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Controlling the motion of dark solitons by means of periodic potentials:
Application to Bose-Einstein condensates in optical lattices
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We demonstrate that the motion of dark solitgBsSs can be controlled by means of periodic potentials.
The mechanism is realized in terms of cigar-shaped Bose-Einstein condensates confined in a harmonic mag-
netic potential, in the presence of an optical lattiGd). In the case when the OL period is comparable to the
width of the DS, we demonstrate th@ a moving dark soliton can be captured, switching on the OL,(apd
a stationary DS can be dragged by a moving OL.
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Dark solitongDS9 are among the most fundamental non- in the case when the OL period is comparable to the healing
linear excitations of the nonlinear SchrodingBiLS) equa-  length(that sets the spatial width of the Q% is possible to
tion with defocusing nonlinearity and have consequently(a) snare(immobilize) a moving(gray) DS in a local poten-
been studied in many fieldsee, e.g.[1] for a review. The  tial well by adiabatically switching the OL on; an®) cap-
interest in DSs had been refreshed by the creation of Boseure and drag a stationafiplack) DS by aslowly movingOL,
Einstein condensat¢BECs in ultracold alkali gasef?] and  delivering it to a desired location. To demonstrate these pos-
the direct observation of DSs in BECs in a series of experisibilities, we consider the following defocusing NL&lias
ments[3]. As BECs are confined in harmonic magnetic traps,Gross-Pitaevskii (GP)] equation in normalized form
many theoretical studies dealt with the dynamics of DSs inM2,17,1§:
external potential$4,5]. In particular, it has been found that 1
in elongated harmonic traps a DS oscillates with frequency iU, = — =y, + |UlPu+ V(X)u, (1)
QO/\2, whereQ is the axial trapping frequency. Therni&l]
and dynamical 7] instabilities, mainly referring to rectilinear
DSs, have been investigated too. On the other hand, geney
alizations of the rectilinear DSs, such as ring-shaped DSs
have recently been proposg®]. Systematic studies of emis-
sion of linear wavegsound by DSs interacting with BEC
inhomogeneities, as well as DS-sound interactions, have afy

descrlblng the mean-field dynamics of a quasi-one-
dimensional cigar-shaped BEC, characterized by its macro-
SCOpIC wave functiomi(x,t). The interatomic interactions are
considered to be repulsiypositive atomic-scattering length
d the BEC is assumed to be confined by the potential,

been performed9]. Furthermore, it has been shown that an 1.5,

effectively dissipative effect specific to the BEGuantum V(x) = 59 x? + VocoS (kx+ ), (2)
depletionof DSs[10], reduces the dark soliton lifetime as

atoms tunnel in to fill up the notch at the DS center. where the two terms represent the parabolic magnetic trap

In addition to the above, theoretical and experimentagnd the OL, respectively.
studies of BECs have been performed in the presence of a To reduce the original three-dimension@D) GP equa-
periodic external potential, in the form of the so-called opti-tion to the above 1D form, one requires a very tight radial
cal lattice(OL), created by the interference pattern of coun-confinement. In this case, an effective 1D interaction
terpropagating laser bearfisl—13. The dissipative dynam- strengthg;p, is obtained upon integrating the 3D interaction
ics of the DSgincluding detailed measurements of the soundstrengthgsp=4s#i%a/m in the transverse directiona is the
emitted by the solitonin a quasi-one-dimensiongQ1D)  scattering Iength andn the atomic mags This yields
BEC, confined by a combination of the magnetic trap and th€p=0sp/ (27l%), wherel , =\A/mw, is the transverse har-
OL, as well as the structure and mobility of DSs in single-monic oscillator length(w, is the transverse-confinement
and double-periodic OLs, have recently been considered ifrequency. Additionally, to obtain the dimensionless form of
Refs.[14] and[15], respectively. On the other hand, the sta-Eq. (1), x is scaled in units of the fluid healing length
bility of DSs in the combined magnetic-OL potential, has é=%/+vnyg;pm (which also characterizes the size of the dark
been recently studiefl6] in the framework of both the dis- soliton), t in units of £&/¢ (wherec=vnyg,p/m is the Bogo-
crete and continuum mean-field models. liubov speed of soundthe atomic density is rescaled by the

The objective of this work is to suggest the possibility of peak densityn,, and energy is measured in units of the
controlling the motion of DSs by means of a time-dependenthemical potential of the systep=g;pne. Accordingly, the
OL periodic potential. In particular, we aim at showing that, parametef) =%w,/g1pNg (wy is the confining frequency in
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the axial direction determines the magnetic trap strength,
while V is the OL strength. Finallyk is the wave number of
the OL that can be controlled by varying the anglbetween
the counterpropagating lasers which produce the interference
pattern with the wavelengthh =27/k=(\5sef 2)SiN(4/2)
[19], where\ ;e IS the wavelength of the laser beams pro-
ducing the OL and is an arbitrary phase constant. 200 = =
In the absence of external potentials, the defocusing NLS
equation(1) gives rise to an exact DS soluti¢ad], FIG. 1. Motion of the center of a dark soliton in the presence of
3) the magnetic trap with2=0.025 and the optical lattice with,
=0.2 andk=1. The three soliton trajectories correspond to different
where u, is the amplitude of the uniform background, initial positions and optical lattice phaseg;(0)=0.1 andf=m/2
wo=U3 is the dimensionless chemical potential,is the  (solid line), x(0)=0 and =0 (dashed ling andxo(0)=0.01 and
phase shift across the D8¢|<w/2), and {=uy(cose)  0=m/2 (thin solid line).
X[x—=up(sin p)t]. The amplitudgdepth and velocity of the

600 800 1000

u(x,t) = up(cose tanh{ +i sin p)exp(— i wot),

: : L hence the instability develops slowly. The potential instabili-
DS areugcose and ugsin ¢, respectively. The limit cas . . A . ;
0059 oSN, TSP Y ® ties are illustrated in Fig. 1, where we depict three different

=0  corresponds to a stationaryblack soliton, soliton trajectories pertaining to the cases where the soliton
u=uptanhugX)exp(-iugt). In the presence of the potential >~ ..
otanf(UgX) exp(~i gt) P P is initially placed at or near the bottom of the trépe pa-

§2), the background density Sl_,lpportlng the DS is nNONUNI - meters ar€)=0.025 Vo=0.2, andk=1). A soliton initially
orm, and it can be well approximated by the Thomas-Fermi . .
(TF) expressior(2], placed exactly at the bpttom of the traf) wilk 77/ 2.rerr.1a|ns
trapped for very long timedarger thart=1000, which is the
Upe = V"m- (4 _mgximal time of the numgrical experiment of Fig. A DS,
initially placed at a positiorx,(0) close to the bottom, es-
Here, the chemical potential can be derived by the normalcapes only after a fairly long waiting timet=500 for
ization condition as uo=[(3/4V2)QQJ*3 where Q  x,(0)=0.01(thin solid line andt~ 220 forx,(0)=0.1 (solid
=J~7|ul?dx is the normalized number of atoms in Hd). line). On the other hand, if the phase of the OL is chosen so
To estimate actual physical quantities, we adopt typicathat x=0 is a local maximum(#=0), then a DS placed at
values of the parameters in experiments with DSs in BEC,(0)=0 escapes relatively quick(g~ 120, see dashed line
[3]. In particular, for fixed values of the trap strength andThis is consistent with a stability analysis of the stationary
normalized chemical potential)=0.025 anduo=1, respec-  sglitons for differentd for a wide range of parameter values.
tively, we assume a cigar-shaped trap with frequeneigs |n particular, for the parameter values of Fig. 1, a numerical
=2mx 10 Hz andw, =140w,. Then, for a®Rb (**Na) con- |inear stability analysis indicates that 40, there is a real
densate, the space and time units are ®8(2.2 um) and  eigenvalue pairy~0.17, while if §=1/2, there is a much
0.27 ms(0.56 mg, respectively, the 1D peak density is 5 weaker oscillatory instability with Re) =~0.017(i.e., with a
X10'm™*(10°m™), and the number of atomsN  growth rate ten times smaller than the previous Lasete
~1200(17 000. that, when the initially black DS eventually escapes, it be-
It is necessary to identify now length scales involved incomes grayer, i.e., its depth decreases and its width in-
the problem. First, the parabolic trap stren@thin Eq. (2) creases, due to continuous emission of radiatisound
sets the corresponding length sc@¥e', which we assume to  waveg. Thus, the DS gains kinetic energy and starts to per-
be much larger than the DS widths= (cos¢)™ (recall that  form large-amplitude oscillations.
we have seugz,uozl); otherwise(if the parabolic trap is The above results tend to suggest that it is possible to
tight, rather than loogethe DS has no room to exi$i6]. achieve a “quasitrapping” of the DS in a potential well of the
Note that, unless the DS is very shallgie., cosp<1), OL, which is a starting point for attempting to control its
which is not the case of interedpg is of the same order of motion by means of a slowly varyindor instance, moving
magnitude as theealing lengthé. In the framework of Eq.  OL. Simultaneously, the OL potential will stabilize the mo-
(1), with u=1 and¢=1/y2, we need(<1. On the other tion of the DS against additional small perturbations, such as
hand, as concerns the OL potential, both its strengthnd  interaction with a random wave field, that may give rise to a
wavelengthh may be, generally speaking, arbitrary, hencejitter of an unpinned soliton, similar to the well-known jitter
the ratio of the DS width to. may take different values. In of solitons in optical fiber§l] (quite a similar mechanism of
the following, we will focus on the most interesting case,the suppression of the jitter diright fiber-optic solitons by
when the OL period is on the order of the healing length,an effective periodic potential, which is actually created by a

AN~E&. copropagating wave at a different polarization or carrier
In this case, we expect that the soliton may be trapped awvavelength, was proposed in RE21]).
a local extremum of the potentié?), allowing manipulations We aim to put forward and analyze two concrete possi-

of the soliton by a time-dependent potent{&r instance, bilities for the manipulationdriving) of DSs by means of
dragging the DS by a slowly moving potentialt is neces- nonstationary OLa) snaring and stopping an initially mov-
sary to note that the trapped DS is, generally speaking, suling DS, which performs large-amplitude oscillations in the
ject to instabilities[16], which, however, may be weak, parabolic trap, upon switching on an OL, with the objective
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=3m/2, where a local minimum of one of the OL wells is
located. The parameters defined in EG) aret,=177 and
T=5, the strength of the parabolic trap(ds=0.025, while the
OL parameters ar®;=0.07 andk=1. As it can be seen in
Fig. 2, the soliton remains trapped for a long time, &7
<650, and eventually escapes due to radiation losses. It is
worth noting that, with the choice of the above parameters,
the OL is actually switched on close to the moment in time
when the soliton is at the turning point of its trajectory
(therefore, it is almost black at the trapping posijiohddi-
tional simulations have shown that the DS can be snared at
any time and at any positiotnot necessarily close to the
_ _ ~ turning poiny, as long as the switch-on time satisfies the
FIG. 2. Entrapment of the moving dark soliton by a potential ¢qngition T=1, which is necessary to ensure adiabaticity
yvg!l belonging to the time-modulated optical lattice. The soliton 's(otherwise, strong fluctuations of the condensate density are
initially located at xg(0)=—3w/2. The parameters are) observeql

=0.025V=0.07,k=11,=177, andT=5. The dotted/solid line Now, we proceed to the consideration of the second pos-
corresponds to the DS trajectory in the absence/presence of the, ..~ ' _p . ; P
. . . : . ._, Sibility mentioned above, viz., the transfer of a stationary DS
time-modulated optical lattice. After getting trapped in the potential,”. itially t di Il of the OLb teadil .
the dark soliton stays there, performing small oscillations, during(oml_I I?\ly raﬁpe. ;1” at\)Ne of the | L ﬁ/ as eha y movmg_
the time interval 17%t<650; later, it escapes due to radiation ) ,Ote t "‘}t It has ,een _recen_ty shown that an a_ttrac,tlve’
loss. steadily moving, localized impurity may drag a quasistation-
ary DS [5], but here we aim to consider a more general
problem, namely théargeted transfeof the DS, via a mov-
ing OL.

Following the concept of the robust targeted transfer of

0 150 300 ¢ 450 600 750

to trap the DS in a specific wellp) setting an initially still
soliton, trapped in a local well of the OL, in motion, and
delivering it at another prescribed location, by a moving OL'soIitons in continua or latticef22], we consider the time-
Both possibilities are experimentally feasible, as the OL it'dependent OL potential of the foliowing form:
self can easily be manipulated: It is possible to control its
amplitude(V,) through the intensities of the laser beams that VoL (%) = VaCoL[k(x - y(t)) + /2] @)
form the lattice[which is relevant tqa)], and it is also pos- oL 0 '
sible to induce motion of the OL through time modulation of \yhere the time-varying positioy(t), which plays the role of
the phase differencé between the two counterpropagating ipe driver, is chosen as
beamsJthis is relevant to(b)], the velocity of the motion
being c=(r/k)dé/dt [19]. Additionally, as we show below, 1 t—to
as long as the OL characteristics are varied adiabatically y) =n +§(77f_ 77i)|:1+tam'<T):|- (8)
(slowly) in time, the above-mentioned weak instability of the
DS trapped near the bottom of the potential well does no
disrupt the DS-manipulation mode.

Proceeding to trap the moving DS in a well of the OL

fn Eq. (8), m and #; are the initial anddesired final posi-
tions of the DS’s center, whil& andt, are constants control-
' ling, respectively, the duration and the beginning of the

which is adiabatically switched on, we assume an initially )
black soliton[cos¢=1 in Eq. (3)] placed away from the Ittr; nls)fer[g‘.mli?ié(;)/]aggtf;elrgﬁ?a/_lz_a)lu?n%fstthiérzzsf;irievrillgc
center of the trap. In the absence of the OL, the DS oscillates”’ | M Lo '

i | . X . ~"Small to ensure adiabaticity.
W'th frequencyQ/VZ. The OL IS SW'tC.he_d on using the fol Simulations of the GP equatiqid) with the OL potential
lowing time-dependent potential profile:

taken as per Eq.7) demonstrate the possibility of the con-

Voo (%,t) = f(t)Vocog(kx), (5)  trolled DS transfer. As shown in Fig. 3, the soliton, initially
L . placed aty,=-37/2, is safely delivered to the new location,
where the switching function is chosen as m=ml2 (the parameters ar€=0.025V,=0.07 k=1, t,
1 t—t, =100, andT=60). We stress that, although the DS oscillates
f(t) = > 1 +tanl‘<T> : (6)  in the OL well, where it was initially captured, it is held in

the trapped state, and is dragged by the moving OL quite

The constants, and T in this expression control, respec- robustly. When the OL ceases to move, the DS performs
tively, the switch-on time and the width of the time interval small-amplitude oscillations in the well located at the final
over which it occurs. destinationx= 7;. The soliton remains well trapped there for

Simulations of the GP equation with this time-dependenia considerable timg200<t<400. However, similar to
OL potential indeed demonstrate the possibility to snare thahat was shown in detail above, the radiation loss eventually
initially moving DS in a particular well of the OL, and, sub- leads to escape of the O®r t>400. The example shown
sequently, to hold it there for a relatively long time. A typical in Fig. 3 represents a typical targeted transfer. Direct simu-
example is shown in Fig. 2, where a DS, whose center waktions have shown that the proposed process is quite robust
initially placed atxg(0)=-37/2, is trapped at the point  for v,,<0.08.
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ing the parabolic and OL potentials, which is relevant to the
case of a cigar-shaped repulsive BEC. We have shown that,
in the most interesting case when the OL period is compa-
rable to the DS width, it is possible t@) trap and nearly
stop a moving(gray) DS in a chosen local well of the OL
which is adiabatically switched on, aigld) drive a stationary
(black) DS by a slowly moving OL, bringing it to a prespeci-
fied destination. The results presented are geridrey have
been confirmed by many simulations with other realistic pa-
rameter valuesand predict quite feasible experiments. A
limitation on the physical applicability of the results is, how-

FIG. 3. The targeted transfer of a dark soliton from its initial €ver, imposed by dissipative mechanisms in BECs, such as
position, 7,=—3m/2, to the final onez;=/2. The continuous and thermal instabilities and quantum depleti¢im fact, they
dashed curves show, respectively, the actual motion law of thdimit the DS lifetime). Work is in progress to demonstrate
trapped dark soliton, and that of the optical lattice drive. Thehow a similar technique can be used to control the motion of
strength of the parabolic trap £=0.025, the optical lattice param- Nonlinear excitations, with topological charges, in higher-
eters areVy,=0.07 andk=1, and the drive is taken in the form of dimensional atomic condensates.

Eqgs.(7) and(8) with t;=100 andT=60. The dark soliton delivered
by the moving optical lattice to the required destination stays there

performing small oscillations, during the time interval 200
< 400; later, it escapes due to radiation loss.
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