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We demonstrate that the motion of dark solitons(DSs) can be controlled by means of periodic potentials.
The mechanism is realized in terms of cigar-shaped Bose-Einstein condensates confined in a harmonic mag-
netic potential, in the presence of an optical lattice(OL). In the case when the OL period is comparable to the
width of the DS, we demonstrate that(a) a moving dark soliton can be captured, switching on the OL, and(b)
a stationary DS can be dragged by a moving OL.
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Dark solitons(DSs) are among the most fundamental non-
linear excitations of the nonlinear Schrödinger(NLS) equa-
tion with defocusing nonlinearity and have consequently
been studied in many fields(see, e.g.,[1] for a review). The
interest in DSs had been refreshed by the creation of Bose-
Einstein condensates(BECs) in ultracold alkali gases[2] and
the direct observation of DSs in BECs in a series of experi-
ments[3]. As BECs are confined in harmonic magnetic traps,
many theoretical studies dealt with the dynamics of DSs in
external potentials[4,5]. In particular, it has been found that
in elongated harmonic traps a DS oscillates with frequency
V /Î2, whereV is the axial trapping frequency. Thermal[6]
and dynamical[7] instabilities, mainly referring to rectilinear
DSs, have been investigated too. On the other hand, gener-
alizations of the rectilinear DSs, such as ring-shaped DSs,
have recently been proposed[8]. Systematic studies of emis-
sion of linear waves(sound) by DSs interacting with BEC
inhomogeneities, as well as DS-sound interactions, have also
been performed[9]. Furthermore, it has been shown that an
effectively dissipative effect specific to the BEC,quantum
depletionof DSs [10], reduces the dark soliton lifetime as
atoms tunnel in to fill up the notch at the DS center.

In addition to the above, theoretical and experimental
studies of BECs have been performed in the presence of a
periodic external potential, in the form of the so-called opti-
cal lattice(OL), created by the interference pattern of coun-
terpropagating laser beams[11–13]. The dissipative dynam-
ics of the DSs(including detailed measurements of the sound
emitted by the soliton) in a quasi-one-dimensional(Q1D)
BEC, confined by a combination of the magnetic trap and the
OL, as well as the structure and mobility of DSs in single-
and double-periodic OLs, have recently been considered in
Refs.[14] and[15], respectively. On the other hand, the sta-
bility of DSs in the combined magnetic-OL potential, has
been recently studied[16] in the framework of both the dis-
crete and continuum mean-field models.

The objective of this work is to suggest the possibility of
controlling the motion of DSs by means of a time-dependent
OL periodic potential. In particular, we aim at showing that,

in the case when the OL period is comparable to the healing
length(that sets the spatial width of the DS), it is possible to
(a) snare(immobilize) a moving(gray) DS in a local poten-
tial well by adiabatically switching the OL on; and(b) cap-
ture and drag a stationary(black) DS by aslowly movingOL,
delivering it to a desired location. To demonstrate these pos-
sibilities, we consider the following defocusing NLS[alias
Gross-Pitaevskii (GP)] equation in normalized form
[2,17,18]:

iut = −
1

2
uxx + uuu2u + Vsxdu, s1d

describing the mean-field dynamics of a quasi-one-
dimensional cigar-shaped BEC, characterized by its macro-
scopic wave functionusx,td. The interatomic interactions are
considered to be repulsive(positive atomic-scattering length)
and the BEC is assumed to be confined by the potential,

Vsxd =
1

2
V2x2 + V0cos2skx+ ud, s2d

where the two terms represent the parabolic magnetic trap
and the OL, respectively.

To reduce the original three-dimensional(3D) GP equa-
tion to the above 1D form, one requires a very tight radial
confinement. In this case, an effective 1D interaction
strength,g1D, is obtained upon integrating the 3D interaction
strengthg3D=4p"2a/m in the transverse directions(a is the
scattering length andm the atomic mass). This yields
g1D=g3D/ s2pl'

2 d, wherel'=Î" /mv' is the transverse har-
monic oscillator length(v' is the transverse-confinement
frequency). Additionally, to obtain the dimensionless form of
Eq. (1), x is scaled in units of the fluid healing length
j=" /În0g1Dm (which also characterizes the size of the dark
soliton), t in units of j /c (wherec=În0g1D/m is the Bogo-
liubov speed of sound), the atomic density is rescaled by the
peak densityn0, and energy is measured in units of the
chemical potential of the systemm=g1Dn0. Accordingly, the
parameterV;"vx/g1Dn0 (vx is the confining frequency in
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the axial direction) determines the magnetic trap strength,
while V0 is the OL strength. Finally,k is the wave number of
the OL that can be controlled by varying the anglec between
the counterpropagating lasers which produce the interference
pattern with the wavelengthl;2p /k=sllaser/2dsinsc /2d
[19], wherellaser is the wavelength of the laser beams pro-
ducing the OL andu is an arbitrary phase constant.

In the absence of external potentials, the defocusing NLS
equation(1) gives rise to an exact DS solution[20],

usx,td = u0scosw tanhz + i sinwdexps− im0td, s3d

where u0 is the amplitude of the uniform background,
m0;u0

2 is the dimensionless chemical potential,w is the
phase shift across the DSsuwu,p /2d, and z;u0scoswd
3fx−u0ssinwdtg. The amplitude(depth) and velocity of the
DS areu0cosw and u0sinw, respectively. The limit casew
=0 corresponds to a stationaryblack soliton,
u=u0tanhsu0xdexps−im0td. In the presence of the potential
(2), the background density supporting the DS is nonuni-
form, and it can be well approximated by the Thomas-Fermi
(TF) expression[2],

uTF = Îmaxh0,m0 − Vsxdj. s4d

Here, the chemical potential can be derived by the normal-
ization condition as m0;fs3/4Î2dVQg2/3, where Q
=e−`

−`uuu2dx is the normalized number of atoms in Eq.(1).
To estimate actual physical quantities, we adopt typical

values of the parameters in experiments with DSs in BECs
[3]. In particular, for fixed values of the trap strength and
normalized chemical potential,V=0.025 andm0=1, respec-
tively, we assume a cigar-shaped trap with frequenciesvx
=2p310 Hz andv'=140vx. Then, for a87Rb s23Nad con-
densate, the space and time units are 0.3µm (2.2 µm) and
0.27 ms(0.56 ms), respectively, the 1D peak density is 5
3107m−1s108m−1d, and the number of atomsN
<1200s17 000d.

It is necessary to identify now length scales involved in
the problem. First, the parabolic trap strengthV in Eq. (2)
sets the corresponding length scaleV−1, which we assume to
be much larger than the DS widthlDS;scoswd−1 (recall that
we have setu0

2=m0;1); otherwise(if the parabolic trap is
tight, rather than loose) the DS has no room to exist[16].
Note that, unless the DS is very shallow(i.e., cosw!1),
which is not the case of interest,lDS is of the same order of
magnitude as thehealing lengthj. In the framework of Eq.
(1), with m;1 andj=1/Î2, we needV!1. On the other
hand, as concerns the OL potential, both its strengthV0 and
wavelengthl may be, generally speaking, arbitrary, hence
the ratio of the DS width tol may take different values. In
the following, we will focus on the most interesting case,
when the OL period is on the order of the healing length,
l,j.

In this case, we expect that the soliton may be trapped at
a local extremum of the potential(2), allowing manipulations
of the soliton by a time-dependent potential(for instance,
dragging the DS by a slowly moving potential). It is neces-
sary to note that the trapped DS is, generally speaking, sub-
ject to instabilities [16], which, however, may be weak,

hence the instability develops slowly. The potential instabili-
ties are illustrated in Fig. 1, where we depict three different
soliton trajectories pertaining to the cases where the soliton
is initially placed at or near the bottom of the trap(the pa-
rameters areV=0.025,V0=0.2, andk=1). A soliton initially
placed exactly at the bottom of the trap withu=p /2 remains
trapped for very long times(larger thant=1000, which is the
maximal time of the numerical experiment of Fig. 1). A DS,
initially placed at a positionx0s0d close to the bottom, es-
capes only after a fairly long waiting time:t<500 for
x0s0d=0.01 (thin solid line) and t<220 for x0s0d=0.1 (solid
line). On the other hand, if the phase of the OL is chosen so
that x=0 is a local maximumsu=0d, then a DS placed at
x0s0d=0 escapes relatively quickly(t<120, see dashed line).
This is consistent with a stability analysis of the stationary
solitons for differentu for a wide range of parameter values.
In particular, for the parameter values of Fig. 1, a numerical
linear stability analysis indicates that ifu=0, there is a real
eigenvalue pair,g<0.17, while if u=p /2, there is a much
weaker oscillatory instability with Resgd<0.017(i.e., with a
growth rate ten times smaller than the previous case). Note
that, when the initially black DS eventually escapes, it be-
comes grayer, i.e., its depth decreases and its width in-
creases, due to continuous emission of radiation(sound
waves). Thus, the DS gains kinetic energy and starts to per-
form large-amplitude oscillations.

The above results tend to suggest that it is possible to
achieve a “quasitrapping” of the DS in a potential well of the
OL, which is a starting point for attempting to control its
motion by means of a slowly varying(for instance, moving)
OL. Simultaneously, the OL potential will stabilize the mo-
tion of the DS against additional small perturbations, such as
interaction with a random wave field, that may give rise to a
jitter of an unpinned soliton, similar to the well-known jitter
of solitons in optical fibers[1] (quite a similar mechanism of
the suppression of the jitter ofbright fiber-optic solitons by
an effective periodic potential, which is actually created by a
copropagating wave at a different polarization or carrier
wavelength, was proposed in Ref.[21]).

We aim to put forward and analyze two concrete possi-
bilities for the manipulation(driving) of DSs by means of
nonstationary OLs:(a) snaring and stopping an initially mov-
ing DS, which performs large-amplitude oscillations in the
parabolic trap, upon switching on an OL, with the objective

FIG. 1. Motion of the center of a dark soliton in the presence of
the magnetic trap withV=0.025 and the optical lattice withV0

=0.2 andk=1. The three soliton trajectories correspond to different
initial positions and optical lattice phases:x0s0d=0.1 andu=p /2
(solid line), x0s0d=0 andu=0 (dashed line), and x0s0d=0.01 and
u=p /2 (thin solid line).
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to trap the DS in a specific well;(b) setting an initially still
soliton, trapped in a local well of the OL, in motion, and
delivering it at another prescribed location, by a moving OL.
Both possibilities are experimentally feasible, as the OL it-
self can easily be manipulated: It is possible to control its
amplitudesV0d through the intensities of the laser beams that
form the lattice[which is relevant to(a)], and it is also pos-
sible to induce motion of the OL through time modulation of
the phase differenced between the two counterpropagating
beams[this is relevant to(b)], the velocity of the motion
being c=sp /kddd /dt [19]. Additionally, as we show below,
as long as the OL characteristics are varied adiabatically
(slowly) in time, the above-mentioned weak instability of the
DS trapped near the bottom of the potential well does not
disrupt the DS-manipulation mode.

Proceeding to trap the moving DS in a well of the OL,
which is adiabatically switched on, we assume an initially
black soliton [cosf=1 in Eq. (3)] placed away from the
center of the trap. In the absence of the OL, the DS oscillates
with frequencyV /Î2. The OL is switched on using the fol-
lowing time-dependent potential profile:

VOLsx,td = fstdV0cos2skxd, s5d

where the switching function is chosen as

fstd =
1

2
F1 + tanhS t − t0

T
DG . s6d

The constantst0 and T in this expression control, respec-
tively, the switch-on time and the width of the time interval
over which it occurs.

Simulations of the GP equation with this time-dependent
OL potential indeed demonstrate the possibility to snare the
initially moving DS in a particular well of the OL, and, sub-
sequently, to hold it there for a relatively long time. A typical
example is shown in Fig. 2, where a DS, whose center was
initially placed atx0s0d=−3p /2, is trapped at the pointx

=3p /2, where a local minimum of one of the OL wells is
located. The parameters defined in Eq.(6) are t0=177 and
T=5, the strength of the parabolic trap isV=0.025, while the
OL parameters areV0=0.07 andk=1. As it can be seen in
Fig. 2, the soliton remains trapped for a long time, 177, t
,650, and eventually escapes due to radiation losses. It is
worth noting that, with the choice of the above parameters,
the OL is actually switched on close to the moment in time
when the soliton is at the turning point of its trajectory
(therefore, it is almost black at the trapping position). Addi-
tional simulations have shown that the DS can be snared at
any time and at any position(not necessarily close to the
turning point), as long as the switch-on time satisfies the
condition T*1, which is necessary to ensure adiabaticity
(otherwise, strong fluctuations of the condensate density are
observed).

Now, we proceed to the consideration of the second pos-
sibility mentioned above, viz., the transfer of a stationary DS
(initially trapped in a well of the OL) by a steadily moving
OL. Note that it has been recently shown that an attractive,
steadily moving, localized impurity may drag a quasistation-
ary DS [5], but here we aim to consider a more general
problem, namely thetargeted transferof the DS, via a mov-
ing OL.

Following the concept of the robust targeted transfer of
solitons in continua or lattices[22], we consider the time-
dependent OL potential of the following form:

VOLsx,td = V0cos2fk„x − ystd… + p/2g, s7d

where the time-varying positionystd, which plays the role of
the driver, is chosen as

ystd = hi +
1

2
sh f − hidF1 + tanhS t − t0

T
DG . s8d

In Eq. (8), hi andh f are the initial and(desired) final posi-
tions of the DS’s center, whileT andt0 are constants control-
ling, respectively, the duration and the beginning of the
transfer[cf. Eq. (6)]. The largest value of the transfer veloc-
ity, vmax;maxsdy/dtd= uhi −h fu / s2Td, must be sufficiently
small to ensure adiabaticity.

Simulations of the GP equation(1) with the OL potential
taken as per Eq.(7) demonstrate the possibility of the con-
trolled DS transfer. As shown in Fig. 3, the soliton, initially
placed athi =−3p /2, is safely delivered to the new location,
h f =p /2 (the parameters areV=0.025,V0=0.07,k=1, t0
=100, andT=60). We stress that, although the DS oscillates
in the OL well, where it was initially captured, it is held in
the trapped state, and is dragged by the moving OL quite
robustly. When the OL ceases to move, the DS performs
small-amplitude oscillations in the well located at the final
destination,x=h f. The soliton remains well trapped there for
a considerable times200, t,400d. However, similar to
what was shown in detail above, the radiation loss eventually
leads to escape of the DS(for t.400). The example shown
in Fig. 3 represents a typical targeted transfer. Direct simu-
lations have shown that the proposed process is quite robust
for vmax,0.08.

FIG. 2. Entrapment of the moving dark soliton by a potential
well belonging to the time-modulated optical lattice. The soliton is
initially located at x0s0d=−3p /2. The parameters areV
=0.025,V0=0.07, k=1,t0=177, and T=5. The dotted/solid line
corresponds to the DS trajectory in the absence/presence of the
time-modulated optical lattice. After getting trapped in the potential,
the dark soliton stays there, performing small oscillations, during
the time interval 177, t,650; later, it escapes due to radiation
loss.
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In conclusion, we have investigated the possibility to con-
trol the motion of dark solitons(DSs) by means of periodic
optical lattice(OL) potentials. The analysis was based on the
one-dimensional nonlinear Schrödinger equation incorporat-

ing the parabolic and OL potentials, which is relevant to the
case of a cigar-shaped repulsive BEC. We have shown that,
in the most interesting case when the OL period is compa-
rable to the DS width, it is possible to(a) trap and nearly
stop a moving(gray) DS in a chosen local well of the OL
which is adiabatically switched on, and(b) drive a stationary
(black) DS by a slowly moving OL, bringing it to a prespeci-
fied destination. The results presented are generic(they have
been confirmed by many simulations with other realistic pa-
rameter values) and predict quite feasible experiments. A
limitation on the physical applicability of the results is, how-
ever, imposed by dissipative mechanisms in BECs, such as
thermal instabilities and quantum depletion(in fact, they
limit the DS lifetime). Work is in progress to demonstrate
how a similar technique can be used to control the motion of
nonlinear excitations, with topological charges, in higher-
dimensional atomic condensates.

Constructive discussions with N. P. Proukakis, P.
Schmelcher, and F. K. Diakonos are acknowledged. This
work was supported by the “A. S. Onassis” Public Benefit
Foundation(G.T.), the Special Research Account of Athens
University (G.T., D.J.F.), the San Diego State University
Foundation(R.C.G.), NSF-DMS-0204585, NSF-CAREER,
and the Eppley Foundation for Research(P.G.K.), as well as
the Israel Science Foundation, Grant No. 8006/03(B.A.M.).

[1] Y. S. Kivshar and G. P. Agrawal,Optical Solitons: From Fi-
bers to Photonic Crystals(Academic, New York, 2003).

[2] F. Dalfovoet al., Rev. Mod. Phys.71, 463 (1999).
[3] S. Burgeret al., Phys. Rev. Lett.83, 5198 (1999); J. Den-

schlaget al., Science287, 97 (2000); B. P. Andersonet al.,
Phys. Rev. Lett.86, 2926 (2001); Z. Dutton et al., Science
293, 663 (2001).

[4] Th. Busch and J. R. Anglin, Phys. Rev. Lett.84, 2298(2000).
[5] D. J. Frantzeskakiset al., Phys. Rev. A66, 053608(2002).
[6] P. O. Fedichevet al., Phys. Rev. A60, 3220(1999); A. Mury-

shevet al., Phys. Rev. Lett.89, 110401(2002).
[7] D. L. Federet al., Phys. Rev. A62, 053606(2000); J. Brand

and W. P. Reinhardt,ibid. 65, 043612(2002).
[8] G. Theochariset al., Phys. Rev. Lett.90, 120403(2003).
[9] N. G. Parkeret al., Phys. Rev. Lett.90, 220401(2003); N. G.

Parkeret al., J. Phys. B36, 2891 (2003); N. P. Proukakiset
al., J. Opt. B: Quantum Semiclassical Opt.6, S380(2004).

[10] J. Dziarmaga and K. Sacha, Phys. Rev. A66, 043620(2002);
C. K. Law, ibid. 68, 015602(2003).

[11] B. A. Anderson and M. A. Kasevich, Science282, 1686

(1998).
[12] F. S. Cataliottiet al., Science293, 843 (2001).
[13] M. Greineret al., Nature(London) 415, 39 (2002).
[14] N. G. Parkeret al., J. Phys. B37, S175(2004).
[15] P. J. Y. Louiset al., J. Opt. B: Quantum Semiclassical Opt.6,

S309(2004).
[16] P. G. Kevrekidiset al., Phys. Rev. A68, 035602(2003).
[17] P. A. Ruprechtet al., Phys. Rev. A51, 4704(1995).
[18] V. M. Pérez-Garcíaet al., Phys. Rev. A57, 3837 (1998); L.

Salasnichet al., ibid. 65, 043614(2002); Y. B. Band et al.,
ibid. 67, 023602(2003).

[19] O. Morsch and E. Arimondo, inDynamics and Thermodynam-
ics of Systems with Long-Range Interactions, edited by T.
Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens(Springer,
Berlin, 2002), pp. 312–331.

[20] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.64,
1627 (1973) [Sov. Phys. JETP37, 823 (1973)].

[21] A. Shipulin et al., J. Opt. Soc. Am. B14, 3393(1997).
[22] H. E. Nistazakiset al., Phys. Rev. E66, 015601(2002).

FIG. 3. The targeted transfer of a dark soliton from its initial
position,hi =−3p /2, to the final one,h f =p /2. The continuous and
dashed curves show, respectively, the actual motion law of the
trapped dark soliton, and that of the optical lattice drive. The
strength of the parabolic trap isV=0.025, the optical lattice param-
eters areV0=0.07 andk=1, and the drive is taken in the form of
Eqs.(7) and(8) with t0=100 andT=60. The dark soliton delivered
by the moving optical lattice to the required destination stays there,
performing small oscillations, during the time interval 200, t
,400; later, it escapes due to radiation loss.
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