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Abstract

We present a framework for studying vortex lattice patterns and their structural transitions, using the Parrinello-Rahman (PR)
method for molecular-dynamics (MD) simulations. Assuming an interaction between vortices derived from a Ginzburg—Landau
field-theoretic context, we extract the ground-state of a “vortex gas” using the PR-MD technique and find it to be a triangular
pattern. Other patterns are also obtained for special initial conditions. Generalizations of the technique, such as the inclusion of
external potentials or excitation of quadrupolar modes, are also commented upon.
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1. Introduction mental advances in creating vorticl§ and vortex
lattices [2-5] in Bose—Einstein condensates (BECS)
The study of configurations and dynamics for [6,7]. Vortex lattices (VLs)[2-5] are particularly in-
a large number of topological charges has gained triguing for many reasons. They are observed to be
considerable momentum due to the recent experi- much more robust experimentally than was expected
theoretically[8]. Also, they form very clearly ordered
triangular lattices under the considered experimental
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conductors, the free energy arguments of Rf] can technique in the MD context (see, e.g., R¢i9-21]
be used to demonstrate that the triangular lattice is the and references therein for variants of the method).
most energetically favorable, ground-statnfigu- The main theme of this contribution is to present
ration. Experimental images of such lattices can be systematically the PR-MD approach for vortex lattices
found in Ref.[11]. Furthermore, these lattices can be based on a quasi-particle approach that incorporates
distorted and may display interesting non-equilibrium pairwise potential interactions. We will implement the
dynamics, upon excitation of appropriate quadrupo- PR-MD technique to obtain the triangular ground-state
lar modes forming transient orthorhombic, sheetlike configuration, as well as other metastable, transient
or other patterns such as ones containing dislocation states for a pairwise potential derived from the interac-
defects and other types of “imperfections” in their tion of spirals in the context of the complex Ginzburg—
crystalline structurg?,3]. Landau equation. Finally, we will discuss how the
Naturally, such patterns of topologically charged technique can be extended to account for external po-
states in the context of BECs have rejuvenated the in- tentials or to illustrate structural transitions of the VLs.
terest in the study of vortices (see, e.g., R&?] for a By using this PR-MD approach it is possible to fol-
recent review) and more specifically in the study of lat- low large (infinite) clouds of vortices, their crystalline
tices (see, e.g., Reffl3,14] and references therein). configurations and structural transitions, without the
We mention in passing that such patterns are also rel- need of numerically solving the original field-theoretic
evant in a variety of other contexts including super- models. This in turn allows for a systematic study of
fluid He [15], as well as fluid mechanics (see, e.g., possible structural transitions and their excitations (us-
Ref.[16]). Motivated by these findings, we revisit the ing coarse computational techniques, see conclusions)
topic of vortex lattices where we will assume, to first- that otherwise would be prohibitive using the original
order approximation, that the vortex “particles”, ini- field-theoretic settings.
tialized at random locations and without kinetic energy
in this setting, do not feel any external parabolic poten-

tial (below we relax this assumption). 2. PR-MD general setting
Our aim is to provide a proof-of-principle exam-
ple of how to implement, in the vortex lattice con- The PR-MD technique is based angmentinghe

text, the Parrinello-Rahman (PR) technique that has yortex dynamical equations in a systematic fashion
been successfully used in the study of ground statesith equations for thD cell (box) in which the vor-
and stress-induced structural transitions of crystalline tjces are containefll7]. Here, we adapt the PR-MD
materials[17]. The original idea of Parrinello and  4pproach to the two-dimensional setting relevant to
Rahman was to develop a molecular-dynamics (MD) yortices. If we assume that the coordinates of the base
extended-system methdd8] that accounts for box  yectors(a, 5)7 are (ay, ay)? and (by, by)", respec-

shape and size changes, i.e., the shape and size of thgye|y (7 denotes transpose), then these formsa2
computational domain (box) in which the dynamics matrix, denotedh in the PR notation, with1; = a,,
occurs are themselves properly treated as dynamicaly,,, — 4, 11, = by andhps = by. Then, the metric ma-
variables. In Ref[17], this allows to exert an exter-  ix G = h”h can also be identified as a simple (sym-
nal isotropic stress and observe structural phase tran-metric) 2x 2 matrix. Using then the PR ansdiz7],

sitions. In our setting, this allows a given pattern t0  gne writes down the Lagrangian for the augmented dy-
transfer some of its energy to the “flexible” domain, amics as:

and hence assume (or modify) its own ground-state L
configuration. To this date, this has been a widely used , _ 5 Xn: M(Gnénz 1 2G12E 0y + Gzzf),f)

1 . .
22 2 2 2
= pextS + 5 W (dx +dj + b5 + bY)
1 While vortex lattice configurations are highly excited states, we

use in this Letter the teriground-stateéo denote a configuration that - Z V Fmns Yinn)- (1)
minimizes energy within the subset of vortex lattice configurations. m,n
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In the above Lagrangiary, is the vortex—vortex pair-  used to describe the BECs at zero temperature assumes
wise interaction potential (see belowWy.is the “mass” complex coefficients and hence becomes an effective
of the MD cell (the dynamics is typically independent CGL equation. Such a dissipative model follows the
of its value; the latter determines how fast—for small form presented in Refl23], where it was obtained
W—or slowly—for large W—the dynamics will ap- phenomenologically to incorporate damping in BECs
proach its long-term behavior)M is the mass of the  (see also, e.g., ReR4] for other superfluid systems).
particles. Since we are only interested in ground-state Nevertheless, as shown in REf5], such a CGL equa-
configurations the actual value of the mass is irrelevant tion may also be derived (under some approximations)
(the ground state only depends on the potential interac- from a generalized GPE describing a trapped Bose gas
tion between particles). So, without loss of generality at finite temperaturg26]. However, apart from our

of our results we seM = 1. pext is the externally purpose to “emulate” situations encountered in realis-
applied hydrostatic pressure to the MD cell. In what tic experiments, the particular form of the interaction
follows we setpext = 0; however, we have checked potential is also consistent with the fact that the CGL
that pext > O leads to essentially the same lattice con- spirals have the same essential dynamic ingredients
figurations with slightly smaller MD box sizes. Notice  as the vortices in the GPE: (a) opposite-charge struc-

that in 3D, pext multiplies the volumes2 [17]. The tures travel together perpendicular to the line that joins
2D analog is multiplying the surfacg= |a x b|. run them and (b) same-charge structures produce a force
is the distance between the vortex centérsg, y,) perpendicular to the line that joins them, and thus ro-
and (x,, y»), while v, is determined by the angle tate around each other. Furthermore, it should be noted
between the centers and the horizonta) @irection: that the interactions of CGL defects are more compli-

Ymn = tam [(ym — yn)/(xm — x,)]. Notice that the cated[22] than the standard logarithmic interaction of
physical coordinateg, = (x,, y,)” and the PR-MD vortices in superfluid heliurf27]. Thus, the potential
(scaled computational) coordinatgs= (£,, v,)” are used in the MD simulations is:

connected through, = h - 5,. The ensemble inher-

ent in our formalism is an iso-enthalpic, isobaric one, v (r,y) = \/Ee(ﬂm _ \/Eewrm(omwn)w), A3)

but using the ideas of ReffL7], it can be extended to r r

an isostress and/or isothermal case. In fact, we imple- whereo; is the topological charge of vortex The

mented an isothermal—-isobaric version of the MD ap- second term ir{3) corresponds to a long-range attrac-

proach (by rescaling the velocities of the particles) and tion and is the term that arose in the CGL studies of

found that the equilibrium configurations were practi- Ref. [22]. However, notice that we also incorporate

cally indistinguishable from the isoenthalpic—isobaric a phenomenological first term in E¢3) that corre-

ones. sponds to a short-range repulsion, justified by the na-
From the 2D Lagrangia(l), one can obtain the dy-  ture of the vortex—vortex interaction (and the fact that

namics for each of theM + 8 degrees of freedom, say the vortices do not collapse into each other, but rather

g, andq,, via the Euler—Lagrange equations: rotate or propagate at a certain distance from each
d oL or other). Note that the parameterin Eq. (3) controls
——— = . ) the rotation of the vortex cloud, whilg; (8) mea-
dt 9qn  9qn sures the strength of the repulsive (attractive) force

To derive and solve these dynamical equations, we between the vortices. We should remark here that for
need the interaction potential between the vortices. the large class of potentials with long-range attraction
For our proof-of-principle example, we will use the and short-range repulsion, these results will essentially
vortex—vortex interaction potential derived by Aran- be model independent.

son et al.[22] for spiral defects in the complex

Ginzburg—-Landau (CGL) equation. The motivation for

this choice stems from the fact that at nonzero temper- 3. PR-MD ground-state simulations

atures, dissipation should be considered (due to the de-

pletion of atoms from the condensate and into the gas  Having set up the dynamical framework via
phase); then the Gross—Pitaevskii equation (GPE) Egs. (1)—(3), we can now examine the properties of
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Fig. 1. Crystalline configurations obtained from the PR-MD simulations without PBCs. The parametets=ate(a)—(c)N, = 36, = 0;

(d) Ny = 100; (e)-(f) Ny = 249; (d)-(f)a = 0.001; (a), (b)B1 =2 and (c)—(f)81 = 3.25. For (a)—(e), all vortices have same charge and for
(f) approximately half of the vortices have charge= +1 (crosses) and the other half= —1 (circles). In order to enhance the crystalline
structure, thin lines are plotted connecting approximately equispaced vortices.

the vortex crystalline structure, using the PR-MD tech- such configurations, we impose PBCs around the MD
nique. Firstly, we examine the behavior forfiaite box and adopt the so-called minimum image conven-
number of vortices by performing numerical experi- tion for interactions with particles in all 8 neighboring
ments in a cell without implementing periodic bound- periodic image boxes of the original cell (for each vor-
ary conditions (PBCs). Iirig. 1, we present typical  tex only the largesd, contributions, from all 9 boxes,
results from the PR-MD simulations for increasing are used)18].

number of vortices. Typically, for a small number of In order to obtain the ground-state configuration of
vortices (v, = 36, cf. Fig. 1(a)-(c)), the crystalline  the system, we initialize the MD simulation with a vor-
configuration corresponds to patterns of equispacedtex cloud of same-charge vortices placed at random
concentric rings (see dotted circles in inset (b)), resem- locations inside the box. The mean-path distance be-
bling the behavior of a shell-type model. For a larger tween neighboring vortices was chosen to be close to
number of vortices¥, > 100), the crystalline pattern  the location of the minimum of the pairwise poten-
corresponds to a core with a triangular configuration tial (3) in order to ensure a small deformation of the
surrounded by circular shells. This behavior is remi- box as the vortex cloud crystallizes. A typical simu-
niscent of the competition between circular symmetry lation is depicted irFig. 2, where the initial random
and the tendency towards triangular patterns in rotat- cloud of N, = 225 same-charge vortices equilibrates

ing superfluidg28]. The results presented ig. 1 to a triangular configuration. The net effect of the

tend to suggest that in the lar@ér limit the ground- term in the pairwise potenti#B) is to rotate the whole

state configuration is a triangular lattice pattern. cloud clockwise (for positive charges). Nevertheless,
In the experimental settings (see, e.g., REXS]), the box adjusts itself to the rotation and the cloud in

it is typically possible to generate hundreds of vor- scaled computational coordinatés, v) appears sta-

tices. Hence, it is relevant to examine the behavior of a tionary after the crystalline structure equilibrates. It is
lattice consisting of many vortices (and in part to con- worth mentioning that, since the PR-MD Lagrangian
sider the thermodynamic limit a¥, — oo). To study dynamics is conservative, the obtained equilibrated
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Fig. 2. MD simulation with a random initial pattern @f, = 225 same-charge vortices. After a short transient 8), the configuration
equilibrates into a triangular lattice £ 10). Parameters: = 0.00001,8 = 2 andB; = 3.25.
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Fig. 3. MD simulations with an initial pattern (a) corresponding to a slightly perturbed square laiNge-0225 same-charge vortices. (b) After
some transient, the configuration equilibrates to a star pattern. (c) Rhomboidal pattern obtained from a slightly different initial perturbation
of (a). Same parameters ashiy. 2

patterns have the same total energy (in computational close to a square configuration in computational coor-
coordinates) as the initial configuration and the “ex- dinates (i.e., a triangular configuration in real coordi-
cess” energy (kinetic and potential) of the individual nates).
particles is stored by the box itself. Extensive simula- For some simulations, dislocation defects (and, in
tions using different initial conditions and parameters general, lattice imperfections) on the final configura-
typically settled into a rotatingriangular lattice. This tion were clearly visible; in particular, this is observed
suggests that the ground-state configuration for a largewhen the number of vortices in our “unit box” is such
cloud of vortices corresponds to a triangular lattice as that a uniform tiling of the plane cannot be achieved.
has been observed in the BEC experimdgis For During our MD simulations, we were able to observe
clarity of presentation, all the figures in this manu- some richer periodic patterns. Specifically, when start-
script are depicted in a co-rotating reference frame ing from a slightly perturbed square lattice, the vortex
in real (physical) coordinatésThe results presented cloud does not necessarily equilibrate to a triangular
here are not particularly sensitive to the initial state of crystal but rather, for different initial perturbations, to
the box (size or shape) or the position of the vortices— a rhomboidal crystal (similar to the one observed in a
provided that the initial configuration, in real coor- BEC experimenf4]) or to a combination of local tri-
dinates, is not (energetically) far from the triangular angular and square blocks. These crystalline structures
crystalline ground state. It is also possible to obtain arelocal minima of the total energy—Ilarge enough
a triangular crystalline configuration by starting with perturbations destroy them and the cloud equilibrates
an MD box angle close ta/3 and vortices arranged  to a triangular lattice. An example of this rich pattern
formation is presented iRig. 3where the frozen crys-
talline structures corresponding to “star” and rhom-
2 Notice that the rotation can be “factored out” by imposing a boidal patte,ms ar? depicted. Such transient patterns,
non-holonomic constraint; however, we did not incorporate such an &S well as dislocation type defects also have been ob-
approach in the present setting. served in the experiments of Refg,3].
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Fig. 4. MD simulation ofN,, = 256 mixed charge vortices. Half of the vortices are set with charge+1 (crosses) and placed in the first

and third quadrants, while the other half are set with charge—1 (circles) and placed in the remaining quadrants. (a) Initial configuration.
(b) Fora = 0.001, the configuration equilibrates to a triangular lattice with no mixing of the sub-clouds of different charges.o(e} Bdr1,

the rotation of each sub-cloud is strong enough to “mix” the initial configuration that finally settles down to a triangular lattice of well mixed
positive- and negative-charge vortices.

Up to this point, we have treated cases where all the tions. In particular, external potentials such as an op-
vortices have the same charge (exdapt 1(f)). Let us tical lattice potentia[29] in the BEC setting can be
briefly describe the case of a vortex cloud with mixed easily incorporated in the frame of EfL) by intro-
charges. A cloud of positively (negatively) charged ducing an effective potential acting on the coherent
vortices rotates clockwise (counter-clockwisely. 4 structure centerf30]. Furthermore, the excitation of
depicts the chief characteristics for the evolution of quadrupolar or other modes, in the spirit of the experi-
a mixed-charge vortex cloud. The MD simulation is ments of Ref[3], can be realized by identifying steady
started with 2 positive-charge clouds (first and third states, such as the triangular ones, by means of New-
guadrants) and 2 negative-charge clouds (second andon iterations and obtaining their eigenmodes (espe-
fourth quadrants), for a total oV, = 256 vortices. cially ones inducing instabilities). Preliminary results
For weak rotationd, = 0.001), each sub-cloud rapidly  yield very interesting dynamical phenomena (such as
equilibrates to a triangular pattern (inset (b)) with global oscillations) and will be presented elsewhere.
some defects at the sub-cloud boundaries. However, Finally, numerical experiments with much larger num-
for stronger rotationd = 0.01), the sub-clouds mix  bers (but roughly fixed density) of vortices (i.e., larger
and finally settle to a well mixed triangular pattern (in- cell sizes) would be very interesting in identifying
set (c)) similar to the one depicted for a mixed-charge whether the results presented herein persist in the
cloud inFig. 1(f). “thermodynamic limit”. Such studies, using the coarse

computational techniques of R¢81], are in progress

4. Conclusions and extensions and will be reported in future publications.

In the present work, we have demonstrated how
to implement the Parrinello-Rahman molecular-dyna-
mics scheme in order to identify ground states and
structural transitions of vortex lattices. We have con-  This work was supported by NSF-DMS-0204585,
cluded that for sufficiently large numbers of vortices, NSF-CAREER and the Eppley Foundation for Re-
the system settles into triangular configurations which search (P.G.K.), AFOSR and NSF/ITR (1.G.K.), NSF/ITR
structurally resemble to the ones observed in Bose—grant CTS-0205584 (D.M.), and the SDSU Founda-
Einstein condensate (BECs) experimef@$, even tion (R.C.G.).
though other configurations such as the orthorhombic
ones of Ref[3], as well as structures with defe¢s3]
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