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Quasidiagonal approach to the estimation of Lyapunov spectra for spatiotemporal systems
from multivariate time series

R. Carretero-Gonza´lez,* S. O” rstavik, and J. Stark
Centre for Nonlinear Dynamics and its Applications,† University College London, London WC1E 6BT, United Kingdom

~Received 19 April 2000!

We describe methods of estimating the entire Lyapunov spectrum of a spatially extended system from
multivariate time-series observations. Provided that the coupling in the system is short range, the Jacobian has
a banded structure and can be estimated using spatially localized reconstructions in low embedding dimen-
sions. This circumvents the ‘‘curse of dimensionality’’ that prevents the accurate reconstruction of high-
dimensional dynamics from observed time series. The technique is illustrated using coupled map lattices as
prototype models for spatiotemporal chaos and is found to work even when the coupling is not strictly local but
only exponentially decaying.

PACS number~s!: 05.45.Ra, 05.45.Jn, 05.45.Tp
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I. INTRODUCTION

One of the most important tools for investigating chao
dynamical systems is the spectrum of Lyapunov expone
These exponents measure the asymptotic exponential d
gence or convergence of two infinitesimally close orbits.
this paper we are interested in estimatingall of the Lyapunov
exponents of a spatiotemporal system from an observed
tivariate time series without prior knowledge of the dyna
ics governing the system. Hitherto, most efforts in this a
have concentrated on estimating only the largest~or few
largest! exponent~s!. However, at least some of the negati
exponents are needed if we wish to estimate the dimen
of the attractor via the Kaplan-Yorke conjecture. Estimat
all of the Lyapunov exponents from a time series for s
tially extended systems is a daunting task. The fundame
problem is the high dimensionality of the system, which p
vents an accurate reconstruction of the dynamics from
served data. In particular, whatever method of function
proximation we use to reconstruct the dynamics, we nee
have a reasonable spread of data in the region of inte
Thus, for instance, a local linear or quadratic approach e
mates the value of a function at a pointyPRd by performing
a linear least squares regression in a neighborhood ofy. Such
a neighborhood must contain a sufficient number of d
points to yield a meaningful estimate and yet not be so la
that the function is no longer linear~or quadratic, respec
tively!. As d grows, more and more data are necessary
ensure that sufficient numbers of neighbors can be found
for d much larger than 6 or so the amount of data requi
becomes completely impracticable. This problem is often
formally referred to as the ‘‘curse of dimensionality.’’

It is therefore perhaps surprising that, at least in so
cases, the whole Lyapunov spectrum can be estimated
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cessfully from observed data~see Refs.@1# and@2#!. Both of
these papers focus on a lattice of locally coupled fully ch
otic logistic maps, although Ref.@2# ~here referred as ORS!
also considers the effects of skewing the map~as we also do
below in Sec. VI!, and of replacing it by a much more non
linear function. The results for the latter two cases are s
stantially less satisfactory than for the standard logistic m
It turns out that the key property that makes it possible
obtain reasonable estimates of the spectrum for the log
map lattice using the methods of ORS is that the dynamic
one spatial location is easily approximated within the sp
of functions used to fit the dynamics. Hence what at fi
sight appears to be alocal quadratic fit is in fact aglobal fit.
This allows the ‘‘curse of dimensionality’’ to be circum
vented, and good estimates of the dynamics to be obta
even in high dimensions. As the local dynamics moves aw
from the space of functions used to fit the dynamics
estimates of the Lyapunov spectrum rapidly deteriorate. O
approach to overcoming this might be to attempt to estim
the local dynamics and then use a suitable basis to fit
dynamics@3#.

The alternative, which is the method used in Ref.@1# ~here
referred as BH! and which we pursue here, is based on t
observation that, as long as the spatial coupling in the sys
is reasonably short range, optimal predictions are often
tained in very low embedding dimensions@4#, even when the
dimensionality of the attractor is high. This somewhat cou
terintuitive result might be explained by the rapid spat
decay of the dependence of the dynamics at one site o
neighbors@5#. This suggests that it ought to be possible
obtain reasonable estimates of the Jacobian by perform
appropriate fits in low embedding dimensions, hence avo
ing the ‘‘curse of dimensionality.’’

The aim of this paper is to describe a method based
this intuitive idea and evaluate its performance in vario
circumstances. The method is based on reconstructing
the nonzero entries of the Jacobian in a row-by-row fashi
More precisely, if the coupling in a spatiotemporal system
reasonably local then the only nonzero entries in the Ja
bian are near the diagonal. Rather than estimating the w
Jacobian, one should estimate only the nonzero ent
~which can be done in a low embedding dimension! and set
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the remaining entries to 0. We call such an approach aqua-
sidiagonal one. Essentially the same technique is used
Bünner and Hegger in Ref.@1#, who successfully apply it to
the logistic coupled map lattice, using local linear fits. Ho
ever, as shown in Ref.@2#, the standard logistic lattice is
relatively easy system for which to estimate the spectru
even using local linear fits~rather than quadratic ones, as
@2# and here!. It is thus impossible to judge from BH how
well a quasidiagonal approach works when the local dyna
ics presents a bigger challenge, or indeed when the coup
is anything but nearest neighbor. Finally, ORS demonst
that dramatically improved estimates of the spectrum can
obtained by truncating the outer layer~s! of the estimated
Jacobian, thereby eliminating boundary effects. Such trun
tion is not considered by BH.

The present work combines the best features of BH
ORS together with additional generalizations and extens
supporting numerical evidence. In particular, we evaluate
quasidiagonal approach when applied to a more difficult
cal map, using a more flexible~quadratic! fitting basis. We
investigate the effect of truncating the outer layers of
estimated Jacobian and assess the effectiveness of ou
proach when the coupling is exponentially decaying, rat
than just nearest neighbor. The encouraging numerical
sults we obtain motivate us to present a possible extensio
the quasidiagonal approach to continuous space-time
tended dynamical systems~i.e., partial differential equa-
tions!.

For the convenience of the reader, we present our
proach in a largely self-contained manner, leading in a na
ral progression from a scalar method, which gives very p
results, to a successful quasidiagonal estimation of the J
bian from multivariate time series. In the process we hig
light the relationship between the ‘‘globality’’ of the fitting
basis and the ‘‘curse of dimensionality.’’ We also emphas
the importance of properly addressing the effects of
boundaries of the subsystem where we collect the multiv
ate time series.

The paper is organised as follows. The next section gi
a general introduction to spatiotemporal systems and
scribes the prototype model~a coupled map lattice! that is
used in our numerical investigations. In Sec. III we provid
short overview of Lyapunov spectra for extended dynam
systems and their relationship to fractal dimensions and
Kolmogorov-Sinai entropy. We give some examples and
plain how to estimate the Lyapunov spectrum from su
system information using a suitable rescaling. In the follo
ing Sec.~IV ! we attempt to estimate the Lyapunov spectru
using a scalar time series. We find that the lack of spa
information hinders any attempt to obtain a meaningful
construction of the dynamics, and hence to estimate the s
trum. In Sec. V we present a systematic numerical study
estimates of the Lyapunov spectrum using different s
tiotemporal reconstructions. We discover the importance
including spatial information in order to obtain reasona
reconstructions of the dynamics. We also point out t
boundary effects on the measured subsystem have to
properly addressed by truncating the outer layer~s! of the
estimated Jacobian. In Sec. VI we turn our attention to
effect of passing from a local fit to a global fit when increa
ing the embedding dimension of the spatiotemporal rec
y
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struction. We conclude that the ‘‘curse of dimensionality
precludes any hope of a usable reconstruction when our
ting basis does not give a good global approximation to
dynamics. We then go on in Sec. VII to exploit the spa
structure of the Jacobian when the coupling is short rang
develop a quasidiagonal estimation technique for the Ja
bian. Additionally, we use the spatial homogeneity of t
system to dramatically increase the amount of effective d
points available when performing a local fit. This circum
vents both the ‘‘curse of dimensionality’’ and the error i
duced by not using an appropriate global basis. Section V
is devoted to the generalization of our approach to syste
that have nonlocal but exponentially decaying coupling.
nally, in the last section, we propose a natural extension
our method to the estimation of the Lyapunov spectra
partial differential equations.

II. SPATIALLY EXTENDED SYSTEMS

The occurrence of chaos in spatiotemporal systems
recently attracted the attention of a large part of the dyna
cal systems community. There exists nowadays a broad
derstanding of low-dimensional chaotic systems. Howev
the same cannot be said of high-dimensional systems an
particular of spatially extended systems. The addition o
spatial extent to the dynamics produces a complex interp
between the local dynamics~the original dynamics before
including spatial interactions! and the spatial interactions
Sometimes, this interplay triggers the so called phenome
of spatiotemporal chaos. Loosely speaking, this refers to
tems that combine a familiar temporal chaotic evolution w
an additional decay of spatial correlations. In a spatiotem
ral chaotic regime both space translations and time ev
tions exhibit instabilities and it is even possible to defi
spatial and temporal Lyapunov exponents@6#. One possible
simple mechanism for obtaining spatiotemporal chaotic m
tion is to spatially couple low-dimensional chaotic units; a
though one has to be careful because the coupling somet
tends to reduce the spatiotemporal instabilities@7#. However,
it is also possible to produce spatiotemporal chaos thro
the spatial interaction of well-behaved~nonchaotic! units.
This is the case for some metapopulation dynamics mo
@8#.

In contrast with nonspatially distributed systems, sp
tiotemporal systems possess a spatial extent. This ma
discrete, giving a lattice with a local dynamical unit at ea
site, or continuous. The typical model in the latter case~if
time is also continuous! is a partial differential equation
~PDE!. By discretizing space we obtain a lattice of ordina
differential equations~commonly referred to as a lattice dif
ferential equation!. In the discrete space case, the system
be viewed as a collection of low-dimensional dynamical s
tems coupled together via some spatial rule~for a review of
current research, see Ref.@9#!. Examples of this kind of
model are widespread in the literature, particularly in t
field of solid state physics where they are used to study
dynamics of interacting atoms arranged in a lattice~see Ref.
@10# and references therein!.

In this paper we focus our attention on a third category
extended dynamical systems where not only space but
time is discrete. In such a case the model consists of l
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dimensional dynamical units with discrete time~i.e., maps!
arranged in some discrete lattice configuration in one
more spatial dimensions. Such models are usually ca
coupled map lattices~CMLs!. They were first introduced in
1984 as simple models for spatiotemporal complexity@11–
13#. Despite their computational simplicity, CMLs are ab
to reproduce a wide variety of spatiotemporal behavior, s
as intermittency@14#, turbulence@15,16#, and pattern forma-
tion @17#, to name just a few.

In this paper we shall focus on a one-dimensional array
sites. The length of this array could be infinite but here
restrict ourselves to an array of lengthN with periodic
boundary conditions. At thej th site we introduce a discret
time local dynamical system whose state at timen we denote
by xj

n . We suppose that the same local mapf acts at every
spatial location~so that the local dynamics is homogeneou!.
In the simplest case, the local variablexj

n is taken to be one
dimensional. The dynamics of the CML is then a combin
tion of the local dynamics and the coupling, which consi
of a weighted sum over some spatial neighborhood. The t
evolution of thej th variable is thus given by

xj
n115(

k
«kf ~xj 1k

n !, ~1!

where the range of summation defines the neighborhood.
coupling parameters«k are site independent, and satis
(«k51. The commonest choice for the coupling scheme

xj
n115~12«! f ~xj

n!1
«

2
@ f ~xj 21

n !1 f ~xj 11
n !#, ~2!

which is sometimes called adiffusiveCML. This is a discrete
analog of a reaction-diffusion equation. There is now
single coupling parameter« which is constrained by the in
equality 0<«<1, to ensure that the signs of the couplin
coefficients in Eq.~2! ~i.e., «/2 and 12«) remain positive.

III. LYAPUNOV SPECTRA FOR EXTENDED
DYNAMICAL SYSTEMS

Let us now give an overview on the extraction and app
cation of Lyapunov spectra for spatiotemporal systems.
an N-dimensional dynamical system there existN Lyapunov
exponents which in principle can be obtained from the eig
values of the matrix

G5 lim
n→`

@P~n! tr
•P~n!#1/2n, ~3!

whereP(n) corresponds to the product of the firstn Jacobi-
ans along the orbit and (• ) tr denotes the matrix transpose.
is well known that given an invariant measure~which is usu-
ally assumed to be the natural measure for the dynamics! the
multiplicative ergodic theorem~e.g., Ref.@18#! ensures that
the limit exists for almost all initial conditionsx0, and if the
measure is ergodic then its eigenvalues are independe
x0. The Lyapunov exponents are then defined as the lo
rithms of these eigenvalues~which are obviously non-
negative!. Although computing the exponents using Eq.~3!
appears straightforward, in practice multiplying the Jaco
ans is an ill-conditioned procedure since the most expand
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direction swamps all the other expansion/contraction ra
Therefore one has to resort to algorithms that regularly
orthogonalize the product of the Jacobians. Such algorith
perform a QR decomposition every few iterates and
closely related to standard methods of computing eigen
ues@19#. Such procedures are based upon the factorizatio
the Jacobian matrix into a product of an orthogonal matrixQ
and on upper triangular matrixR ~QR decomposition!. The
QR decomposition can be carried out using Gram-Schm
Householder, or Givens based techniques. In this paper
use an efficient Householder method where only the te
required for the computation of the Lyapunov exponents
actually calculated@20#.

We define the Lyapunov spectrum~LS! as the set of Lya-
punov exponents$l i% i 51

N arranged in decreasing order. Th
LS not only gives the expansion/contraction rates of infi
tesimal perturbations, but can also provide estimates of f
tal dimensions and entropies. Thus, for instance, the dim
sion of the chaotic attractor~i.e., informally the effective
number of degrees of freedom! is given by the Kaplan-Yorke
conjecture@21# through theLyapunov dimension

DL5k1
1

ulk11u (
i 51

k

l i , ~4!

wherek is the largest integer for which( i 51
k l i.0. It is also

possible to extract an upper bound for theKolmogorov-Sinai
(KS! entropyh from the LS by the following approximation
@18#:

h5( l i
1 , ~5!

where the summation is over the positive Lyapunov ex
nentsl i

1 . The KS entropy quantifies the mean rate of info
mation production in a system, or alternatively the mean r
of growth of uncertainty due to infinitesimal perturbations

As an example, Fig. 1~a! shows the LS for a coupled
logistic lattice of sizeN520 with periodic boundary condi
tions obtained using the known dynamics~2!. In Fig. 1~b! we
plot the sum of the Lyapunov exponents( i 51

k l i from where
the KS entropy can be estimated~maximum of the curve!
and the Lyapunov dimension can be extracted~intersection
with the horizontal axis!. Notice that the Lyapunov dimen
sion DL.15.4 is comparable to the total size of the latti
N520. Also observe thatDL.15.4 implies the presence of
high-dimensional attractor. This point will be addressed
more detail in the following sections.

The computation of the whole LS for spatiotemporal sy
tems is a cumbersome task, particularly as the size of
system increases. Even the most efficient methods invo
O(N3) arithmetic operations per time step@19# for a lattice
of sizeN. Even for moderate lattice sizes (N;50) the num-
ber of operations required is already considerable. Moreo
taking into account that sometimes the~time! convergence of
the Lyapunov exponents is extremely slow, the time nec
sary to compute the whole LS for spatiotemporal syste
quickly becomes prohibitive. Furthermore, one is often int
ested in the behavior of the system in the thermodyna
limit where the number of lattice sitesN goes to infinity. In
such a case it quickly becomes impossible to compute
whole LS and one has to resort to subsystem rescaling t
niques that we shall now briefly describe.
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Consider a one-dimensional lattice of coupled on
dimensional dynamical units. High-dimensional cases m
be treated in a similar way. Assume the array is largeN
@1) and suppose initially that it is made up of smallerinde-
pendent~uncoupled! subsystems of sizeNs . For simplicity
takeN to be a multiple ofNs . The LS of the whole lattice
then consists ofN/Ns exact copies~assuming spatial homo
geneity! of the subsystem LS ofNs Lyapunov exponents
Thus, the LS for the whole lattice consists ofNs Lyapunov
exponents, each with multiplicityN/Ns . As we relax the
assumption that the subsystems are uncoupled we hope
the LS does not change significantly@22,23#. If this is the
case, the whole LS of the original lattice may be appro
mated by a rescaled version of its subsystem LS.

An obvious choice for such a rescaling is to multiply t
index i of the Ns subsystem Lyapunov exponentsl i(Ns) by
r 85N/Ns . However, careful analysis of the LS of a hom
geneous state suggests that a better rescaling for
dimensional lattices is given by@24#

r 5
N11

Ns11
. ~6!

FIG. 1. ~a! Lyapunov spectrum for a CML ofN520 fully cha-
otic logistic mapsf (x)54x(12x) with coupling strength«50.4.
~b! The Lyapunov dimensionDL and the KS entropyh may be
estimated from the sum of the Lyapunov exponents. In this case
largest Lyapunov exponent isl1.0.36, DL.15.4, andh.1.8.
-
y

hat

-

e-

In Ref. @24# we show that this rescaling allows for a fa
better fit of the entire LS when rescaling subsystem LS. T
rescaling~6! was obtained by finding the best possible
when dealing with homogeneous evolution (xj

n5xk
n;kÞ j )

where the LS can be obtained analytically. In fact, it tur
out that this rescaling gives a better fit not only for homog
neous evolution, but also for more general dynamics wh
compared to the traditional scalingr 85N/Ns ~cf. Ref. @24#
for more details!. Therefore, the rescaling~6! will adopted
throughout this work.

The rescaling of the whole LS from subsystem inform
tion leads us naturally to define intensive quantities fro
extensive quantities. As a direct consequence of this res
ing, using the same argument as in the previous paragrap
is straightforward to see that the Lyapunov dimension a
the KS entropy are extensive quantities~i.e., DL and h in-
crease linearly withN). Moreover, it is useful to introduce
their respective densities by simply dividing them by t
system volume~lattice size! @25#. This even allows such
quantities to be defined in the thermodynamic limit, althou
care has to be taken in doing this for systems such as P
where space is continuous@26#.

By using subsystem rescaling one can considerably
duce the computing resources required to estimate the w
LS of a large spatiotemporal system. Furthermore, by
stricting oneself to observing data from a subsystem,
reduces the dimensionality of the resulting time series
increases the likelihood of success in applying reconstruc
techniques.

IV. LYAPUNOV SPECTRA FROM UNIVARIATE TIME
SERIES

In the previous section we assumed that the dynamic
the system whose LS we wished to compute was kno
This is not the case for many complex physical systems.
therefore now turn to the task of estimating the LS when
only information available about the system is a time ser
of observed data. Let us start by applying standard de
reconstruction techniques for a single-observable time se
Thus suppose that the univariate time series$wn% has been
measured from ak-dimensional system. We can create
high-dimensional reconstructed state space by construc
the delay vectors

yn5~wn,wn21, . . . ,wn2(d21)!, ~7!

whered is the so-calledembedding dimension. Takens’ theo-
rem @27# says that ford>2k11 the dynamics induced on
such delay vectors is generically smoothly conjugate to
original dynamics. This apparently arbitrary condition is
simple geometrical disentangling in order to avoid se
intersections on the reconstructed manifold@28#. The smooth
conjugacy between induced and original dynamics ass
that the time series contains all the coordinate-free prope
of a dynamical system. Specifically, since the LS is invari
under smooth conjugacy~i.e., smooth coordinate change!
the LS computed from the dynamics of the delay vectors w
be the same as that of the original system. Note that the t
series need not be the time history of one of the syste
state variables but can be any generic function of the stat
the system. In particular, in principle it is possible to reco

he
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struct all the Lyapunov exponents from a univariate tim
series. To anyone familiar with the proof of Takens’ theore
it is obvious that it generalizes straightforwardly to mul
variate time series, although as far as we are aware a p
has never appeared in the literature.

Unfortunately, Takens’ theorem does not actually apply
the CMLs considered here@4#. First, the maps that we use a
local dynamics are not invertible, and the proof of Take
theorem depends fundamentally on such invertibility. S
ondly, we assume translation invariance of the CML~i.e., the
dynamics and coupling are spatially homogeneous! and such
symmetry renders our systems far from generic. Finally, i
similar fashion, measurement functions depending on on
single site~or group of sites! are not generic in the space o
all observables; indeed, a generic function will depend onall
N sites. On the other hand our results, and in particular
comparison with the LS computed in the previous sect
assuming full knowledge of the actual dynamics, suggest
we are able to estimate the real LS from observed time
ries. We shall therefore use delay reconstruction techniq
throughout this paper without worrying about this failure
Takens’ theorem~and in any case the theorem draws conc
sions only for generic dynamics and measurement functio
and so cannot guarantee reconstruction for any partic
time series!.

For the extended dynamical systems we are consider
the dimensionk is the size of the latticeN times the dimen-
sion of the local dynamics. Hence for the logistic coupl
map lattice in Fig. 1 we getk5N. Even for quite moderateN
an embedding dimension of 2N11 is clearly quite imprac-
tical. Of course, the conditiond>2k11 is only a sufficient
one, and it is well known that some systems~e.g., the Lorenz
equations! can be reconstructed for smaller values ofd. Fur-
thermore, Sauer and Yorke@29# have a sharper estimate ford
that is still sufficient to preserve the box-counting dimens
and the Lyapunov exponents

d.DB1DT , ~8!

whereDB is the box-counting dimension of the attractor a
DT is a ‘‘tangent dimension’’ which is informally the maxi
mum dimension~over all points! of the tangent space of th
underlying dynamics. However even this is still very prohib
tive. For example, for the system in Fig. 1 the Lyapun
dimension for even quite a small lattice ofN520 coupled
logistic maps isDL;15.4. Then assumingDB5DL ~i.e., es-
sentially the original Kaplan-Yorke conjecture!, the bound
~8! givesd.15.41DT , and one would typically expectDT
to lie betweenDB and N, giving a value ofd from 30 up-
ward. Of course the Sauer-Yorke inequality is also jus
sufficient condition, but, if one is to preserve allN expo-
nents, it seems that an absolute minimum ofd>N will be
necessary, and even this is too large to be generally pr
cable.

Indeed, as indicated in the introduction, an embedd
dimension much larger thand;6 will lead to the ‘‘curse of
dimensionality.’’ Thus in order to estimate the LS from th
time series we need to approximate the map that governs
dynamics of the delay vectors, that is, the mapF such that
F(yn)5yn11. There exist several methods for doing this,
which the best for the purpose at hand are all based on l
of
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approximations. These can be constructed by scanning
time series to find a set of past close encounters~correspond-
ing to neighbors in the reconstructed state space! of the cur-
rent reconstructed stateyn. Once these neighbors have be
found, an approximationF̂ to F at yn can be computed using
for example, a least squares fit within an appropriate spac
functions~e.g., linear or quadratic!. For a comprehensive re
view, see the recent book by Kantz and Schreiber@30#. For
large embedding dimensions (d;6) it becomes extremely
difficult to find close neighbors and hence, due to data lim
tations, the approximation toF ceases to be local. This in
turn can lead to large errors in the determination of
Lyapunov exponents.

It is clear then that function approximation techniques
bound to fail when reconstructing spatiotemporal syste
where the dynamics is typically high dimensional. As
example, Fig. 2 shows the results of an attempt to estim
the whole LS from a univariate time series obtained from
single site of a coupled logistic lattice. The measurem
function in this case is the projection onto a single site,
that wn5xj

n for a fixed j. An embedding dimension in the
range 32<d<42 was used. It is obvious from the figure th
this temporal delay reconstruction of the LS~overlapping
thin lines! completely fails to reproduce the LS of the orig
nal system~thick line!. Other values of the reconstructio
parameters than the ones given in the figure caption w
also tried, yielding the same qualitative results.

V. LYAPUNOV SPECTRA FROM SPATIOTEMPORAL
DATA

Since the direct application of univariate~temporal! delay
reconstructions clearly fails for spatiotemporal systems,
us now try to exploit the spatial extent of the system and

FIG. 2. Estimates of the LS for a logistic coupled map lattice
size N520 and coupling«50.4 computed using a time delay re
construction~with dP@32,42#) from a univariate time series~thin
lines!. A second-order local fit from a sample of 104 points was
used and the number of neighbors was set to the number of pa
eters in the fitting process plus 20. For comparison the spect
computed from the original dynamics is depicted with a thick lin
An orbit length of 104 iterations was used in both cases and t
computed LS was rescaled using Eq.~6!.
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a spatiotemporal delay reconstruction. The framework
this is presented in@4#. Here, we shall show the benefits
including spatial information in estimating the LS. We sh
also investigate the advantages of truncating the outer l
of a reconstructed Jacobian in order to avoid boundary
fects. We have already addressed these issues in a pre
paper@2#; however we repeat some of the analysis here
completeness.

A spatiotemporal reconstruction is obtained by replac
the delay vectors~7! of the previous section by thespatio-
temporaldelay vectors

yj
n5~f j

n ,f j 21
n , . . . ,f j 2(ds21)

n !, ~9!

whose entriesf j
n5(xj

n ,xj
n21 , . . . ,xj

n2(dt21)) are time-delay
vectors and the spatial indexj is fixed. The overall embed
ding dimension for such a spatiotemporal reconstruction
d5dsdt , whereds and dt denote the spatial and tempor
embedding dimensions, respectively. The standard temp
delay reconstruction~7! is recovered by settingds51. Spa-
tiotemporal reconstructions have proved useful in vario
contexts@31–33#. By adding the extra spatial delay in th
time series one is including important information that
otherwise very difficult to obtain. In fact, it is extreme
difficult to extract information about neighboring dynami
just by doing spatially localized measurements. This is
cause of the rapid decay of spatial correlations in loca
coupled extended dynamical systems. In a previous pape@5#
we showed how this extremely rapid decay in correlatio
allows a quite small truncated lattice with random inputs
the boundaries to reproduce the local dynamics of a la
potentially infinite, lattice. This tends to suggest that a u
variate time series cannot in practice reconstruct the dyn
ics of a whole spatiotemporal system.

In Fig. 3 we present several estimates of the LS of
coupled logistic lattice~as in Fig. 2! for different spatiotem-

FIG. 3. LS estimated from spatiotemporal delay reconstructi
for a logistic coupled map lattice. The LS computed from the ori
nal dynamics is depicted with a thick line while the different sp
tiotemporal delay reconstructions are depicted with dashed li
All the fitting parameters are the same as in Fig. 2~second-order
fitting, 104 points, 104 iterates!.
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poral embedding dimensionsd. The different reconstructions
correspond to a broad sample of choices ofds anddt . Note
that simply increasingd5dsdt does not improve the esti
mates. In fact, in order to get a good estimate of the LS
seems preferable to takedt51 andds as large as possible
This is indicated by the empty and filled circles correspon
ing to dt51 and ds510 and ds520, respectively. In the
figure we show only a few combinations of (ds ,dt). How-
ever, we originally considered a much broader choice w
out finding any qualitative differences. We therefore co
clude that a spatiotemporal reconstruction withdt51 ~that is
a purespatial delay reconstruction! gives the best results
This is easy to explain since we are using the actual dyna
cal variables of the system (w j

n5xj
n) as observables and ar

measuring them in a complete window. Thus, we do
need to increase the embedding dimension to avoid s
intersection in the reconstructed space since we are alre
in a natural space for the system. In a more gene
scenario—where the observables are nontrivial functions
the dynamical variables—one would expect the need to
corporate time components (dt.1) in order to obtain rea-
sonable reconstructions.

In Fig. 4 we show the reconstruction of the LS using
pure spatial reconstruction with increasingds . These esti-
mates are much more promising than before. Note that s
our original system is of sizeN520 it is not possible to
chooseds.20. Indeed, we have to be careful, since taki
dt51 and ds5N520 corresponds to measuring thewhole
state space and is therefore not a genuine delay recons
tion. This explains why the reconstructed LS fordt51 and
ds5N520 agrees so well with the direct computations~tri-
angles in Fig. 4!, although note that in Fig. 1 we know th
Jacobian of the dynamics exactly, while here we still have
do some function fitting.

From Fig. 4 we see that asds is increased a better est
mate of the LS is obtained. One may think that this is sim
the effect of getting a higher embedding dimension. Ho
ever, the reason for the apparent convergence of the re
structed LS toward the exact LS asds→N is simply due to a

s
-
-
s.

FIG. 4. LS estimated from pure spatial delay reconstructions
a logistic coupled map lattice. All the fitting parameters are
same as in Fig. 2~second-order fitting, 104 points, 104 iterates!.
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reduction of the noise from boundary effects. Consider
sites at the boundary of our spatial window in which w
measure the multivariate time series. The dynamics of th
sites depends on sites whose evolution isnot explicitly con-
tained in the measurement window. As a consequence
estimates of the Jacobian for these sites contain spur
terms and are subject to error. For instance, the fitting p
cedure for the first row tries to compensate for the lack
information from the left neighboring site that is outside t
measurement window by including an artificial depende
on all sites inside the window. This will yield erroneou
nonzero terms off the tridiagonal.

We can avoid these effects by observing that the bou
ary sites contribute toward the Jacobian at its outer rows
columns. We can therefore remove such boundary effect
simply truncating the outer rows and columns of the rec
structed Jacobian to yield a (ds22)3(ds22) matrix @2#.
Note that one must first fit theds3ds Jacobian and only then
truncate its outer rows and columns. Also observe that fo
spatial delay embedding dimensionds we obtainds22 Lya-
punov exponents. The results of applying this technique
shown in Fig. 5. Comparing this to Fig. 4 where the ou
layer of the Jacobian was not truncated we see a dram
improvement, and in particular can obtain good estima
even for quite smallds ~see also Ref.@2#!. It is obvious that
the truncation of the outer layer of the Jacobian has to c
cide with the range of the coupling: the larger the coupl
range the more outer rows and columns must be trunca
This is considered further below in Sec. VIII.

VI. LOCAL VERSUS GLOBAL FITTING: A MATTER OF
DIMENSIONALITY

It is somewhat surprising that the estimated LS’s in Fig
are in such good agreement with the actual LS despite
fact that the embedding dimensions are~a! too small to dis-
entangle the state space and~b! too large to avoid the ‘‘curse
of dimensionality.’’ The explanation for this apparent co
tradiction is that the measurement functions are the ac
variables of the system and the form of the dynamical eq

FIG. 5. LS estimated from pure spatial delay reconstructions
a logistic coupled map lattice using truncation of the outer laye
the Jacobian. All the fitting parameters are the same as in Fi
~second-order fitting, 104 points, 104 iterates!.
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tions is actually contained in the space spanned by the b
functions used to approximate them. In particular, the
namics of our CML is quadratic in nature@cf., Eq. ~2! with
logistic local maps# and we are using a quadratic fit. Thus,
local fit is in fact also a global one and the problem of n
finding enough neighbors in high dimensions is avoided
thus turns out to be possible to obtain very good estimate
the dynamics with even moderate amounts of data.

However, this situation is unlikely to arise in most re
applications, and typically we expect that the~delay recon-
structed! dynamics will not lie in the space spanned by t
basis functions. To investigate the effects of this we now t
our attention to a skewed logistic local map, which yields
CML whose dynamics is not contained in the space of q
dratic polynomial functions that we use for fitting. This ma
is obtained from the standard logistic mapf (x)5ax(12x)
by applying the following skew transformation of the un
square:

K~x,y!5~x1by,y!, ~10!

whereb is a parameter determining the degree of skew.
this way we obtain the map~Fig. 6!

gb~x!5
211ab~2x21!1A~11ab!224abx

2ab2 , ~11!

whereb must satisfy21/a,b,1/a so that the derivatives
of gb at 0 and 1 remain bounded.

We now repeat the estimation of the LS for this skew
map. Figure 7 shows the effects of increasing the spa
embedding dimensionds in the case of large skewb50.2.
Observe that for smallds (<6) the approximation of the LS
is quite good~see square points in figure!. However, asds
increases, the estimate deteriorates. This reflects the fac
as the embedding dimension grows the fitting algorithm
more and more difficulty finding close neighbors. Since t
skewed logistic map cannot be well approximated globa
by a quadratic function the LS estimate deteriorates. N

r
f
2

FIG. 6. Skewed logistic map~thick line! for b50.2 obtained by
applying Eq.~10! to the fully chaotic logistic map~dashed line!.



S
rig
e

ex
te

o
e

in
a

nt

the

r
an-
om
en-

soon
the
d as
re-

can-
all
he
n

that
e

the
set

cal

in a

by
L,

e

a
ed

tic
ys-
nal
w
gs.
a-

ave
sid-

the

se
in
ich
bor
ee

the
dy
co
.

of

e
.
d
.

6436 PRE 62R. CARRETERO-GONZA´ LEZ, S. O”RSTAVIK, AND J. STARK
however, that, even though an accurate estimate of the L
not possible in this case, the estimated LS does have the
qualitative features. This is due to the fact that the skew
logistic map still resembles a quadratic function to some
tent and thus a global fit is still reasonable. This is illustra
in Fig. 8 where we present the effect of varying the degree
skewb, and hence the degree of departure from the spac
quadratic functions. We see that as the skew is increased
error between the actual and the estimated LS rapidly
creases. Using a local map that is even further from the sp
of quadratic ones leads to yet greater discrepancies@2#.

Finally recall also that the number of Lyapunov expone
obtained for a givends is ds22 due to the truncation of the

FIG. 8. Effect of the skew of the local map when estimating
LS. Curves correspond to the LS’s computed with the known
namics and the symbols depict various pure spatial delay re
structions. All the fitting parameters are the same as in Fig
~second-order fitting, 104 points, 104 iterates!.

FIG. 7. Estimation of the LS for a coupled map lattice
skewed logistic maps. The size of the lattice isN520, the coupling
parameter is«50.4, and the skew parameter isb50.2. The original
LS is indicated by the solid line and the estimates using a rang
spatial embedding dimensionsds are depicted by various symbols
For largeds the estimates deteriorate because of the ‘‘curse of
mensionality.’’ All the fitting parameters are the same as in Fig
~second-order fitting, 104 points, 104 iterates!.
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outer layers of the Jacobian. Therefore if we try to avoid
‘‘curse of dimensionality’’ by working in low embedding
dimensions withds<6 we obtain only four points or fewe
on the LS density curve. Even if these are accurate, we c
not in general expect to extrapolate the whole spectrum fr
just these four points. Hence estimates of Lyapunov dim
sion and KS entropy are likely to be quite poor@2#.

The results presented in this section suggest that, as
as the dynamics cannot be globally approximated by
space spanned by the basis functions used in the fit, an
soon as more than a handful of Lyapunov exponents is
quired, standard spatiotemporal embedding techniques
not reliably estimate the LS. In the next section we sh
show how this difficulty can be overcome by focusing on t
estimation of only the nontrivial entries in the Jacobian. A
alternative approach is to find an adapted fitting basis
will allow us to fit the dynamics globally. This can be don
by first extracting an estimate of the local dynamics from
time series and then using this to construct an appropriate
of basis functions. One possible way of estimating the lo
dynamics is to use time-delay plots@2#. An even more prom-
ising technique is to consider quasihomogeneous states
small window and their time evolution@3#.

VII. QUASIDIAGONAL RECONSTRUCTION
OF THE JACOBIAN

In this section we improve the method presented above
making use of the local nature of the coupling in our CM
which results in the Jacobian exhibiting abanded-diagonal
structure. It is thus natural to attempt to estimate only th
nonzero entries in this Jacobian. We call this aquasidiagonal
reconstruction. This allows us to carry out the local fit in
low-dimensional space, and avoids the difficulties describ
above. A similar idea was employed by Bu¨nner and Hegger
@1#. However, they applied it only to a standard logis
CML, which as we have seen above is a relatively easy s
tem for which to estimate the spectrum using conventio
means. It is thus impossible to judge from their work ho
much of a benefit the quasidiagonal approach actually brin
Additionally, here we combine this technique with a trunc
tion of the outer layers of the Jacobian, which, as we h
seen above, brings substantial benefits, but was not con
ered in@1#.

The idea behind a quasidiagonal reconstruction of
Jacobian is quite simple. The entries of the JacobianJ(n) at
time n are given by

Jkl~n!5
]xk

n11

]xl
n

. ~12!

Due to our assumption of localized coupling most of the
terms are identically zero. The only nonzero terms lie with
a distance of the diagonal given by the distance over wh
the coupling acts. In the particular case of a nearest neigh
CML ~2!, the Jacobian is tridiagonal, and has only thr
nonzero elements in each row:

-
n-
2

of

i-
2
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J~n!5S ]1
1 ]2

1 0 0

]1
2 ]2

2 ]3
2 0

0 � � � 0

0 � � � 0

0 � � ]ds

ds21

0 0 ]ds21
ds ]ds

ds

D , ~13!

where, for simplicity, we use the notation

]v
u5

]xj 01u21
n11

]xj 01v21
n .

Note that the Jacobian~13! is extracted from sitesj 0 to j 0
1ds21 and so is of sizeds3ds . The starting indexj 0 is
arbitrary since we are assuming spatial homogeneity.

We estimate this Jacobian in a row-by-row fashion
fitting local dynamics of the form

xr
n115Fr~xr 21

n ,xr
n ,xr 11

n ! ~14!

for (1,r ,ds). This fit is carried out in just a three
dimensional space, as opposed to ads-dimensional space a
before, and close neighbors are defined by their dista
from (xr 21

n ,xr
n ,xr 11

n ). It is then important to stress that, fo
this quasidiagonal reconstruction,ds no longer plays the role
of an embedding dimension but indicates solely the size
the measuring window used to extract the data. The emb
ding dimension in this case corresponds to 3 since we
performing a tridiagonal reconstruction@cf. Eq. ~14!#. There-
fore, this method circumvents any problems with high
mensionality. Furthermore, if the dynamics is translation
variant ~i.e., spatially homogeneous!, we can use any triple

FIG. 9. Effect of truncating the outer row of the Jacobian fo
tridiagonal estimate of the LS for a lattice of coupled skewed log
tic maps as in Figs. 7 and 8. The skew isb50.2 and the width of
the window used to extract the multivariate time series isds sites.
The open symbols correspond to using the whole fitted Jaco
while the solid symbols correspond to truncating the outer laye
the Jacobian. All the fitting parameters are the same as in Fi
~second-order fitting, 104 points, 104 iterates!.
ce

f
d-
re

-
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of the form (xj 21
n ,xj

n ,xj 11
n ), regardless of position. This dra

matically increases the effective amount of data available
us for performing the fit. Additionally, if the dynamics i
also isotropic, i.e., invariant under the symmetry that e
changesxj

n with xN2 j
n , we can use all triples in reverse ord

(xj 11
n ,xj

n ,xj 21
n ). Of course, if the coupling acts over a long

range then the mapFr will depend on more variables, but a
long as the coupling remains reasonably local this appro
will still bring advantages~we investigate this further in the
next section!.

The first and last rows ofJ(n) contain only two nonzero
entries due to the lack of information from outside the o
servation window. As before, the entries will be estimat
incorrectly since the fitting algorithm will compensate for th
lack of the missing entry by erroneously adjusting the
maining two. We therefore truncate the outer layers of
Jacobian as in the previous section and compute onlyds
22 Lyapunov exponents from a window of sizeds . The
improvements due to such truncation are shown in Fig
Note that these become less apparent as the widthds of the
observation window increases. This is consistent with
fact that the boundary effects become less significant as
size of the subsystem grows@5#. Nevertheless, given that i
always leads to better estimates, we shall continue to em
such truncation throughout the remainder of the paper.

Figure 10 shows an example of the estimation of the
using a quasidiagonal reconstruction with a large wind
ds520. Compared to Figs. 7 and 8 we see that this appro
can give an excellent estimate, even though the local m
cannot be well approximated by a quadratic fit. Similar
sults were obtained for different maps and coupli
strengths.

VIII. ESTIMATING THE LYAPUNOV SPECTRUM FOR
EXPONENTIALLY DECAYING COUPLING

The CML used to illustrate our method in the previo
sections allowed interactions only between nearest ne

-

an
f
2

FIG. 10. Tridiagonal estimate of the LS for a lattice of coupl
skewed logistic maps as in Figs. 7 and 8. The skew isb50.2 and
the width of the window used to extract the multivariate time ser
is 20 sites. All the fitting parameters are the same as in Fig
~second-order fitting, 104 points, 104 iterates!.
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bors. There are, however, many other systems of inte
where the coupling acts over greater distances. In this sec
we investigate the performance of our approach in s
cases. Typically, it is assumed that the coupling decrease
strength with distance, giving a band-diagonal Jacobian w
subdiagonals whose entries decay as we move away from
diagonal. A suitable paradigm model to represent this i
CML where the coupling range is in fact infinite but who
coupling coefficients decay exponentially with distance:

xj
n115

12b

11b (
k52`

`

b u j 2ku f ~xj 2k
n !, ~15!

where the coupling parameterbP(0,1). The limitb→0 cor-
responds to the uncoupled case, i.e.,xj

n11 depends only on
xj

n . The limit b→1 corresponds to global coupling of all th
sites with the same coefficient. Thus increasingb effectively
increases the range of the coupling and results in more
more subdiagonals of the Jacobian becoming signific
While for b close to 0, it is reasonable to expect that
tridiagonal reconstruction will still suffice, it is clear that a
b increases more subdiagonals will need to be taken
account.

We thus investigated the effects of using a high
diagonal reconstruction for data from a lattice with a re
tively large b ~0.35!. If we fix the sizeq of the admissible
interaction range we need to estimate a map dependin
2q11 variables:

Fr
(q)~xr 2q

n , . . . ,xr 21
n ,xr

n ,xr 11
n , . . . ,xr 1q

n !5xr
n11 . ~16!

We now need to discardq outer layers of the estimated Jac
bian to remove boundary effects, and hence if our obse
tion window is of size ds , we can estimateds22q
Lyapunov exponents. Here again we recall thatds no longer
plays the role of an embedding dimension but rather it in
cates the size of the observation window. The equivalen
the embedding dimension for this quasidiagonal appro
corresponds to the dimensionality of the map defined in
~16!, namely, 2q11.

Figure 11 shows the results of this approach applied to
CML coupling scheme~15! for different values ofq ~still
with a skewed logistic map for local dynamics!. We see that
the tridiagonal (q51) reconstruction completely fails to ap
proximate the LS. However, asq increases the reconstructio
rapidly improves. Forq52 the largest Lyapunov exponen
are captured accurately and the estimate of the remaind
the spectrum is still quite poor. This improves significan
for q53 andq54 where the approximation is rather goo
particularly given that the coupling is not genuinely over
finite range. Increasingq further led to a deterioration of th
estimates of the LS. This is due to the reappearance of
‘‘curse of dimensionality:’’ forq>5 we have to find neigh-
bors in dimensiond52q11>11. We repeated these expe
ments for other values ofb and other local maps, obtainin
similar qualitative results.

IX. DISCUSSION AND GENERALIZATIONS

We have shown that by using a quasidiagonal reconst
tion of the Jacobian we are able to estimate the LS o
st
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variety of CML’s using only time-series data with a reaso
able degree of accuracy. The most difficult test was wh
the local dynamics was given by a skewed logistic map a
the coupling was exponentially decaying. In that case,
had to take a nine-diagonal reconstruction of the Jacob
~i.e., q54). Increasingq beyond this leads to increasing e
rors, due to the increase in the dimensionality of the rec
struction space that we use. We therefore have a dichot
when trying to estimate LSs for systems with extended in
actions: on the one hand we would like to include as ma
subdiagonals as possible~i.e., q as large as possible!; how-

FIG. 12. Cone horizon for a disturbance in a one-dimension
space-time continuous, extended dynamical system. A disturb
applied at the summit of the cone may alter the downstream dyn
ics inside the cone horizon~shaded area!. Applying a given space-
time discretization~dashed mesh! induces a particular neighbor
hood structure: a node at timet1t depends on a fixed number o
nodes at timet ~three in this case!. The slope of the cone horizon
fixes the number of subdiagonals required in the quasidiagona
timation of the Jacobians.

FIG. 11. Estimation of the LS using a (2q11)-diagonal recon-
struction of the Jacobian for a lattice of coupled skewed logis
maps with decaying exponential coupling~15!. The data are ob-
served in a window of sizeds520, the skew isb50.2, and the
decay rate isb50.35. The coupling parameters forb50.35 corre-
spond to«0.0.481, «61.0.168, «62.0.059, «63.0.021, «64

.0.007, . . . , in the general CML formulation~1!. All the fitting
parameters are the same as in Fig. 2~second-order fitting, 104

points, 104 iterates!.
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ever, on the other hand,q cannot be chosen too large (q
<5) otherwise we again encounter the ‘‘curse of dimensi
ality.’’

Of course, in practice if we do not know the dynamics
a system, we are unlikely to knowa priori the range of the
coupling. However, this is something that can be estima
from a multivariate time series, using, for example, so
kind of cross correlation. This in turn will allow us to est
mate the width of the band of the Jacobian that is most
propriate to capture the essence of these interactions.

A related problem arises when trying to reconstruct L
from multivariate time series produced by systems with
continuous space variable, or when probing real life
tended dynamical systems. Consider, for example, a o
dimensional PDE and assume that we are free to choose
sampling intervals in both time and space at which data
observed. The Jacobian will contain a different number
significant subdiagonals depending on the choice of th
intervals. This is illustrated in Fig. 12 where we show the
called cone horizon for the evolution of a perturbation
space-time. The cone horizon corresponds to the regio
space-time where a perturbation, applied at the summit of
cone, can influence downstream positions. Any point outs
the cone horizon cannot ‘‘feel’’ the presence of the dist
bance. Such cone horizons always exist for extended
namical systems where the interactions have finite range,
where information propagation has finite speed. Now s
pose that we observe the system at regular intervals in s
and time. This corresponds to the intersections of the g
shown in the figure. Let us denote byt the temporal sam-
,
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pling; for simplicity we assume the spatial sampling interv
is fixed, since varyingt is sufficient to demonstrate ou
point. For the example depicted in the figure a sampl
interval of t yields a tridiagonal Jacobian. This is becau
there are only three sites in the cone horizon after a timet.
Thus, for this choice of space-time discretization it should
sufficient to use a tridiagonal reconstruction of the Jacob
i.e., with q51. However, if we double the sampling interv
to 2t we shall need to use a five-diagonal reconstruction
order to include the five sites in the cone horizon after a ti
2t.

We intend to investigate the application of the quasidia
nal method to the estimation of a LS from a time ser
generated by a PDE in a future paper. Additionally, we ha
hitherto assumed that the observable is the actual state
able at a site. This is unlikely to be the case in many pract
applications. In such a case, we expect that the best appr
would be a combination of the quasidiagonal reconstruct
method presented here with a local spatiotemporal rec
struction of the dynamics.
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