
Symmetry breaking in linearly coupled dynamical lattices

G. Herring* and P. G. Kevrekidis
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

B. A. Malomed
Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

R. Carretero-González
Nonlinear Dynamical Systems Group,† Department of Mathematics and Statistics, and Computational Science Research Center, San

Diego State University, San Diego, California, 92182-7720, USA

D. J. Frantzeskakis
Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece

�Received 19 April 2007; published 27 December 2007�

We examine one- and two-dimensional models of linearly coupled lattices of the discrete-nonlinear-
Schrödinger type. Analyzing ground states of the system with equal powers �norms� in the two components, we
find a symmetry-breaking phenomenon beyond a critical value of the total power. Asymmetric states, with
unequal powers in their components, emerge through a subcritical pitchfork bifurcation, which, for very
weakly coupled lattices, changes into a supercritical one. We identify the stability of various solution branches.
Dynamical manifestations of the symmetry breaking are studied by simulating the evolution of the unstable
branches. The results present the first example of spontaneous symmetry breaking in two-dimensional lattice
solitons. This feature has no counterpart in the continuum limit because of the collapse instability in the latter
case.
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I. INTRODUCTION

Dynamical lattices and their applications have become an
area of increasing interest over the past decade, as shown by
a multitude of recent reviews of the topic �1–3�. This growth
was driven by a wide array of physical realizations, in fields
as diverse as light propagation in optical waveguide arrays
�4�, dynamics of Bose-Einstein condensates �BECs� in peri-
odic potentials �optical lattices� �5�, micromechanical canti-
lever arrays �3�, models of DNA �6�, and others. A key model
that has been widely used in each of the above areas is the
discrete nonlinear Schrödinger �DNLS� equation �2�. In these
applications, it emerges either as a tight-binding approxima-
tion from the underlying continuum description �as in the
case of BECs trapped in optical lattices�, or via an envelope-
wave expansion of the physical field �such as the electromag-
netic wave in the optical systems�.

One aspect of this class of discrete dynamical models that
remains perhaps less explored concerns their multicompo-
nent generalizations, which are relevant to many fields where
dynamical lattices are natural models. For instance, in the
application to waveguide arrays, one may consider settings
with two orthogonal polarizations of light �7�, or two differ-
ent wavelengths �8�. Similarly, in the BEC context, one may
consider multispecies condensates in the form of mixtures of
different hyperfine states in 87Rb �9,10� or 23Na �11�, and

mixtures of different atomic species, such as Na-Rb, K-Rb,
Cs-Rb, Li-Rb, and Li-Cs �see, e.g., Ref. �12�, and references
therein�.

While the above settings are typically modeled by sys-
tems of DNLS equations, which are coupled by nonlinear
terms, familiar examples being the cross-phase modulation
in optics, or the terms accounting for collisions between at-
oms belonging to different BEC species, it is also relevant to
consider linearly coupled DNLS equations �in other settings,
these may be linearly coupled Ablowitz-Ladik equations
�13�; a system of linearly coupled Toda lattices was also
considered in Ref. �14��. In the context of optics, systems of
linearly coupled DNLS equations are relevant to various ap-
plications: linear coupling may occur among two polariza-
tion modes inside each waveguide, being induced by a twist
of the core �for linear polarizations�, or by the birefringence
�for circular polarizations�. Linear coupling between two
modes also takes place in arrays of dual-core waveguides �8�.
On the other hand, in BECs, the linear coupling may be
imposed by an external microwave or radio-frequency field,
which can drive Rabi �15� or Josephson �16� oscillations
between populations of two different states.

A notable effect induced by the linear coupling in nonlin-
ear bimodal or dual-core systems is spontaneous symmetry
breaking in two-component solitons. This effect was previ-
ously studied in continuum optical models with the cubic
�17,18�, quadratic �19�, and cubic-quintic �20� nonlinearities,
including the symmetry breaking of two-component gap
solitons in dual-core fiber Bragg gratings �21,22�. Similar
problems were recently explored in models of dual-core
BEC-holding traps, including a planar two-channel configu-
ration with the self-attractive BEC loaded into it �23�, and a
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system of two linearly coupled Gross-Pitaevskii equations
with the self-repulsive nonlinearity and periodic �optical-
lattice� potential in each of them. The latter model makes it
possible to predict the symmetry breaking in two-component
matter-wave solitons of the gap type �24�. As concerns dis-
crete settings, the symmetry breaking of two-component
solitons was found e.g., in linearly coupled Ablowitz-Ladik
�13� lattices.

An important characteristic of the symmetry-breaking bi-
furcation is its subcritical �alias backward� or supercritical
�alias forward� character, which is determined by the direc-
tion of the branches of asymmetric solutions emerging at the
bifurcation point �examples of the supercritical and subcriti-
cal bifurcations are given in Figs. 1 and 2, respectively�. In
particular, the bifurcations found in the models of dual-core
fibers with the cubic �17,18� and cubic-quintic nonlinearities
�20� are subcritical, while in the model with the quadratic
nonlinearities, as well as in models for gap solitons �21–24�,
they are supercritical �with some exceptions �22��.

Motivated by the above-mentioned results, in this work
we aim to consider a system of two DNLS equations coupled
�solely� by linear terms, and explore the symmetry-breaking
bifurcation of two-component discrete solitons in it. In the
optical setting, the system describes an array of twin-core
optical waveguides, presenting a discrete counterpart of the
well-known model of the nonlinear dual-core fiber �17,18�. A
similar model was also proposed as a means for realization
of all-optical switching in ultrashort photonic-crystal cou-
plers �25�. In terms of BECs, the model applies to a mixture
of two spin states, which undergo mutual linear interconver-
sion under the action of a spin-flipping resonant electromag-
netic wave �as mentioned above�, assuming that the mixture
is trapped in a deep optical lattice, and the Feshbach-
resonance technique �26� is used to suppress the nonlinear
interaction between the components.

In both media �optical and atomic�, the basic model takes
the following form:

iUt = K��2U + KV + �U�2U ,

iVt = K��2V + KU + �V�2V , �1�

where U=U�x� , t� and V=V�x� , t� are wave functions of the
two species in BEC, or electric-field envelopes of the two
coupled modes in optics �x� is realized as a discrete vectorial
coordinate�, �2 is the ordinary finite-difference Laplacian
�see below�, K is the strength of the linear coupling between
fields U and V, and � determines the couplings between ad-
jacent sites of the lattice. For convenience, the full lattice-
coupling constant is defined as K� �this convention will al-
low us to eliminate K from the analysis presented below�.

It may be relevant to mention that a counterpart of system
�1� with discrete time may represent coupled map lattices
�CMLs�, which have been studied as models of spatiotempo-
ral dynamics in various networks �27�, including such effects
as phase separation and nucleation in bistable systems �28�,
and synchronization of chaotic maps �29�. Discrete solitons
and, accordingly, the symmetry breaking in related stationary
states �if any� may be common to both the coupled DNLS
equations and CMLs �although their stability properties may
not be necessarily identical�. Examining the dynamical effect
of the considerations presented herein for CMLs may be an
interesting question for future studies, in its own right.

Thus, our objective is to find and explore in detail the
symmetry-breaking bifurcation of the ground-state single-
pulse solution of Eqs. �1�, similar to the earlier studies per-
formed in continuum models in Refs. �17–20�. We will ad-
dress this problem analytically—by means of a variational
approximation �VA�—and numerically, via computations of
the steady-state bifurcations and numerical analysis of the
linear stability, as well as through direct simulations testing
the stability or instability of the states under consideration.
We will produce a complete bifurcation diagram of the dis-
crete model. An advantage of performing this analysis in the
discrete setting is that the bifurcation diagram can be ob-
tained not only for one-dimensional �1D� lattices, but also
for their two-dimensional �2D� counterparts. The latter is im-
possible in usual continuum models of the cubic-NLS type
because of the collapse �30�. However, as demonstrated in
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FIG. 1. The bifurcation diagram for the discrete solitons in the
anticontinuum limit, �=0; r and E are the asymmetry parameter and
the half of the total squared norm, respectively �definitions are
given in the text�. The solid and dashed lines show stable and un-
stable solutions, respectively.
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FIG. 2. The bifurcation diagrams for �=1.6 in the 1D model.
The dashed-dotted line indicates solutions found by means of the
variational approximation, while solid and dashed lines show, re-
spectively, numerically found stable and unstable steady-state
solutions.
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Ref. �31� �see also Ref. �2��, the DNLS with sufficiently
weak intersite coupling �i.e., small coefficient � in Eqs. �1��
gives rise to stable discrete 2D solitons. This permits us to
construct a bifurcation diagram for the 2D lattice too, and
compare it to the 1D counterpart. To the best of our knowl-
edge, symmetry-breaking bifurcations have never been ana-
lyzed before in a 2D model with the cubic nonlinearity.

The paper is structured as follows. In Sec. II we present
the model and analytical results, based on the variational
method. In Sec. III, numerical results are reported. Finally,
we summarize the findings and discuss directions for future
work in Sec. IV.

II. MODEL AND ANALYTICAL CONSIDERATIONS

In what follows, we seek for steady-state solutions to sys-
tem �1�, in the usual form

V�x�,t� = �Kv�x��exp�− iK�� − 2D��t� ,

U�x�,t� = �Ku�x��exp�− iK�� − 2D��t� , �2�

where u�x�� and v�x�� are real-valued functions, � is the
chemical potential or propagation constant in the BEC/
optical model, shifted by constant D, which is D=1 and 2 for
the 1D and 2D lattice, respectively. Substituting these ex-
pressions in Eqs. �1� leads to stationary equations, which, in
the 1D model, take the form

�un = ��̄1un + vn + un
3,

�vn = ��̄1vn + un + vn
3, �3�

with �̄1wn�wn+1+wn−1. In the 2D case, the stationary equa-
tions are

�un,m = ��̄2un,m + vn,m + un,m
3 ,

�vn,m = ��̄2vn,m + un,m + vn,m
3 , �4�

where �̄2wn,m�wn+1,m+wn−1,m+wn,m+1+wn,m−1.
Below, we aim to construct symmetric �u=v� and asym-

metric �u�v� solutions of Eqs. �3� and �4�. In order to
develop an analytical approximation to the solutions, we re-
sort to the variational method �32�. To this end, we notice
that Eqs. �3� and �4� can be derived from the following
Lagrangians:

L1D = �
n=−�

� 	−
�

2
�un

2 + vn
2� +

1

4
�un

4 + vn
4�

+ unvn��un+1un + vn+1vn�
 , �5�

L2D = �
m,n=−�

� 	−
�

2
�un,m

2 + vn,m
2 � +

1

4
�un,m

4 + vn,m
4 � + un,m

4 vn,m
4

+ ��un+1,mun,m + un,m+1un,m + vn+1,mvn,m + vn,m+1vn,m�
 ,

�6�

Further, we employ natural discrete-soliton ansätze, �un ,vn�
= �A ,B�e−��n� and �un,m ,vn,m�= �A ,B�e−��n�e−��m�, with free
constants A, B, and ��0, in the 1D and 2D cases, respec-
tively. This choice is motivated both by the exponential de-
cay of the solutions’ tails far from the soliton’s center and by
the fact that only this type of trial function makes the ap-
proximation really tractable �33�. Note that, introducing dif-
ferent amplitudes A and B, we admit a possibility of asym-
metric solitons, within the framework of the variational
approximation.

Plugging the ansätze into Eqs. �5� and �6�, and analyti-
cally evaluating the resulting geometric series, we arrive at
the following expressions for the effective Lagrangians:

L1D = 	AB −
�

2
�A2 + B2�
coth � +

1

4
�A4 + B4�coth�2��

+ ��A2 + B2�cosech � , �7�
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FIG. 3. The top panel shows the bifurcation diagram in the 2D
model for �=0.25, in the same way �i.e., with the same meaning of
the different curves� as the 1D diagram is shown in Fig. 2. The
bottom panel displays the dependence of the solution’s total squared
norm E, upon the chemical potential �, for the symmetric solutions.
Unlike the 1D case, there are two different symmetric solutions for
many values of E, resulting in both stable �solid line� and unstable
�dashed lines� solutions for norms below the value at which the
symmetric and asymmetric solution branches intersect.
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L2D = 	AB −
�

2
�A2 + B2�
coth2 � +

1

4
�A4 + B4�coth2 2�

+ 2��A2 + B2��cosech ��coth � . �8�

The static form of the Euler-Lagrange equations following
from here, �L1D,2D /��� ,A ,B�=0, is

�

2
�A2 + B2�cosech2 � −

1

2
�A4 + B4�cosech2 2�

− AB cosech2 � − ��A2 + B2�cosech � coth � = 0,

− �A coth � + A3 coth 2� + B coth � + 2�A cosech � = 0,

− �B coth � + B3 coth 2� + A coth � + 2�B cosech � = 0,

for the 1D case, and

��A2 + B2�coth � cosech2 � − �A4 + B4�coth 2� cosech2 2�

− 2AB coth � cosech2 � − 2��A2 + B2��cosech � coth2 �

+ cosech3 �� = 0,

− �A coth2 � + A3 coth2 2� + B coth2 �

+ 4�A cosech � coth � = 0,

− �B coth2 � + B3 coth2 2� + A coth2 �

+ 4�B cosech � coth � = 0,

for the 2D soliton. Results obtained with numerically found
solutions of these equations for A, B, and � will be com-
pared, in the next section, to full numerical solutions of Eqs.
�3� and �4�.

Another analytically tractable case corresponds to the an-
ticontinuum limit, �=0. For the symmetric branch, we then
have un=vn=0 or un=vn=��−1, while for the asymmetric
branch, one needs to solve a system of algebraic equations,
�un=vn+un

3 , �+1=un
2+unvn+vn

2. The solution is shown in
Fig. 1, which displays the symmetry-breaking bifurcation in
the anticontinuum limit, by means of a plot of the asymmetry
measure, r��E1−E2� / �E1+E2�, versus the average of the
norms, E= �E1+E2� /2, where �E1 ,E2�=�n�un

2 ,vn
2� are the

norms of the two components of the solution �in the BEC
model, they are proportional to the number of atoms in the
two atomic states, while in the optical setting they measure
total powers of the beams in the two coupled lattices�. As
seen in the figure, the pitchfork bifurcation is supercritical in
this limit �the latter feature will be compared to typical be-
havior for finite � below�.

III. NUMERICAL METHODS AND RESULTS

Numerical solutions to Eqs. �3� and �4� were found by
dint of the method of the pseudoarclength �PAL� continua-
tion �see �34,35� and the Appendix for more details�.

Once the steady states were identified, their stability was
examined in the framework of the linear stability analysis, by
substituting the perturbed solution,

U�x�,t� = e−i�t�u�x�� + a�x��e�t + b��x��e��t� ,
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FIG. 4. Plots of solutions belonging to different branches in Fig. 2, at E=3.4. The top-row figures show the solution profiles found by
means of the numerical �UN ,VN� and variational �“analytical”, UA ,VA� methods. The bottom-row plots illustrate the stability eigenvalues for
the numerical solution. The first column presents a stable stationary asymmetric solution belonging to the outer �upper� branch in Fig. 2, the
second column is an unstable asymmetric solution from the inner branch, and the last column is taken from the stable part of the family of
symmetric solutions, with r=0.
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V�x�,t� = e−i�t�v�x�� + c�x��e�t + d��x��e��t� , �9�

in Eqs. �1�, with the asterisk standing for the complex con-
jugate. The linearized equations for perturbation eigenmodes
a ,b ,c ,d in expressions �9� were solved numerically, yielding
the eigenvalues � associated with them.

The results are summarized in Figs. 2 and 3, for the 1D
and 2D cases, respectively. In the 1D case, the symmetric
branch, with r=0, is stable for E�3.82. Beyond this critical
point, it becomes unstable through a subcritical pitchfork
bifurcation, due to its collision with two unstable asymmetric
branches. The VA predicts this critical point at E3.92, in
good agreement with the numerical findings. Further, at an-
other critical value, E=3.166 �the corresponding VA predic-
tion is E3.128�, the unstable asymmetric branches turn
back as stable ones, through a saddle-node bifurcation. Be-
tween the two critical points, both the symmetric branch and
the outer asymmetric one are stable, hence there exists a
region of bistability.

To additionally demonstrate the accuracy of the VA, Fig.
4 presents comparisons of the solution profiles at E=3.4,
together with the spectral plane, (Re��� , Im���), for the cor-
responding eigenvalues, ��Re���+ i Im���. Recall that, in
Hamiltonian systems, such as the one considered here, if � is
an eigenvalue, so are also −�, ��, and −��, hence, if any
eigenvalue with a nonzero real part exists, then the system is
linearly unstable.

For those 1D solutions that are linearly unstable due to a
real eigenvalue, such as the unstable asymmetric solutions
for 3.166�E�3.82, and the symmetric ones for E�3.82,
we have examined their evolution in direct simulations of
Eqs. �1�, as shown in Fig. 5. For asymmetric unstable solu-
tions, the outcome depends upon the nature of the initial
perturbation, due to the presence of the bistability in the
corresponding parameter range: the solution ends up oscillat-
ing around either the stable asymmetric solution, or the
stable symmetric one. The evolution of the unstable symmet-
ric branch naturally results in oscillations around the stable
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FIG. 5. Time-evolution plots for perturbed one-dimensional solutions from Fig. 2. The top �middle� row depicts the evolution of �U�2
��V�2� by means of space-time contour plots. The first two columns pertain to two different perturbations of the solution shown in the second
column of Fig. 4: the first column is generated by a perturbation which pushes the solution toward the upper stable asymmetric solution
branch in the bifurcation diagram, while, in the second column, the initial perturbation pushes the solution toward the r=0 solution. The last
column pertains to a perturbation of the unstable symmetric solution �belonging to the branch with r=0� at E=4.1, which pushes the solution
toward the upper stable branch. The bottom row displays the value of asymmetry parameter r as the solutions evolve in time �solid line�, and
the constant value of r for the steady states at the same value of the norm �dashed horizontal lines�.
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asymmetric profile, which represents the ground state in that
case.

A conclusion following from the comparison of Figs. 1
and 2 is that the bifurcation found in the anticontinuum limit
�see Fig. 1� is definitely supercritical, unlike the weakly sub-
critical one in Fig. 2. This indicates that the character of the
pitchfork bifurcation changes from subcritical to supercriti-
cal with the increase of discreteness, i.e., the decrease of �.
In particular, this transition should eliminate the unstable
asymmetric branches. In accordance with this expectation,
we have found that the unstable asymmetric solutions exist
only for ��0.35, in the 1D case.

We now turn to results for the 2D model, which are col-
lected in Fig. 3. These results are even more interesting, for
a number of reasons. On the one hand �as mentioned above�
the bifurcation diagram has no counterpart in usual 2D con-
tinuum models, as the 2D solutions are always subject to
collapse, in the continuum. In single-component models, the
discreteness is well known to arrest the collapse �31,36�,
generating branches of localized solutions that may be stable
at sufficiently small values of the intersite coupling constant
�at a given chemical potential�, or at sufficiently large values
of the chemical potential �at a given intersite coupling� �31�.
Furthermore, in the 2D case, for a given value of the norm,
there are two coexisting symmetric solutions, one �taller and
narrower� with a larger chemical potential, which is stable,
and one �shorter and wider� with a smaller chemical poten-
tial, which is unstable. As Fig. 3 implies, the symmetry-
breaking weakly subcritical pitchfork bifurcation typically
occurs on the stable branch of the symmetric solution, the
corresponding critical point in Fig. 3 being E1.45. Similar
to the 1D case, there also exists a saddle-node bifurcation
between the unstable and stable asymmetric branches, which

occurs at E1.411 and is responsible for the turning point.
In the 2D model too, the VA correctly approximates the

qualitative behavior of the numerical results, even though the
less accurate nature of the 2D ansatz prevents a quantitative
matching of the resulting bifurcation diagrams. Actual pro-
files of the numerical solutions and their VA-predicted coun-
terparts are shown in Figs. 6 and 7, for the asymmetric and
symmetric branches, respectively, at E=1.435. Two addi-
tional remarks are in order here. First, similar to the 1D case,
the 2D bifurcation changes its character from weakly sub-
critical �as observed in Fig. 3� to supercritical �as seen in the
anticontinuum limit of �=0� at �0.19. On the other hand,
as � further increases, the stable portion of the symmetric
branch �in Fig. 3� shrinks and eventually disappears at �
�0.29.

Finally, we have again examined the dynamics of linearly
unstable solutions, with appropriate perturbations, through
direct simulations, as shown in Figs. 8 and 9. In the former
figure, we have explored how the bistability, which is shown
for a range of E in Fig. 3, “kicks” the unstable asymmetric
solution either in the direction of its stable asymmetric coun-
terpart, or toward the stable symmetric solution �it is relevant
to stress here, in connection with Fig. 3, that, while the sym-
metric solution has a norm threshold at E1.425, the stable
asymmetric solution can, in principle, be found at lower
norms than the symmetric one, thus allowing the system to
effectively decrease its “excitation threshold” �37��. In the
latter figure, we consider the unstable symmetric branch,
both when a stable symmetric branch does not exist, in
which case the solution becomes asymmetric �top row�, and
when a stable symmetric branch does exist, in which case the
system evolves toward that solution �bottom row�.

IV. CONCLUSIONS

In this work, we have introduced the model based on two
linearly coupled lattices with the cubic nonlinearity, and in-
vestigated its dynamical properties in detail. We have dem-
onstrated that, in a number of respects, the discrete system
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FIG. 6. Cross-section plots of the asymmetric solutions belong-
ing to different branches in Fig. 3, at E=1.435. The top-row figures
show the solutions found by means of the numerical �UN ,VN� and
variational �“analytical”, UA ,VA� methods, and the bottom-row
plots display stability eigenvalues for the numerical solution. As can
be seen, the first and second columns represent, respectively, stable
and unstable solutions belonging to the upper �outer� and inner
curves �asymmetric branches� of the bifurcation diagram,
respectively.
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FIG. 7. Same as Fig. 6 for two symmetric solutions found at
E=1.435.
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emulates its continuum 1D counterpart with the same �cubic�
nonlinearity, analyzed earlier in Refs. �17,18,24�. On the
other hand, the lattice model gives rise to different features.
Even in the 1D setting, varying the strength of the lattice
intersite coupling may be used to switch the character of the
pitchfork bifurcation from subcritical to supercritical, as the
coupling gets weaker �in the anticontinuum limit the bifur-
cation is definitely supercritical�. In the most interesting 2D
setting, no example of the bifurcation diagram has ever been
reported before, to the best of our knowledge, since, in the
continuum limit, the symmetry-breaking models with the
self-focusing nonlinearity are irrelevant because of the inher-
ent collapse. Furthermore, the discreteness induces the pres-
ence of both stable and unstable branches of symmetric so-
lutions, thus enriching the bifurcation diagram. In the 2D
case, not only is it possible for weaker lattice coupling to
turn the bifurcation from subcritical to supercritical, but it is
also possible for the lattice �when the bifurcation is subcriti-
cal� to possess a lower existence threshold for asymmetric
states than for symmetric ones. All of these features demon-
strate critical modifications that the discreteness imposes on
the well-known symmetry-breaking picture in continuum
models.

The effects analyzed in this work are amenable to experi-
mental observation in arrays of twin-core nonlinear optical
waveguides, and in two-component BEC trapped in the deep
optical lattice. In particular, in the latter setting, the sponta-
neous symmetry breaking implies the transition of the con-
densate into a state with imbalanced total spin. Such states
may be easily probed in the experiment by applying an ex-
ternal dc spatially uniform magnetic field parallel to the
spins. In particular, a weak field may easily deform the ideal

pitchfork bifurcation into its asymmetric variant, which may
be an interesting effect by itself. In terms of the dual-core
optical waveguide arrays, physical manifestations of the
spontaneous symmetry breaking may be quite interesting
too, as the collective character of the effect can make it es-
sentially stronger than in an individual double-core wave-
guide, where its observation has never been reported.

It might be quite interesting to examine similar features in
3D models, and compare the results with their 2D and 1D
counterparts. Of perhaps even more physical interest, espe-
cially in terms of the linearly coupled hyperfine states in
BECs, would be to add nonlinear interaction between the
two components. It would be particularly interesting to ex-
amine how the symmetry-breaking phenomenology is af-
fected by the gradual increase of the nonlinear-coupling co-
efficient �scattering length of interspecies atomic collisions,
in terms of BEC�. This study is currently in progress and the
results will be reported elsewhere.

Note added in proof. In a very recent work by Gubeskys
and Malomed �38�, the symmetry breaking in a two-
dimensional setting was considered in a continuum model of
two parallel pancake-shaped Bose-Einstein condensates
�BECs�, under the action of the potential of a square optical
lattice. The model is based on a system of two Gross-
Pitaevskii equations with linear coupling between them.

APPENDIX: PSEUDOARCLENGTH CONTINUATION

The focus of the class of techniques known as numerical
continuation is the calculation of solutions over a large range
of parameter values. These techniques are designed to solve
a system of parametrized equations

G�u,�� = 0, �A1�

where �u ,���RN�R.
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FIG. 8. �Color online� Time-evolution plots for a perturbed un-
stable solution in Fig. 6. The top-row perturbation pushes the solu-
tion toward the upper stable part of the curve, while the bottom-row
perturbation pushes it to the symmetric branch. The left column
shows the three-dimensional space-time evolution of isodensity
contours of the U �respective top subpanels� and V �respective bot-
tom subpanels� modes, while the right column shows the evolution
of the asymmetry measure r, from an unstable steady state to a
stable one �both are denoted by dashed lines�.
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FIG. 9. �Color online� Similar to the previous figure: the time-
evolution plots for two perturbed unstable symmetric states. The top
row pertains to the solution with E=1.5, and the bottom row is for
the solution from Fig. 7. In the top row, the perturbation pushes the
solution toward the upper asymmetric branch, while in bottom row
the perturbation initiates the evolution of the solution toward the
stable symmetric state.
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The easiest and most frequently utilized numerical con-
tinuation technique is parameter continuation. This technique
takes a previously determined solution u0, found for some
parameter value �0, and uses it as an initial guess in an
iterative method �here we have used Newton’s method� to
determine the solution for a nearby parameter value �1=�0
+��. This process then repeats for each newly found solu-
tion.

The weakness of the parameter continuation method is its
inability to handle points where Gu�u ,�� is singular, typi-
cally resulting in the failure of Newton’s method, and a num-
ber of other iterative methods, to converge. As a result, other
numerical continuation techniques have been produced to
tackle these problems. The technique we chose to use here
was pseudoarclength continuation �34�.

Pseudoarclength continuation is the same as parameter
continuation, in that they both use a previously calculated
solution �u0 ,�0� to determine a nearby solution. However,
pseudoarclength continuation addresses the singularity prob-
lem by introducing a pseudoarclength parameter s into the
system �A1� via the inclusion of an additional equation
F�u ,� ,s�=0, which must be chosen such that F�u0 ,�0 ,0�
=0. Many different functions have been suggested for F and
for this project

F�u,�,s� = �u − u0�2 + �� − �0�2 − s2 �A2�

was chosen. Basically, this function searches for solutions on
the solution branch which are located at a Euclidean distance

s from the known solution �u0 ,�0�. Based upon a function
similar to that in Eq. �A2�, the corresponding Jacobian

J�u,�,s� = 	 Gu�u,�� G��u,��
Fu�u,�,s� F��u,�,s� 
 �A3�

was shown to always be nonsingular in �35�.
Having dealt with the problem of the nonsingular Jaco-

bian, implementing the pseudoarclength method is simply a
matter of expanding the iterative method used to find the
initial solution to now solve the augmented system

G�u,�� = 0,

F�u,�,s� = 0. �A4�

In the case of Newton’s method, the iterations become

	uk+1

�k+1
 = 	uk

�k
 − J−1�uk,�k,s�	 G�uk,�k�
F�uk,�k,s� 
 , �A5�

where the function F is changed after every new solution is
found to now use the newly found solution in place of u0 and
�0 in Eq. �A2�.
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