase ~ acknowledge support from the Pacific Institute for the Math-
oscillations corresponding to a period-2 cycle of Etj) with al-  ematical Sciences and the NSERC Grant No. 611255 during
ternating amplitude sign. the completion of this work.
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