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Quasidiagonal approach to the estimation of Lyapunov spectra for spatiotemporal systems
from multivariate time series
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We describe methods of estimating the entire Lyapunov spectrum of a spatially extended system from
multivariate time-series observations. Provided that the coupling in the system is short range, the Jacobian has
a banded structure and can be estimated using spatially localized reconstructions in low embedding dimen-
sions. This circumvents the “curse of dimensionality” that prevents the accurate reconstruction of high-
dimensional dynamics from observed time series. The technique is illustrated using coupled map lattices as
prototype models for spatiotemporal chaos and is found to work even when the coupling is not strictly local but
only exponentially decaying.
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[. INTRODUCTION cessfully from observed dataee Refs[1] and[2]). Both of
these papers focus on a lattice of locally coupled fully cha-

One of the most important tools for investigating chaoticotic logistic maps, although Reff2] _(here referred as ORS
dynamical systems is the spectrum of Lyapunov exponent&lso considers the effects of skewing the nfap we also do
These exponents measure the asymptotic exponential divepelow in Sec. V), and of replacing it by a much more non-
gence or convergence of two infinitesimally close orbits. Inlinear function. The results for the latter two cases are sub-
this paper we are interested in estimatiigof the Lyapunov ~ Stantially less satisfactory than for the standard logistic map.
exponents of a spatiotemporal system from an observed mult turns out that the key property that makes it possible to
tivariate time series without prior knowledge of the dynam_obtaln rgasonable estimates of the sp.ectrum for the Ioglsnc
ics governing the system. Hitherto, most efforts in this ared"apP Iatt|c;e using the_methgds of OR.S is that t.he_ dynamics at
have concentrated on estimating only the largest few one qutlal location is .easny appro>.<|mated within the space
larges} exponents). However, at least some of the negative of functions used to fit the dynamics. Hence what at first

exponents are needed if we wish to estimate the dimensiosPlr?iZt :ﬁg\,?,zr?htg lg(e:llj?(s:gl gf%??gﬁ;%;;ﬁﬁ%a%lgbglrztj m-

of the attractor via the Kaplan-Yorke conjecture. Estimatingvemed, and good estimates of the dynamics to be obtained

all of the Lyapunov exponents from a time series for spa-yen in high dimensions. As the local dynamics moves away

tially extended systems is a daunting task. The fundamentgl,y, the space of functions used to fit the dynamics the
problem is the high dimensionality of the system, which pre-gstimates of the Lyapunov spectrum rapidly deteriorate. One
vents an accurate reconstruction of the dynamics from Obapproach to overcoming this might be to attempt to estimate
served data. In particular, whatever method of function apthe |ocal dynamics and then use a suitable basis to fit the
proximation we use to reconstruct the dynamics, we need tglynamics[3].
have a reasonable spread of data in the region of interest. The alternative, which is the method used in R&F.(here
Thus, for instance, a local linear or quadratic approach estireferred as BH and which we pursue here, is based on the
mates the value of a function at a pojnt RY by performing  observation that, as long as the spatial coupling in the system
a linear least squares regression in a neighborhogd®iich  is reasonably short range, optimal predictions are often ob-
a neighborhood must contain a sufficient number of dataained in very low embedding dimensiof#, even when the
points to yield a meaningful estimate and yet not be so largeimensionality of the attractor is high. This somewhat coun-
that the function is no longer linedor quadratic, respec- terintuitive result might be explained by the rapid spatial
tively). As d grows, more and more data are necessary telecay of the dependence of the dynamics at one site on its
ensure that sufficient numbers of neighbors can be found angeighbors[5]. This suggests that it ought to be possible to
for d much larger than 6 or so the amount of data requirecbtain reasonable estimates of the Jacobian by performing
becomes completely impracticable. This problem is often in-appropriate fits in low embedding dimensions, hence avoid-
formally referred to as the “curse of dimensionality.” ing the “curse of dimensionality.”
It is therefore perhaps surprising that, at least in some The aim of this paper is to describe a method based on
cases, the whole Lyapunov spectrum can be estimated suthis intuitive idea and evaluate its performance in various
circumstances. The method is based on reconstructing only
the nonzero entries of the Jacobian in a row-by-row fashion.
*Present address: Department of Mathematics and Statistics, Si4ore precisely, if the coupling in a spatiotemporal system is
mon Fraser University, British Columbia, Canada V5A 1S6. Emailreasonably local then the only nonzero entries in the Jaco-
address: ricardo_carretero@sfu.ca; URL: http://www.math.sfu.cabian are near the diagonal. Rather than estimating the whole
~rcarrete/ric.html Jacobian, one should estimate only the nonzero entries
TURL: http:/ivww.ucl.ac.uk/CNDA (which can be done in a low embedding dimengiand set
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the remaining entries to 0. We call such an approagua  struction. We conclude that the “curse of dimensionality”

sidiagonal one. Essentially the same technique is used byrecludes any hope of a usable reconstruction when our fit-
Bunner and Hegger in Ref1], who successfully apply it to ting basis does not give a good global approximation to the
the logistic coupled map lattice, using local linear fits. How-dynamics. We then go on in Sec. VII to exploit the sparse
ever, as shown in Ref2], the standard logistic lattice is a Structure of the Jacobian when the coupling is short range to
relatively easy system for which to estimate the spectrumdevelop a quasidiagonal estimation technique for the Jaco-

even using local linear fit¢ather than quadratic ones, as in Pian. Additionally, we use the spatial homogeneity of the
[2] and herg It is thus impossible to judge from BH how system to dramatically increase the amount of effective data

well a quasidiagonal approach works when the local dynampoints available when perfprming a Ipcal fit. This circum—
ics presents a bigger challenge, or indeed when the couplinE"'ts Poth the “curse of dimensionality” and the error in-
is anything but nearest neighbor. Finally, ORS demonstrat uced by not using an appropriate global basis. Section VIl

that dramatically improved estimates of the spectrum can bt dter\1/ oted to }he (i:;tta)n?rallzatmntpf”oudr app_roach to lfsystT:r_nS
obtained by truncating the outer lay®r of the estimated at have nonlocal but exponentially decaying coupiing. Fi-

Jacobian, thereby eliminating boundary effects. Such trunce{]a”y' in the last section, we propose a natural extension of

tion is not considered by BH. our _met_hod to_the esti_mation of the Lyapunov spectra of
The present work combines the best features of BH an(ﬁ)artlal differential equations.
ORS together with additional generalizations and extensive
supporting numerical evidence. In particular, we evaluate the
guasidiagonal approach when applied to a more difficult lo-
cal map, using a more flexibl@uadrati¢ fitting basis. We The occurrence of chaos in spatiotemporal systems has
investigate the effect of truncating the outer layers of therecently attracted the attention of a large part of the dynami-
estimated Jacobian and assess the effectiveness of our a@l systems community. There exists nowadays a broad un-
proach when the coupling is exponentially decaying, rathederstanding of low-dimensional chaotic systems. However,
than just nearest neighbor. The encouraging numerical re¢he same cannot be said of high-dimensional systems and in
sults we obtain motivate us to present a possible extension @farticular of spatially extended systems. The addition of a
the quasidiagonal approach to continuous space-time expatial extent to the dynamics produces a complex interplay
tended dynamical system@.e., partial differential equa- between the local dynamidshe original dynamics before
tions). including spatial interactionsand the spatial interactions.
For the convenience of the reader, we present our apSometimes, this interplay triggers the so called phenomenon
proach in a largely self-contained manner, leading in a natuef spatiotemporal chaos. Loosely speaking, this refers to sys-
ral progression from a scalar method, which gives very pootems that combine a familiar temporal chaotic evolution with
results, to a successful quasidiagonal estimation of the Jacan additional decay of spatial correlations. In a spatiotempo-
bian from multivariate time series. In the process we high+al chaotic regime both space translations and time evolu-
light the relationship between the “globality” of the fitting tions exhibit instabilities and it is even possible to define
basis and the “curse of dimensionality.” We also emphasizespatial and temporal Lyapunov exponef$. One possible
the importance of properly addressing the effects of thesimple mechanism for obtaining spatiotemporal chaotic mo-
boundaries of the subsystem where we collect the multivarition is to spatially couple low-dimensional chaotic units; al-
ate time series. though one has to be careful because the coupling sometimes
The paper is organised as follows. The next section givetends to reduce the spatiotemporal instabilifiéls However,
a general introduction to spatiotemporal systems and det is also possible to produce spatiotemporal chaos through
scribes the prototype modéh coupled map lattigethat is  the spatial interaction of well-behavddonchaoti¢ units.
used in our numerical investigations. In Sec. Il we provide aThis is the case for some metapopulation dynamics models
short overview of Lyapunov spectra for extended dynamica[8].
systems and their relationship to fractal dimensions and the In contrast with nonspatially distributed systems, spa-
Kolmogorov-Sinai entropy. We give some examples and extiotemporal systems possess a spatial extent. This may be
plain how to estimate the Lyapunov spectrum from sub-discrete, giving a lattice with a local dynamical unit at each
system information using a suitable rescaling. In the follow-site, or continuous. The typical model in the latter cé$e
ing Sec.(IV) we attempt to estimate the Lyapunov spectrumtime is also continuoysis a partial differential equation
using a scalar time series. We find that the lack of spatialPDE). By discretizing space we obtain a lattice of ordinary
information hinders any attempt to obtain a meaningful re-differential equationgcommonly referred to as a lattice dif-
construction of the dynamics, and hence to estimate the speferential equatioh In the discrete space case, the system can
trum. In Sec. V we present a systematic numerical study obe viewed as a collection of low-dimensional dynamical sys-
estimates of the Lyapunov spectrum using different spatems coupled together via some spatial rifite a review of
tiotemporal reconstructions. We discover the importance oturrent research, see RdB]). Examples of this kind of
including spatial information in order to obtain reasonablemodel are widespread in the literature, particularly in the
reconstructions of the dynamics. We also point out thafield of solid state physics where they are used to study the
boundary effects on the measured subsystem have to lynamics of interacting atoms arranged in a lattieee Ref.
properly addressed by truncating the outer légjeof the  [10] and references thergin
estimated Jacobian. In Sec. VI we turn our attention to the In this paper we focus our attention on a third category of
effect of passing from a local fit to a global fit when increas-extended dynamical systems where not only space but also
ing the embedding dimension of the spatiotemporal recontime is discrete. In such a case the model consists of low-

Il. SPATIALLY EXTENDED SYSTEMS
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dimensional dynamical units with discrete tiiee., map$  direction swamps all the other expansion/contraction rates.
arranged in some discrete lattice configuration in one oiTherefore one has to resort to algorithms that regularly re-
more spatial dimensions. Such models are usually calledrthogonalize the product of the Jacobians. Such algorithms
coupled map lattice6CMLs). They were first introduced in  perform a QR decomposition every few iterates and are
1984 as simple models for spatiotemporal complekity—  closely related to standard methods of computing gigenval-
13]. Despite their computational simplicity, CMLs are able Ues[19]. Such procedures are based upon the factorization of
to reproduce a wide variety of spatiotemporal behavior, suck€ Jacobian matrix into a product of an orthogonal mafix

as intermittency 14], turbulence 15,16, and pattern forma- @nd on upper triangular matrik (QR decomposition The
tion [17], to name just a few. QR decomposition can be carried out using Gram-Schmidt,

In this paper we shall focus on a one-dimensional array Oﬁouseholder, or Givens based techniques. In this paper we

sites. The length of this array could be infinite but here welS€ an efficient Householder method where only the terms

restrict ourselves to an array of length with periodic required for the computation of the Lyapunov exponents are

o . . . . actually calculated20].
bpundary condltlpns. At théth site we mtrodqce a discrete We define the Lyapunov spectrufinS) as the set of Lya-
time local dynamical system whose state at timee denote

by x" hat th local punov exponent@\i}i'\‘:1 arranged in decreasing order. The
Y Xj- We suppose that the same ocal 1w agcts at every | g ot only gives the expansion/contraction rates of infini-
spatial locatior(so that the local dynamics is homogengous (esimal perturbations, but can also provide estimates of frac-

In the simplest case, the local variabfgis taken to be one tal dimensions and entropies. Thus, for instance, the dimen-
dimensional. The dynamics of the CML is then a combina-sion of the chaotic attractofi.e., informally the effective
tion of the local dynamics and the coupling, which consistsnumber of degrees of freedgiis given by the Kaplan-Yorke

of a weighted sum over some spatial neighborhood. The timeonjectureg[21] through theLyapunov dimension

evolution of thejth variable is thus given by K

X1=3 e 0410, & el
wherek is the largest integer for whicﬁ!‘zl)\i>0. Itis also

where the range of summation defines the neighborhood. THeossible to extract an upper bound for thelmogorov-Sinai
coupling parameters, are site independent, and satisfy (KS) entropyh from the LS by the following approximation
>e=1. The commonest choice for the coupling scheme il 18]:

XH= (1= OO+ S )+ ] @ h=2 ®

where the summation is over the positive Lyapunov expo-
which is sometimes calleddiffusiveCML. This is a discrete neﬂts)\iJr . The KS entropy quantifies the mean rate of infor-
analog of a reaction-diffusion equation. There is Now amation production in a system, or alternatively the mean rate
single coupling parameter which is constrained by the in-  of growth of uncertainty due to infinitesimal perturbations.
equality O<e<1, to ensure that the signs of the coupling  As an example, Fig. (& shows the LS for a coupled
coefficients in Eq(2) (i.e., e/2 and 1-¢) remain positive.  |ogistic lattice of sizeN=20 with periodic boundary condi-
tions obtained using the known dynami@s. In Fig. 1(b) we
ll. LYAPUNOV SPECTRA FOR EXTENDED plot the sum of the Lyapunov exponert§_,\; from where
DYNAMICAL SYSTEMS the KS entropy can be estimatéchaximum of the curve
and the Lyapunov dimension can be extractedersection

I__et US Now give an overview on the extraction and appl"with the horizontal axis Notice that the Lyapunov dimen-
cation of Lyapunov spectra for spatiotemporal systems. For.

an N-dimensional dynamical system there eXsLyapunov S'(in D =15.4 is comparatﬂe o t_he t(_)tal size of the lattice
exponents which in principle can be obtained from the eigenN._Zoi Also pbserve tthL_lS.'A' |m_pI|es.the presence of a
values of the matrix h|gh—d|mens_|onal attractor. Th|s. point will be addressed in
more detail in the following sections.
T'=lim[P(n)"-P(n)]¥2, 3) The_z computation of the whole L_S for spatiotemp_oral sys-
n—soo tems is a cumbersome task, particularly as the size of the
system increases. Even the most efficient methods involve
whereP(n) corresponds to the product of the firsfacobi-  O(N?®) arithmetic operations per time stg¢p9] for a lattice
ans along the orbit and-()" denotes the matrix transpose. It of sizeN. Even for moderate lattice sizeBl{50) the num-
is well known that given an invariant measuyrehich is usu-  ber of operations required is already considerable. Moreover,
ally assumed to be the natural measure for the dynartiies  taking into account that sometimes tttiene) convergence of
multiplicative ergodic theorente.g., Ref.[18]) ensures that the Lyapunov exponents is extremely slow, the time neces-
the limit exists for almost all initial conditiong®, and if the  sary to compute the whole LS for spatiotemporal systems
measure is ergodic then its eigenvalues are independent qtiickly becomes prohibitive. Furthermore, one is often inter-
x%. The Lyapunov exponents are then defined as the logaested in the behavior of the system in the thermodynamic
rithms of these eigenvalueévhich are obviously non- limit where the number of lattice sitdd goes to infinity. In
negative. Although computing the exponents using E8)  such a case it quickly becomes impossible to compute the
appears straightforward, in practice multiplying the Jacobiwhole LS and one has to resort to subsystem rescaling tech-
ans is an ill-conditioned procedure since the most expandingiques that we shall now briefly describe.
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0.4 In Ref. [24] we show that this rescaling allows for a far
02 better fit of the entire LS when rescaling subsystem LS. The
rescaling(6) was obtained by finding the best possible fit
0 when dealing with homogeneous evolutiod € xVk# )
02 where the LS can be obtained analytically. In fact, it turns
out that this rescaling gives a better fit not only for homoge-
. 04 neous evolution, but also for more general dynamics when
- 06 compared to the traditional scalimg=N/N; (cf. Ref.[24]
for more details Therefore, the rescaling) will adopted
-0.8 throughout this work.
] The rescaling of the whole LS from subsystem informa-
tion leads us naturally to define intensive quantities from
-1.2 extensive quantities. As a direct consequence of this rescal-
R A S S S S S S S ing, using the same argument as in the previous paragraph, it
2 4 6 8 10 12 14 16 18 20 is straightforward to see that the Lyapunov dimension and
i the KS entropy are extensive quantitie®., D, andh in-
3 rr———r—T—T— T crease linearly wittN). Moreover, it is useful to introduce
3 b) their respective densities by simply dividing them by the
2t 1 system volume(lattice size [25]. This even allows such
1 / D; | quantities to be defined in the thermodynamic limit, although
care has to be taken in doing this for systems such as PDEs
0 where space is continuo(i26].
< By using subsystem rescaling one can considerably re-
=[T T 1 duce the computing resources required to estimate the whole
By | LS of a large spatiotemporal system. Furthermore, by re-
stricting oneself to observing data from a subsystem, one
3} 1 reduces the dimensionality of the resulting time series and
increases the likelihood of success in applying reconstruction
| techniques.
-5 L L . L L L L L L
2 4 6 8 10 12 14 16 18 20 IV. LYAPUNOV SPECTRA FROM UNIVARIATE TIME
k SERIES
FIG. 1. (&) Lyapunov spectrum for a CML dfl= 20 fully cha- In the previous section we assumed that the dynamics of

ofic logistic mapsf(x) =4x(1—x) with coupling strengtle=0.4.  the system whose LS we wished to compute was known.
(b) The Lyapunov dimensio, and the KS entrop)h may be  Thjs js not the case for many complex physical systems. We
estimated from the sum of the Lyapunov exponents. In this case thg,erefore now turn to the task of estimating the LS when the
largest Lyapunov exponent is,=0.36, D =15.4, anch=1.8. only information available about the system is a time series
of observed data. Let us start by applying standard delay
Consider a one-dimensional lattice of coupled onereconstruction techniques for a single-observable time series.
dimensional dynamical units. High-dimensional cases mayrhus suppose that the univariate time sefied} has been
be treated in a similar way. Assume the array is larye ( measured from &-dimensional system. We can create a
>1) and suppose initially that it is made up of smallede-  high-dimensional reconstructed state space by constructing
pendent(uncoupled subsystems of sizblg. For simplicity  the delay vectors
take N to be a multiple ofNg. The LS of the whole lattice
then consists oN/N, exact copiegassuming spatial homo- Y= ("t L), 0
geneity of the subsystem LS o Lyapunov exponents.
Thus, the LS for the whole lattice consistsé{ Lyapunov
exponents, each with multiplicit\/Ng. As we relax the

whered is the so-calle&mbedding dimensioifakens’ theo-
rem [27] says that ford=2k+ 1 the dynamics induced on

assumption that the subsystems are uncoupled we hope thSaHCh delay vec_tors IS _generlcally smoo_thly conjug_a_te t(.) the
original dynamics. This apparently arbitrary condition is a

the LS does not change significan{lg2,23. If this is the . . . S )
S ge significan{lg2,23 S 18 . simple geometrical disentangling in order to avoid self-

case, the whole LS of the original lattice may be approxi-; 4 )
mated by a rescaled version of its subsystem LS. Intersections on the r_econstructed mgnﬂkﬂﬂ]. The s_mooth
An obvious choice for such a rescaling is to multiply the conjugacy betwgen mdu_ced and ongmql dynamics asse_rts
indexi of the N, subsystem Lyapunov exponentgN,) by that the time series contains a_ll the co_ordlnate-fre_e properties
r’=N/N,. However, careful analysis of the LS of a homo- of a dynamical system. S_peC|f|caIIy, since th_e LS is invariant
geneous state suggests that a better rescaling for on nder smooth conjugacy.e., smc_)oth coordinate changes_
dimensional lattices is given H4] the LS computed from the dypa}mms of the delay vectors vylll
be the same as that of the original system. Note that the time
series need not be the time history of one of the system’s
= N+1 6) state variables but can be any generic function of the state of
Ng+1 the system. In particular, in principle it is possible to recon-
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struct all the Lyapunov exponents from a univariate time 0.4 — — T T T T

series. To anyone familiar with the proof of Takens’ theorem 02 |

it is obvious that it generalizes straightforwardly to multi- ’

variate time series, although as far as we are aware a proof 0 .

has never appeared in the literature. o2 |
Unfortunately, Takens’ theorem does not actually apply to ’

the CMLs considered hefd]. First, the maps that we use as -0.4 .

local dynamics are not invertible, and the proof of Takens’

theorem depends fundamentally on such invertibility. Sec- 06 1

ondly, we assume translation invariance of the C{il&., the -0.8 -

dynamics and coupling are spatially homogenégaeuml such

symmetry renders our systems far from generic. Finally, in a -1 1

similar fashion, measurement functions depending on only a -1.2 i

single site(or group of sitesare not generic in the space of 4 L o

all observables; indeed, a generic function will depencibn "0 2 4 6 8 10 12 14 16 18 20

N sites. On the other hand our results, and in particular the

7

comparison with the LS computed in the previous section
assuming full knowledge of the actual dynamics, suggest that F|G. 2. Estimates of the LS for a logistic coupled map lattice of
we are able to estimate the real LS from observed time sesize N=20 and couplings=0.4 computed using a time delay re-
ries. We shall therefore use delay reconstruction techniquesnstruction(with d e[32,42)) from a univariate time serie&hin
throughout this paper without worrying about this failure of lines. A second-order local fit from a sample of“Lpoints was
Takens’ theorenfand in any case the theorem draws conclu-used and the number of neighbors was set to the number of param-
sions only for generic dynamics and measurement functionsters in the fitting process plus 20. For comparison the spectrum
and so cannot guarantee reconstruction for any particulezomputed from the original dynamics is depicted with a thick line.
time series An orbit length of 16 iterations was used in both cases and the

For the extended dynamical systems we are consideringomputed LS was rescaled using E6).
the dimensiork is the size of the lattic&l times the dimen-
sion of the local dynamics. Hence for the logistic coupledapproximations. These can be constructed by scanning the
map lattice in Fig. 1 we gét=N. Even for quite moderatd  time series to find a set of past close encounersrespond-
an embedding dimension of\2+1 is clearly quite imprac- ing to neighbors in the reconstructed state spat¢he cur-
tical. Of course, the conditiod=2k+ 1 is only a sufficient rent reconstructed staté'. Once these neighbors have been
one, and it is well known that some syste(@g., the Lorenz  found, an approximatiok to F aty" can be computed using,
equationg can be reconstructed for smaller valuesdoFur-  for example, a least squares fit within an appropriate space of
thermore, Sauer and York&29] have a sharper estimate for  functions(e.g., linear or quadraticFor a comprehensive re-
that is still sufficient to preserve the box-counting dimensionview, see the recent book by Kantz and Schre[l3é. For
and the Lyapunov exponents large embedding dimensionsl{6) it becomes extremely
difficult to find close neighbors and hence, due to data limi-
tations, the approximation t6 ceases to be local. This in
turn can lead to large errors in the determination of the
whereDyg is the box-counting dimension of the attractor andLyapunov exponents.

D+ is a “tangent dimension” which is informally the maxi- It is clear then that function approximation techniques are
mum dimensior{over all point$ of the tangent space of the bound to fail when reconstructing spatiotemporal systems
underlying dynamics. However even this is still very prohibi- where the dynamics is typically high dimensional. As an
tive. For example, for the system in Fig. 1 the Lyapunovexample, Fig. 2 shows the results of an attempt to estimate
dimension for even quite a small lattice Nf=20 Coup|ed the whole LS from a univariate time series obtained from a
logistic maps isD, ~15.4. Then assuminBz=D, (i.e., es- single site of a coupled logistic lattice. The measurement
sentially the original Kaplan-Yorke conjectorethe bound function in this case is the projection onto a single site, so
(8) givesd>15.4+ D+, and one would typically expe®@+ that (anX]-n for a fixedj. An embedding dimension in the

to lie betweenDg and N, giving a value ofd from 30 up- range 32d=42 was used. It is obvious from the figure that
ward. Of course the Sauer-Yorke inequality is also just ahis temporal delay reconstruction of the LBverlapping
sufficient condition, but, if one is to preserve &llexpo-  thin lines completely fails to reproduce the LS of the origi-
nents, it seems that an absolute minimumdafN will be nal system(thick line). Other values of the reconstruction
necessary, and even this is too large to be generally practparameters than the ones given in the figure caption were
cable. also tried, yielding the same qualitative results.

Indeed, as indicated in the introduction, an embedding
dimension much larger thash~6 will lead to the “curse of
dimensionality.” Thus in order to estimate the LS from the
time series we need to approximate the map that governs the
dynamics of the delay vectors, that is, the nfaguch that Since the direct application of univariatiempora) delay
F(y")=y""1. There exist several methods for doing this, of reconstructions clearly fails for spatiotemporal systems, let
which the best for the purpose at hand are all based on locais now try to exploit the spatial extent of the system and use

d>Dg+Dy, (8)

V. LYAPUNOV SPECTRA FROM SPATIOTEMPORAL
DATA
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FIG. 3. LS estimated from spatiotemporal delay reconstructions F!G- 4. LS estimated from pure spatial delay reconstructions for
for a logistic coupled map lattice. The LS computed from the origi-2 l0gistic coupled map lattice. All the fitting parameters are the
nal dynamics is depicted with a thick line while the different spa-Same as in Fig. 2second-order fitting, T0points, 10 iterates.
tiotemporal delay reconstructions are depicted with dashed lines.

All the fitting parameters are the same as in Figs@cond-order  poral embedding dimensioms The different reconstructions
fitting, 10* points, 1 iterates. correspond to a broad sample of choiceslgandd,. Note

) ) that simply increasingl=dd; does not improve the esti-
a spatiotemporal delay reconstruction. The framework for Py ¢1=dyd; P

h . X mates. In fact, in order to get a good estimate of the LS, it
this is presented if4]. Here, we shall show the benefits of _ .
including spatial information in estimating the LS. We shall seems preferable o takk=1 andd, as large as possible.

also investigate the advantages of truncating the outer IayeTrhIS Is indicated by the empty and filled circles correspond-

of a reconstructed Jacobian in order to avoid boundary efd to d;=1 andd,=10 andds=20, respectively. In the

fects. We have already addressed these issues in a previol@uré We show only a few combinations ofi.d;). How-
paper[2]; however we repeat some of the analysis here fo€Ver. We originally considered a much broader choice with-
completeness. out finding any qualitative differences. We therefore con-
A spatiotemporal reconstruction is obtained by replacingflude that a spatiotemporal reconstruction vetk 1 (that is
the delay vector$7) of the previous section by thepatio- @ purespatial delay reconstructiongives the best results.
temporaldelay vectors This is easy to explain since we are using the actual dynami-
cal variables of the systempf'=xj‘) as observables and are
measuring them in a complete window. Thus, we do not
Yi=(] b1, b a1y (9) need to increase the embedding dimension to avoid self-
intersection in the reconstructed space since we are already
in a natural space for the system. In a more general

1) .
X T L X are time-dela . - )
U TR ) y scenario—where the observables are nontrivial functions of
vectors and the spatial indgxs fixed. The overall embed- . . .
the dynamical variables—one would expect the need to in-

ding dimension for such a spatiotemporal reconstruction is ) : )
d=d.d,, whered, and d, denote the spatial and temporal corporate time com.ponentsit(> 1) in order to obtain rea-
embedding dimensions, respectively. The standard temporgpnabl'_3 reconstructions. . .
delay reconstructioli7) is recovered by settind=1. Spa- In Fig. 4 we show the reconstruction of the LS using a
tiotemporal reconstructions have proved useful in variou®Ure spatial reconstruction with increasidg. These esti-
contexts[31-33. By adding the extra spatial delay in the Mates are much more promising than before. Note that since
time series one is including important information that isOUr original system is of siz&=20 it is not possible to
otherwise very difficult to obtain. In fact, it is extremely chooseds>20. Indeed, we have to be careful, since taking
difficult to extract information about neighboring dynamics d;=1 andds=N=20 corresponds to measuring tiole
just by doing spatially localized measurements. This is bestate space and is therefore not a genuine delay reconstruc-
cause of the rapid decay of spatial correlations in locallytion. This explains why the reconstructed LS fi=1 and
coupled extended dynamical systems. In a previous d&per ds=N=20 agrees so well with the direct computatidis
we showed how this extremely rapid decay in correlationsangles in Fig. 4 although note that in Fig. 1 we know the
allows a quite small truncated lattice with random inputs atJacobian of the dynamics exactly, while here we still have to
the boundaries to reproduce the local dynamics of a largejo some function fitting.
potentially infinite, lattice. This tends to suggest that a uni- From Fig. 4 we see that af is increased a better esti-
variate time series cannot in practice reconstruct the dynanmate of the LS is obtained. One may think that this is simply
ics of a whole spatiotemporal system. the effect of getting a higher embedding dimension. How-
In Fig. 3 we present several estimates of the LS of theever, the reason for the apparent convergence of the recon-
coupled logistic latticdas in Fig. 2 for different spatiotem- structed LS toward the exact LS ds— N is simply due to a

whose entriesp] = (x],x]'~* N0
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FIG. 5. LS estimated from pure spatial delay reconstructions for
a logistic coupled map lattice using truncation of the outer layer of FIG. 6. Skewed logistic mafthick line) for b=0.2 obtained by

the Jacobian. All the fitting parameters are the same as in Fig. gl lving Ea.(10) to the fully chaotic logistic mardashed lin
(second-order fitting, 10points, 10 iterates. pplying Eq.(10 y g o 4

i i . tions is actually contained in the space spanned by the basis
reduction of the noise from boundary effects. Consider thg nctions used to approximate them. In particular, the dy-
sites at the boundary of our spatial window in which We namics of our CML is quadratic in natufef., Eq. (2) with
measure the multivariate time series. The dynamics of thesgistic local mapgand we are using a quadratic fit. Thus, a
sites depends on sites whose evolutionasexplicitly con- |ocq) fit is in fact also a global one and the problem of not
tained in the measurement window. As a consequence, thg,qing enough neighbors in high dimensions is avoided. It
estimates of the Jacobian for these sites contain spurioyg s turns out to be possible to obtain very good estimates of
terms and are subject to error. For instance, the fitting prog,e dynamics with even moderate amounts of data.
cedure for the first row tries to compensate for the lack of However, this situation is unlikely to arise in most real
information from the left neighboring site that is outside theapplications, and typically we expect that tfielay recon-
measurement window by including an artificial dependenceycteg dynamics will not lie in the space spanned by the
on all sites inside the window. This will yield erroneous pagis functions. To investigate the effects of this we now tumn
nonzero terms off the tridiagonal. our attention to a skewed logistic local map, which yields a

We can avoid these effects by observing that the boundc whose dynamics is not contained in the space of qua-
ary sites contribute toward the Jacobian at its outer rows ang, atic polynomial functions that we use for fitting. This map

columns. We can therefore remove such boundary effects by ptained from the standard logistic mégx) =ax(1—x)

simply truncating the outer rows and columns of the recony,y, applying the following skew transformation of the unit
structed Jacobian to yield al{—2)X(ds—2) matrix [2]. square:

Note that one must first fit thés X dg Jacobian and only then

truncate its outer rows and columns. Also observe that for a

spatial delay embedding dimensidgwe obtaind,—2 Lya- K(x,y)=(x+by,y), (10
punov exponents. The results of applying this technique are

shown in Fig. 5. Comparing this to Fig. 4 where the outerwhereb is a parameter determining the degree of skew. In
layer of the Jacobian was not truncated we see a dramatibis way we obtain the mafFig. 6)

improvement, and in particular can obtain good estimates

even for quite smaltl; (see also Ref.2]). It is obvious that >

the truncation of the outer layer of the Jacobian has to coin- (x)= —1tab(2x—1)+(1+ab)"—4abx 11
cide with the range of the coupling: the larger the coupling 9o 2ab?® '

range the more outer rows and columns must be truncated. ) o
This is considered further below in Sec. VIIL. whereb must satisfy— 1/a<b<1/a so that the derivatives

of g, at 0 and 1 remain bounded.

We now repeat the estimation of the LS for this skewed
map. Figure 7 shows the effects of increasing the spatial
embedding dimensiods in the case of large skeWw=0.2.

It is somewhat surprising that the estimated LS'’s in Fig. 50bserve that for smatl; (<6) the approximation of the LS
are in such good agreement with the actual LS despite this quite good(see square points in figyreHowever, asdg
fact that the embedding dimensions éagtoo small to dis- increases, the estimate deteriorates. This reflects the fact that
entangle the state space aiitoo large to avoid the “curse as the embedding dimension grows the fitting algorithm has
of dimensionality.” The explanation for this apparent con- more and more difficulty finding close neighbors. Since the
tradiction is that the measurement functions are the actualkewed logistic map cannot be well approximated globally
variables of the system and the form of the dynamical equaby a quadratic function the LS estimate deteriorates. Note,

VI. LOCAL VERSUS GLOBAL FITTING: A MATTER OF
DIMENSIONALITY
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outer layers of the Jacobian. Therefore if we try to avoid the
“curse of dimensionality” by working in low embedding
dimensions withds<6 we obtain only four points or fewer

on the LS density curve. Even if these are accurate, we can-
not in general expect to extrapolate the whole spectrum from
just these four points. Hence estimates of Lyapunov dimen-
sion and KS entropy are likely to be quite pdai.

The results presented in this section suggest that, as soon
as the dynamics cannot be globally approximated by the
space spanned by the basis functions used in the fit, and as
soon as more than a handful of Lyapunov exponents is re-
quired, standard spatiotemporal embedding techniques can-
not reliably estimate the LS. In the next section we shall
show how this difficulty can be overcome by focusing on the
estimation of only the nontrivial entries in the Jacobian. An
alternative approach is to find an adapted fitting basis that

FIG. 7. Estimation of the LS for a coupled map lattice of Will allow us to fit the dynamics globally. This can be done
skewed logistic maps. The size of the latticéNis 20, the coupling by first extracting an estimate of the local dynamics from the
parameter iz = 0.4, and the skew parameteris-0.2. The original  time series and then using this to construct an appropriate set
LS is indicated by the solid line and the estimates using a range abf basis functions. One possible way of estimating the local
spatial embedding dimensions are depicted by various symbols. dynamics is to use time-delay pld]. An even more prom-

For larged, the estimates deteriorate because of the “curse of di-ising technique is to consider quasihomogeneous states in a

mensionality.” All the fitting parameters are the same as in Fig. 2small window and their time evolutiof8].
(second-order fitting, 10points, 10 iterates.

2 4 6 8 10 12 14 16 18 20
¢

however_, thgt, even though an accurate estimate of the LS is VII. QUASIDIAGONAL RECONSTRUCTION
not pos§|ble in this case, the estimated LS does have the right OF THE JACOBIAN
gualitative features. This is due to the fact that the skewed
logistic map still resembles a quadratic function to some ex- In this section we improve the method presented above by
tent and thus a global fit is still reasonable. This is illustratednaking use of the local nature of the coupling in our CML,
in Fig. 8 where we present the effect of varying the degree ofvhich results in the Jacobian exhibitingbanded-diagonal
skewb, and hence the degree of departure from the space @ftructure It is thus natural to attempt to estimate only the
quadratic functions. We see that as the skew is increased ti@nzero entries in this Jacobian. We call thizuasidiagonal
error between the actual and the estimated LS rapidly inreconstruction. This allows us to carry out the local fit in a
creases. Using a local map that is even further from the spadew-dimensional space, and avoids the difficulties described
of quadratic ones leads to yet greater discrepan@gs above. A similar idea was employed by fher and Hegger
Finally recall also that the number of Lyapunov exponentd 1]. However, they applied it only to a standard logistic
obtained for a giverl, is ds— 2 due to the truncation of the CML, which as we have seen above is a relatively easy sys-
tem for which to estimate the spectrum using conventional
means. It is thus impossible to judge from their work how
much of a benefit the quasidiagonal approach actually brings.
Additionally, here we combine this technique with a trunca-
1 tion of the outer layers of the Jacobian, which, as we have
seen above, brings substantial benefits, but was not consid-
ered in[1].
] The idea behind a quasidiagonal reconstruction of the
] Jacobian is quite simple. The entries of the Jacobiar) at
time n are given by

0.6

04 faa

02

0

-02
< o4}

0.6 b=0.05,d, = 20 .
08 F T b = 01
= b=0.1,d,=20 gx*L
“1F Xk
b=0.2 Ju(n)=——. (12
-12F e b=02,d, =20 X

2 4 6 8 10 12 14 16 18 20

¢ Due to our assumption of localized coupling most of these

FIG. 8. Effect of the skew of the local map when estimating theterms are identically zero. The only nonzero terms lie within
LS. Curves correspond to the LS’s computed with the known dy-2 distance of the diagonal given by the distance over which
namics and the symbols depict various pure spatial delay recorthe coupling acts. In the particular case of a nearest neighbor
structions. All the fitting parameters are the same as in Fig. Z2ML (2), the Jacobian is tridiagonal, and has only three
(second-order fitting, T0points, 10 iterates. nonzero elements in each row:
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g d; O 0 04
2 2 2
g1 d3 d3 0 02
0 0 0
J(n)= , (13
(n) 0 do (13 02
-1
S
0 %q, < 04
dS dS
0 0 dgy g -0.6
L . 0.8
where, for simplicity, we use the notation
-1
n+1
u ax]—oﬁ»U*l -12
(9v=(7xn—. ) ) ) L ) L ) L )
jotv—1 2 4 6 8 10 12 14 16 18 20

Note that the Jacobiafl3) is extracted from siteg, to jq ¢

+d;—1 and so is of sizal,xdg. The starting indeX is FIG. 10. Tridiagonal estimate of the LS for a lattice of coupled

arbitrary since we are assuming spatial homogeneity. skewed logistic maps as in Figs. 7 and 8. The skew=<.2 and
We estimate this Jacobian in a row-by-row fashion bythe width of the window used to extract the multivariate time series

fitting local dynamics of the form is 20 sites. All the fitting parameters are the same as in Fig. 2

(second-order fitting, TOpoints, 10 iterates.
X =R XX ) (14
of the form ({'_;,x]',x", 1), regardless of position. This dra-

for (1<r<dy). This fit is carried out in just a three- matically increases the effective amount of data available to
dimensional space, as opposed tdsalimensional space as ;5 for performing the fit. Additionally, if the dynamics is

before, and close neighbors are defined by their distancgsq jsotropic, i.e., invariant under the symmetry that ex-

n
changes<Jn with xﬁ_j , we can use all triples in reverse order

from (x{_1,X[',x/', ;). It is then important to stress that, for
this quasidiagonal reconstructiah, no longer plays the role ﬁx?“ ,x}‘,x}‘_l). Of course, if the coupling acts over a longer
ange then the map, will depend on more variables, but as

of an embedding dimension but indicates solely the size o

the measuring window used to extract the data. The embeqléng as the coupling remains reasonably local this approach

ding d'”.‘e”S"’r.‘ n this case corresponds to 3 since we argiil still bring advantagegwe investigate this further in the
performing a tridiagonal reconstructipof. Eq. (14)]. There- next section

fore, this method circumvents any problems with high di- The first and last rows al(n) contain only two nonzero

maer_r;sr:??aellty. Falf{.rgrler?;;ea H;Lheeo)(jyngrzgjr? IS ga;r]slagf)?em'entries due to the lack of information from outside the ob-
vari .., spatially 9 S us y tnp servation window. As before, the entries will be estimated

incorrectly since the fitting algorithm will compensate for the
lack of the missing entry by erroneously adjusting the re-
maining two. We therefore truncate the outer layers of the
Jacobian as in the previous section and compute dgly
—2 Lyapunov exponents from a window of sizk. The
improvements due to such truncation are shown in Fig. 9.
Note that these become less apparent as the wlidtif the
observation window increases. This is consistent with the
fact that the boundary effects become less significant as the
size of the subsystem grow5]. Nevertheless, given that it
always leads to better estimates, we shall continue to employ
such truncation throughout the remainder of the paper.

i Figure 10 shows an example of the estimation of the LS
using a quasidiagonal reconstruction with a large window
ds=20. Compared to Figs. 7 and 8 we see that this approach
20 can give an excellent estimate, even though the local map
7 cannot be well approximated by a quadratic fit. Similar re-

_ _ sults were obtained for different maps and coupling
FIG. 9. Effect of truncating the outer row of the Jacobian for astrengths.

tridiagonal estimate of the LS for a lattice of coupled skewed logis-
tic maps as in Figs. 7 and 8. The skewbis 0.2 and the width of

the window used to extract the multivariate time seriedgisites. VIII. ESTIMATING THE LYAPUNOV SPECTRUM EOR
The open symbols correspond to using the whole fitted Jacobian EXPONENTIALLY DECAYING COUPLING
while the solid symbols correspond to truncating the outer layer of

the Jacobian. All the fitting parameters are the same as in Fig. 2 The CML used to illustrate our method in the previous
(second-order fitting, 0points, 10 iterates. sections allowed interactions only between nearest neigh-

0.4
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bors. There are, however, many other systems of interest 0.6
where the coupling acts over greater distances. In this section 04
we investigate the performance of our approach in such ‘
cases. Typically, it is assumed that the coupling decreases in 0.2
strength with distance, giving a band-diagonal Jacobian with 0
subdiagonals whose entries decay as we move away from the
diagonal. A suitable paradigm model to represent this is a . 02
CML where the coupling range is in fact infinite but whose -~ 04
coupling coefficients decay exponentially with distance: 06
1-8 —0.8 =1
nt1_— P li—Klf(xn : g=2
X T1vg k;x BT (X, (19 b ogo3
. . 12 qg=4
where the coupling parametgre (0,1). The limit3—0 cor- e
responds to the uncoupled case, ix?.fl depends only on 2 4 6 8 10_ 12 14 16 18 20
x}‘. The limit 8— 1 corresponds to global coupling of all the !
sites with the same coefficient. Thus increasthgffectively FIG. 11. Estimation of the LS using a §2 1)-diagonal recon-

increases the range of the coupling and results in more angruction of the Jacobian for a lattice of coupled skewed logistic

more subdiagonals of the Jacobian becoming significaninaps with decaying exponential couplifigs). The data are ob-

While for B8 close to O, it is reasonable to expect that aserved in a window of sizel,=20, the skew isb=0.2, and the

tridiagonal reconstruction will still suffice, it is clear that as decay rate i$3=0.35. The coupling parameters f8#=0.35 corre-

B increases more subdiagonals will need to be taken intspond toey=0.481, £.,=0.168, £.,=0.059, £.3=0.021, €14

account. =0.007, ..., in the general CML formulatiofi). All the fitting
We thus investigated the effects of using a higher-parameters are the same as in Fig(s2cond-order fitting, 10

diagonal reconstruction for data from a lattice with a rela-points, 10 iterates.

tively large B8 (0.35. If we fix the sizeq of the admissible ) _ ) ) )

interaction range we need to estimate a map depending offfiety of CML'’s using only time-series data with a reason-

2q+1 variables: able degree of accuracy. The most difficult test was where
the local dynamics was given by a skewed logistic map and
FEq)(prq: e XTo X X ,xp+q):xp+1_ (16)  the coupling was exponentially decaying. In that case, we

had to take a nine-diagonal reconstruction of the Jacobian
We now need to discarg outer layers of the estimated Jaco- (i.e.,d=4). Increasingy beyond this leads to increasing er-
bian to remove boundary effects, and hence if our observarors, due to the increase in the dimensionality of the recon-
tion window is of sizeds, we can estimated,—2q  struction space that we use. We therefore have a dichotomy
Lyapunov exponents. Here again we recall tthaho longer ~ when trying to estimate LSs for systems with extended inter-
plays the role of an embedding dimension but rather it indi-actions: on the one hand we would like to include as many
cates the size of the observation window. The equivalent tubdiagonals as possiblee., q as large as possibtehow-

the embedding dimension for this quasidiagonal approach
corresponds to the dimensionality of the map defined in Eq.
(16), namely, 1+ 1.

Figure 11 shows the results of this approach applied to the t
CML coupling schemg15) for different values ofq (still
with a skewed logistic map for local dynamjc¥Ve see that
the tridiagonal §=1) reconstruction completely fails to ap- 421
proximate the LS. However, agincreases the reconstruction
rapidly improves. Fog=2 the largest Lyapunov exponents
are captured accurately and the estimate of the remainder of
the spectrum is still quite poor. This improves significantly
for q=3 andq=4 where the approximation is rather good,
particularly given that the coupling is not genuinely over a
finite range. Increasing further led to a deterioration of the g
estimates of the LS. This is due to the reappearance of the v !

“curse of dimensionality:” forg=5 we have to find neigh- FIG. 12. Cone horizon for a disturbance in a one-dimensional,

bors in dimensiom=2q+1=11. We repeated these experi- space-time continuous, extended dynamical system. A disturbance
ments for other values g8 and other local maps, obtaining applied at the summit of the cone may alter the downstream dynam-

space

v

7T

time

similar qualitative results. ics inside the cone horizofshaded ardaApplying a given space-
time discretization(dashed meshinduces a particular neighbor-
IX. DISCUSSION AND GENERALIZATIONS hood structure: a node at timie- 7 depends on a fixed number of

_ o nodes at time (three in this case The slope of the cone horizon
We have shown that by using a quasidiagonal reconstrudixes the number of subdiagonals required in the quasidiagonal es-
tion of the Jacobian we are able to estimate the LS of aimation of the Jacobians.
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ever, on the other handj cannot be chosen too largg (  pling; for simplicity we assume the spatial sampling interval
=<5) otherwise we again encounter the “curse of dimensionis fixed, since varyingr is sufficient to demonstrate our
ality.” point. For the example depicted in the figure a sampling
Of course, in practice if we do not know the dynamics ofinterval of 7 yields a tridiagonal Jacobian. This is because
a system, we are unlikely to knoav priori the range of the  there are only three sites in the cone horizon after a time
coupling. However, this is something that can be estimated-hys, for this choice of space-time discretization it should be
from a multivariate time series, using, for example, somesyfficient to use a tridiagonal reconstruction of the Jacobian,
kind of cross correlation. This in turn will allow us to esti- j e, with q=1. However, if we double the sampling interval
mate the width of the band of the Jacobian that is most apy 27 we shall need to use a five-diagonal reconstruction in
propriate to capture the essence of these interactions. order to include the five sites in the cone horizon after a time
A related problem arises when trying to reconstruct LSsp ;.
from multivariate time series produced by systems with a e intend to investigate the application of the quasidiago-
continuous space variable, or when probing real life exnal method to the estimation of a LS from a time series
tended dynamical systems. Consider, for example, a onggenerated by a PDE in a future paper. Additionally, we have
dimensional PDE and assume that we are free to choose tiitherto assumed that the observable is the actual state vari-
sampling intervals in both time and space at which data igple at a site. This is unlikely to be the case in many practical
observed. The Jacobian will contain a different number ofypplications. In such a case, we expect that the best approach
significant subdiagonals depending on the choice of thesgoyld be a combination of the quasidiagonal reconstruction

intervals. This is illustrated in Fig. 12 where we show the Somethod presented here with a local spatiotemporal recon-
called cone horizon for the evolution of a perturbation ingtryction of the dynamics.

space-time. The cone horizon corresponds to the region of
space-time where a perturbation, applied at the summit of the
cone, can influence downstream positions. Any point outside
the cone horizon cannot “feel” the presence of the distur-
bance. Such cone horizons always exist for extended dy- We would like to thank D. S. Broomhead, J. Huke, and T.
namical systems where the interactions have finite range, i.eSchreiber for useful discussions. This work was carried out
where information propagation has finite speed. Now supunder a U.K. Engineering and Physical Sciences Research
pose that we observe the system at regular intervals in spaouncil grant{Grant No.GR/L42518 J.S. would also like to
and time. This corresponds to the intersections of the gridhank the Royal Society, the Leverhume Trust, and the Royal
shown in the figure. Let us denote bythe temporal sam- Commission for the Exhibition of 1851 for financial support.
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