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Evidence of chaotic behaviour in Jordan—Brans-Dicke cosmology
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Abstract

We study numerically the properties of solutions of spatially homogeneous Bianchi-type IX cosmological models in the Jordan-
Brans-Dicks theory of gravitation. Solutions are obtained in which the scale factors undergo irregular oscillations. The estimate
of the maximum Lyapunov exponent is found to be positive in the cases studied. These results seem to be the first pieces of
evidence in the literature of chaotic behaviour in Jordan-Brans-Dicke cosmoiogy. The range of values of the Jondan-Brans-

Dicke coupling parameter considered is { - 500, —=1).

During the past decade there has been a growing
interest in the nonlinear behaviour of cosmological
models in general relativity (GR ). Since the work of
Barrow [1], various reports have appeared reporting
chaotic behaviour in solutions of the Einstein field
equations in specific cosmological models. These
conclusions were obtained, either directly from the
differential equations describing the model [2-6] or
starting with a properly associated discrete mapping
[7-9). Recently, an ongoing discussion has started
on the characterization of chaos in gravitational the-
ories as there are seemingly contradictory pieces of
evidence [5,10,11]. However, as it has been pin-
pointed previously and we sce in this work, this prob-
lem is closely related with the freedom in choosing a
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time gauge in theories like the Jordan-Brans-Dicke
(JBD) theory and GR. Despite all this interest,
though, we do not know of any paper reporting cha-
otic behaviour in cosmological models based on the
JBD theory of gravitation, notwithstanding the fact
that this theory is one of the serious contenders of
Einstein theory and in spite of the cosmological in-
terest in models based on it [12-18]. Moreover, the
(unfulfilled) possibility of finding a qualitatively
different behaviour in similar models in both theo-
ries made the question extremely interesting, as the
chaoticity of the GR model does not trivially imply
similar behaviour in the analogous JBD model [19].
Although we do not pursue the question in this work,
the stochastic behaviour of cosmological solutions
may be important for devising, in the context of JBD,
an explanation of the present staie of the universe



R. Carretero-Gonzdlez et al. / Physics Letters A 188 (1994) 48-54 49

without invoking special initial conditions. On the
other hand, our results for various values of the cou-
pling constant & may have some bearings with the
extended inflation models which use a modified JBD
theory in which e is allowed to vary in an attempt to
avoid the problems of standard inflationary models
[20].

We report here numerical results on the dynamical
behaviour of the spatially homogeneous Bianchi-type
IX cosmological model in the JBD theory. This model
may be considered a kind of JBD version of the
“mixmaster” universe of GR [21]. In a synchronous
system of coordinates this model is characterized by
a line element synchronous system of coordinates this
model is characterized by a line element of the form

ds’= —di*=g 0’0’ , (1)

where e’ are one-forms [22] expressing the symme-
try properties of the three-space, the three-meiric
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is a function only of the synchronous time ¢, and the
a,(t) (i=1, 2, 3) are the scale factors of the model.
With a metric of this form and assuming the universe
filled with matter in the form of a barotropic fluid,
p=PBp, where p is the hydrodynamic pressure, p is the
local density of the fluid and # is a constant, the JBD
field equations lead to the following set of three equa-
tions for the scale factors,

@_(ﬁ)‘J,@(ﬁ,,a._zJ,é,,é)J,L

2
a; \a; &G\@ a6 as ¢/ a;

a? a? az
2alat 2aia} 2ala?

" where the subscripts 7, j, k=1, 2, 3, should be taken
in cyclic order, u=alp+w(p—p)]/6, a=8n/(3+
2¢), the overdot denotes a ~derivative and w is the
coupling parameter of the JBD theory. We have ad-
ditionally an equation for the scalar field, ¢, (this field
may be considered proportional to the inverse of the
time varying gravitational parameter (¢~1/G))
characterising the effect of the background universe
on the inertial properties of matter or, in the context
of extended inflation, as the field determining when
inflation ends [201],

+
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In our case, C has the value 8np/¢. This may be con-
sidered as a construction to be satisfied by the initial
conditions. Obviously, C must vanish in a vacuum
universe and, as can be easily verified by differentiat-
ing it with respect to ¢, in a vacuum C'is a first inte-
gral of the system (3), (4). We consider starting con-
ditions with different values of &: we set w= ~500
to be in agreement with the present day observa-
tional evidence [15,23]. We consider also other val-
ues of w (=—1, =35, =25, —50, —100) to study
what is the effect of varying w in the behaviour of the
model. In fact, in extended inflation models dealing
with a Brans—Dicke scalar field, the interesting val-
ues are |w| <25 and @ may be considered as a dy-
namical parameter [20]. In such models, there are
ways of pinning down some features of the evolution
- though abandoning pure JBD theory in the process
— for avoiding conflicts with radar-ranging measure-
ments which require || 2 500 [15,16,20],

Eqgs. (3) and (4) show that for the Bianchi IX
meodel the JBD field equations become four coupled
second-order differential equations for the scale fac-
tors plus the scalar field ¢. Therefore, given a set of
initial conditions (a,(0), ¢, 4, ¢, i=1, 2, 3), we can
obtain numerically the evolution of the scale factors
and the field $. We choose the numerical approach
given the unsuccessful analytical attempts to solve the
unrestrained JBD Bianchi IX model [17]. On the
other hand, there are results of the various numerical
studies of Bianchi in GR [5,6] which have estab-
lished the existence of stochastic behaviour in the
Bianchi mixmaster GR model. We show here this
kind of behaviour also occurs in Bianchi JBD models
and thus we offer evidence of their very complex
dynamics.

One of the ways in which chaos can be identified

c=4%  4dy  &ds +¢"(41 +ﬁ+d_3)
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in a system of equations like (3} and (4) is the pos- £, =8¢, &E=8a;, i=5, 6, 7, & =5¢) which measure
itivity of at least one of its Lyapunov exponents (LE). the deviations from the fiducial solution and next
The maximum LE can be evaluated by linearizing the considering the number

first-order system equivalent to (3), (4) around a fi-

ducial solution af(#), a1(1), #(1), #f(¢) of it, solving 1

for the variations &(¢), i=1, .., 8 (§=84,i=1,2,3, A= 2tlog () /dn()] (6)
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Fig. 1. Evolution of the scale factors &, a;, a,, corresponding 1o w= - 5, plotied, in a logarithmic scale, against the synchronous time £.
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Fig. 2. Evolution of the scale factors a,, a,, a;, corresponding to = — 500, plotted, in a logarithmic scale, against the synchronous time ¢.
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where d,(£) =25, £2(t) [24]. The Lyapunov expo-
nent A is defined as the limit f—oo of Eq. (6).If 4 is
greater than zero, any solution in the vicinity of the
fiducial one would diverge exponentially from it, thus
implying that the fiducial solution itself will exhibit
stochastic properties [1]. In an actual calculation, the

number 4, can serve [19,25] as an estimate of the
maximum LE.

We choose for the study the starting values:
a,=1.8540, a,=04385, a,=0.0854, ¢=0.7129,
d,=—6.18191, 3,= —1.95165, 3;=42.7131 and ¢ is
calculated, for each w value, from the constriction
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Fig. 3. The scalar field ¢, (a) corresponding to the starting conditions with w= =5, (b) corresponding to o= — 500, plotted against the
synchronous time f. The staircase-like behaviour is partly due to the sampling frequency and the time scale selected for the plots.
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(5). These initial conditions satisfy the constraint
with C=0 and therefore cotrespond to a vacuum
universe. In actual fact, the value of ¢ is nearly the
same ( ~0.1758X10-?) in all cases, but it has to be
slightly adjusted for each one to assure C=0. The
computations were performed on a Micro-Vax 35900
computer using extended precision arithmetic to
minimize round-off errors. The algorithm used was a
fifth-order Runge-Kutta one with typical time steps
between 10-7 and 10-25,

The calculated g, are displayed in Fig, 1 for the
starting values corresponding to = —5, and in Fig.
2 for the starting values corresponding to w= —500.
The evolution of the scalar field ¢ for both conditions
is shown in Fig. 3. A preliminary discussion of these
results was already presented in Ref. [26]. Notice that
the staircase-like behaviour shown there is mainly a
consequence of the scale used and of the sampling
frequency of points in the numerical calculations, the
graphs would become smoother if’ we use a con-
tracted time scale or increase the sampling fre-
quency. As Figs. 1 and 2 exhibit, the behaviour of the
scale factors in the JBD Bianchi IX model has rather
deep “bounces” in which the scale factors change by
various orders of magnitude and in which the scalar
field also varies, all in a very short time. But notice
the smallness of the relative change in ¢ as compared
with the change in 4, Notice also a Kasner-epoch type
of behaviour in which a scale factor governs the os-
cillations of the other two, which is analogous to that
found in GR cosmologies. We have also investigated
the dynamics of the model for @=—1, —25, —50,
— 100. We have found qualitative similarity between
the results for the different values of the coupling pa-
rameter in the whole range studied. From this we may
conclude that the behaviour is not strongly depen-
dent on w - although the value of 4 depends on it, see
Table 1. This is also the case for the several different
initial conditions we have tried so far, thus stochastic
behaviour seems 1o dominate the dynamics of the
JBD Bianchi [X model.

The result of our estimations of the maximum LE,
4, are shown in Table | as a function of w. As Table
1 illustrates, the maximum LE is positive and we must
conclude that the model, though deterministic, be-
haves chaotically and thus that there is no possibility
of forecasting (even numerically) its evolution for

arbitrarily large time intervals, irrespective of the
value selected for the coupling parameter. This fol-
lows since any uncertainty in the starting condition
would grow exponentially with time (cf. Eq. {6))
filling the allowable phase space. Notice the possible
consequences of this conclusion for early universe
JBD cosmology; in the context of a more appropriate
model, the chaotic irregularities would amplify any
fluctuations which may seed the formation of struc-
tures. The chaotic properties may also help the model
“to forget™ its initial conditions.

We must point out that the main contributions to
A appear to come from the “bounces™ in which one
of the scale factors undergoes a fast decrease. The part
of the behaviour in which this model universe shrinks
and then reexpands is precisely what makes the Lya-
punov exponent positive. This clearly emerges in Figs.
4a and 4b by comparing the times of occurrence of
the bounces with the times at which positive contri-
butions add to the Lyapunov exponent. A more de-
tailed consideration of these results is in order, as the
chaoticity of JBD cosmological solutions in such a
large range of @ values may bear some consequences
on the density perturbation spectrum of interest in
inflationary cosmology [20,27]. But for these con-
siderations to be meaningful, we have to consider to
what extent this behaviour is representative of ge-
neric nonlinear effects in JBD cosmology. This is a
question for which we do not have yet an answer.

On the other hand, all of these effects occur in the
synchronous time ¢ we are using in this work. But if
we were to use the so-called intrinsic time @, defined
by d@=(a,a,a,) " dt [12,28], instead of the syn-

Table 1

The maximal Lyapunov exponent, A, as a function of w in the
JBD Bianchi IX cosmological model {the relativeerror in 4 is not
easy to evaluate, but it can be estimated s at Joast 15%)

« A
-1 0.601
-5 0.650
e e -25 .74
-50 0.947
- 100 0.696
— 500 0.680
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Fig. 4. Estimates of the maximum Lyapunov exponent, (a) for the starting conditions of Fig. 1, and (b) for the starting conditions of
Fig. 2, as a function of the synchronous time ¢. Notice how the positive contributions to 4 come from the bounce regions. Both plots show
the positive tendency of 4,, and thus of the maximum LE. We may safely conclude from the plots that the model is chaotic when its
dynamics is studied in the synchronous time ¢.

chronous time ¢, the system would no longer behave conclude the relationship between the two time co-
chaotically. This fact can be understood by the fol- ordinates, in the Kasner-like regimes, to be given by
lowing argument. From the depicted behaviour, we @~logt [2], and since the maximum LE calculated
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in the synchronous time 4 ®*"°! = ¢t is positive, nearby
trajectories diverge as d,~exp(ar). However, if we
use the intrinsic time, @, the trajectories would di-
verge only as dp~ P and then the LE calculated us-
ing this time coordinate would vanish,
a0 - fim L op 300 jim 21022 _

A= lim glogg Gy~ dm—g— =0
This conclusion is easily corroborated by a numerical
calculation which shows that in the intrinsic time
1—0. This situation coincides with that found previ-
ously in GR models [5,11]. However, notice that this
result does not necessarily imply the intergrability of
the JBD Bianchi I)X model and certainly it does not
rule out completely the consequences which the sto-
chastic behaviour may have for cosmological consid-
erations. The results presented here corroborate a
conclusion reached previously [11] on the concept
of stochasticity in geometrical theories of gravity. Ac-
cording to this view, stochasticity in those theories is
a concept which depends on the time scale used for
describing the dynamics, thus pointing toward one of
the main shortcomings of this and all other studies of
gravitational stochasticity: a proper characterization
of chaos in geometric theories of gravity is not yet
available. This question is discussed more fully in Ref.
[29].
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