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Abstract

We study the propagation of coherent signals through bistable one-way and diffusive

Coupled Map Lattices (CML). We describe a simple mechanism that allows interfaces to

travel along the lattice, without damping or dispersion. This mechanism relies on a non-

decreasing bistable local map with two stable fixed points. The state of the lattice is then

set as a step state between the stable points and it is seen to advance along the lattice with

a well-defined velocity that depends on the coupling parameter ε. For some local maps the

velocity is shown to have ε-intervals where it is mode-locked to a rational value.

In order to understand the mode-locking phenomenon we introduce a continuous piece-

wise linear local map. We show how the dynamics of the whole lattice (infinite system) may

be reduced to a one-dimensional auxiliary map. The auxiliary map is a circle-like map whose

rotation number corresponds to the velocity of the travelling interface. We introduce symbolic

dynamics to fully understand the mode-locking of the rotation number. We prove that the

velocity of the travelling interface has a Devil’s staircase (a fractal staircase) dependence on

the coupling parameter. The Devil’s staircase is mode-locked to rational plateaus and may

be fully described via Farey sequences and modular transformations.

Finally we give some numerical examples depicting mode-locking of the velocity for a

wider range of couplings and local maps and we study the dependence of plateau sizes on

the coupling interaction range. The mode-locking of the velocity in CML allows an interface

to travel at a constant speed despite parametric perturbations giving structural stability to

the front propagation and is present in a very wide range of CMLs.
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Chapter 0

Introduction

An interesting feature of coupled map lattices [1, 2] is the widespread occurrence of the

so-called spatio-temporal chaos [3, 4], which is irregular behaviour in space as well as time.

Equally interesting is the appearance of coherent structures from an apparently decorrelated

medium [5, 6, 7]. For example, an interface separating two different phases may travel along

the lattice [8, 9, 10, 11]. The movement of such a front depends on the strength of the

coupling between lattice sites. This work is concerned with investigating some aspects of

this phenomenon, in particular the mode-locking of the travelling velocity for some coupling

parameter intervals.

Let us start by defining a coupled map lattice. Consider an infinite, one-dimensional,

collection of cells with a local dynamical variable xt(i), characterizing the state of the i-th

cell at time t. Both i and t are integers. The state of the lattice at time t is given by the

state vector

Xt = {xt(i)} = (. . . , xt(i− 1), xt(i), xt(i+ 1), . . .). (0.1)

The function that gives the state of the i-th cell at time t+1 as a function of the state (0.1)

is given by

xt+1(i) = Fi(. . . , xt(i− 1), xt(i), xt(i+ 1), . . .), (0.2)

where the function Fi contains the information of the local dynamics in each cell as well of

the interaction between them. Equation (0.2) gives the components of the global map F:

F = ( . . . , F−1, F0, F1, . . . ) Xt+1 = F(Xt).

The global map F is then called a coupled map lattice (CML). We introduce here one-

dimensional CMLs but the model may be easily generalized to higher dimensions. A CML is

then a dynamical system with discrete time, discrete space and continuous state. In contrast

with CMLs, cellular automata (CA) have discrete time, discrete space and discrete state,

thus we could think that CMLs are an extension of CA to continuous state. Moreover, the

phenomenology of CA and CMLs could be extremely similar and one may even try to use

CMLs instead of CA [12, 13].

We consider homogeneous CMLs, so that the map Fi = F is the same for all cells and

therefore the evolution of the lattice is given by

xt+1(i) = F (. . . , xt(i− 1), xt(i), xt(i+ 1), . . .). (0.3)

11



CHAPTER 0. INTRODUCTION

A physically meaningful interaction will have typically a limited range, with decreasing

strength for distant neighbours. Coupling l left neighbours and r right neighbours gives

the general formula

xt+1(i) = (1− ε)fi(xt(i)) +
r∑

k=−l
k 6=0

εkfi+k(xt(i+ k)), (0.4)

where fi are real, one-dimensional, maps. Typically one asks that
∑

εk = ε as a conservation

law, since failure to do so may lead to non-boundedness of the state as time tends to infinity.

The coefficients εk are called the coupling parameters and they define the weight that every

neighbour is contributing towards the coupling sum. The neighbouring coupling switches the

exchange of ‘information’ between sites. The coupling parameter must satisfy 0 ≤ ε ≤ 1 in

order to maintain the same sign of the information exchange.

The CML (0.4) may be seen as acting in two separate stages: firstly with the so called

local dynamics (or local maps) via the real maps fi and secondly with the coupling dynam-

ics in terms of the weighted sum. The model (0.4) reflects a non-homogeneous coupling

dynamics because the maps fi could be different. Since we are interested in the study of

signal propagation through the lattice, a more reasonable model would have an homogeneous

dynamics permitting the signal to travel coherently, therefore we choose the maps fi to be

all identical to f . The dynamics of the CML is then reduced to the local map f plus the

coupling interaction. The simplest interactions, nearest neighbours, give

xt+1(i) = (1− ε)f(xt(i)) +
ε

2
(f(xt(i− 1)) + f(xt(i+ 1))) (0.5)

and

xt+1(i) = (1− ε)f(xt(i)) + εf(xt(i− 1)), (0.6)

which are called diffusive and one-way CML respectively. The diffusive CML corresponds

to a nearest neighbour interaction including, with the same weight, the left and the right

neighbours giving a non-preferential propagating direction. The term diffusive comes from

the analogy with the partial differential equation for diffusion [14], where the second spatial

derivative of the dynamical variable may be approximated, by applying a finite difference

method, to xt(i− 1)− 2xt(i) + xt(i+ 1) and by rewriting (0.5) as

xt+1(i) = f(xt(i)) +
ε

2
(f(xt(i− 1))− 2f(xt(i)) + f(xt(i+ 1)))

one sees the similarity, and thus, the parameter ε is often called the diffusive parameter . The

direction of information of propagation in a diffusive CML is determined by the local map

since the coupling is symmetrical. On the other hand, the one-way CML couples sites with

their left neighbours only, giving a preferred travelling direction: from left to right.

Equations (0.5) and (0.6) are the most widespread models of CML and they only contain

a single coupling parameter value ε. The CMLs were introduced by Kaneko [15, 16] as a

paradigm for the study of fully-developed turbulence and pattern formation. Since then,

CMLs have been used in a very wide range of subjects such as: chemical interfaces [8],

traffic flow [17], sea scattering [18], patch population dynamics [19, 20], extended ecosystems

[21, 22], cardiac tissue [23], AIDS genetic evolution [24, 25], computational systems [26],

convection [27], turbulent flows [28, 29], open flows [30, 31], etc.

In this work we consider the propagation of localized wave fronts along diffusive and

one-way CMLs. In chapter 1 we establish the linear stability of homogeneous states and

12



periodic ones. Chapter 2 is dedicated to the precise definitions of localized states and step

states (localized wave fronts) and to establish some of their basic properties. In chapter

3 a simple mechanism, a bistable local map, is introduced enabling us to propagate wave

fronts in a coherent way along the lattice in both, diffusive and one-way, CMLs. The first

examples of mode-locking of the velocity are shown. Chapter 4 is devoted towards the

complete understanding of the mode-locking of the velocity, in order to do so, we study a

one-parameter family of piece-wise linear local maps for a one-way CML. We find that the

dynamics of the whole lattice may be reduced to a one-dimensional circle-like map, allowing us

to reduce the dynamics from a potentially infinite system to a one-dimensional one. For this

particular piece-wise linear local map it is possible to show that the velocity of the travelling

wave front is equivalent to the rotation number of the auxiliary map for the particular case

when only one site is in the interfacial zone. We show that for each value of the parameters

the velocity of the interface is well-defined, and we use it to characterize the structure of

the parameter space. The travelling velocity is found to be mode-locked to rational values.

Moreover we show that the graph of the velocity as a function of the coupling parameter

is a fractal staircase —a Devil’s staircase. Using symbolic dynamics on the auxiliary map

one can code the plateaus of the Devil’s staircase by hierarchies and find the envelopes for

every family of plateaus. The self-similar structure of the Devil’s staircase is then unveiled

by means of the Farey series and unimodular transformations via their envelopes.

In chapter 5 we present the mode-locking phenomenon with the piece-wise linear map

when more than one site is in the interface. The CML is then reduced to a N -dimensional

system, where N is the number of sites in the interface and a similar mode-locking phe-

nomenon occurs in this case. We depict several examples of diffusive and one-way CMLs

with smooth local maps where the mode-locking structure prevails. Furthermore, we explain

how mode-locking is affected —the parametric domains where the velocity is mode-locked

decrease in size— as the range of the coupling is increased. In the limit where the coupling

range tends to infinity, that is when we tend to a spatially continuous system, the width of

the plateaus tends to zero. However, the evidence presented in this work should support the

conclusion that the mode-locking phenomenon of travelling wave fronts in CML is the rule

rather than the exception. The mode-locking of the travelling front with respect to the system

parameters —coupling parameters and local map parameters— provides structural stability

emphasizing the fact that the front propagation is stable under external perturbations.
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Chapter 1

Homogeneous states

Before analyzing in detail the propagation of signals through the lattice it is important to

study the existence and stability of homogeneous states. This is because a travelling front

must be localized in some sense (cf. next chapter for precise definitions) and then must have

homogeneous (‘flat’) regions (cf. figure 1.1) outside of the localized region. We shall therefore

address this chapter to the study of fixed homogeneous states and we generalize the results

for homogeneous periodic orbits.

homogeneous

homogeneous interface homogeneous

}

} }

Figure 1.1: For a travelling front, outside of the localized regions, the
lattice is homogeneous.

In the case of uncoupled sites (ε = 0), the dynamics of a local state —the state in a

single lattice point— is completely determined by the initial condition and the local map f

at that site, and it is totally independent from what is happening at all the other sites. Thus

the dynamics when ε = 0 reduces to the study of the one-dimensional map f at each lattice

point. When the coupling parameter ε is non-zero the interaction between sites enriches the

dynamics, and a local fixed point (a fixed point of f) may not exist anymore or change its

stability for the whole configuration of the lattice. In this section we focus our attention to

the study of states of the whole lattice that are homogeneous.

1.1 Homogeneous states and their stability

The simplest of all CML states is the homogeneous state, that is a state Xt = {xt(i)} that has
the same configuration at all lattice points, i.e. xt(i) = xt ∀i. Let us consider the following

15



CHAPTER 1. HOMOGENEOUS STATES

quite general model of CML:

xt+1(i) = (1− ε)f(xt(i)) +
r∑

k=−l
k 6=0

εkf(xt(i+ k)) (1.1)

such that
∑

εk = ε as a conservation law. Equation (1.1) couples l left neighbours and r

right neighbours with coefficients εk.

Suppose we set up the initial configuration of the lattice such that all the sites have the

same value x0(i) = x0, and start iterating the CML. After one iteration, the state at every

lattice is

x1(i) = (1− ε)f(x0(i)) +
r∑

k=−l
k 6=0

εkf(x0(i+ k))

= (1− ε)f(x0) + f(x0)
r∑

k=−l
k 6=0

εk

= (1− ε)f(x0) + εf(x0)

= f(x0).

Therefore if we start with an homogeneous state X0 = {x0} the state of the lattice at any

consecutive time t will be homogeneous and equal to Xt = {f t(x0)}. In particular this is

true for the one-way (0.6) and diffusive (0.5) CML.

Now suppose that x∗ is a fixed point of the local map f , f(x∗) = x∗, and that the initial

state of the lattice is homogeneous and equal to x∗. Then the whole configuration of the

lattice will remain Xt = {x∗} at any time, i.e. we have a homogeneous fixed state. The main

question now concerns the stability of such homogeneous states: does the stability of f at x∗

determines the stability of the homogeneous state? The answer turns out to be yes. Let us

perform the linear stability analysis for the one-way and diffusive CMLs.

1.2 Stability of homogeneous states in one-way CMLs

We consider the case of periodic boundary conditions, but the main stability result is not

altered if we take an infinite lattice. We write the one-way CML in matrix form for a lattice

of N sites:

Xt+1 = J1 ·Xt (1.2)

with

J1 =











(1− ε)f 0 · · · εf

εf (1− ε)f · · · 0

...
. . .

. . .
...

0 · · · εf (1− ε)f











. (1.3)
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1.2. STABILITY OF HOMOGENEOUS STATES IN ONE-WAY CMLS

In order to find the stability of (1.2) for the homogeneous state {x∗} one has to find the

eigenvalues of the linearized mapping J ′1 of J1 at x∗:

J ′1 =











(1− ε)f ′(x∗) 0 · · · εf ′(x∗)

εf ′(x∗) (1− ε)f ′(x∗) · · · 0

...
. . .

. . .
...

0 · · · εf ′(x∗) (1− ε)f ′(x∗)











= f ′(x∗)











1− ε 0 · · · ε

ε 1− ε · · · 0

...
. . .

. . .
...

0 · · · ε 1− ε











.

The eigenvalues λ of J ′1 are found by solving the characteristic equation |J ′1−λ1N )|=0, where

we denote | · | as the determinant and 1N is the N ×N unit matrix. To this end, define the

matrix

M ≡ (J ′1 − λ1N )

εf ′(x∗)
.

Letting

α ≡
(1− ε)− λ

f ′(x∗)

ε

gives a simple form for M :

M =











α 0 · · · 1

1 α · · · 0

...
. . .

. . .
...

0 · · · 1 α











.

The case α = 0 is trivial: all the eigenvalues are equal to one and the homogeneous state is

marginally unstable. For the non-trivial case, requiring α 6= 0 and by repeated addition of

(−1)k(1/αk) times the (N + 1− k)-th row to the first row we end up with the diagonalized

matrix

M ′ =











α+ (−1)N−1

αN−1 0 · · · 0

1 α · · · 0

...
. . .

. . .
...

0 · · · 1 α











,

whose eigenvalues satisfy

αN−1

(

α+
(−1)N−1

αN−1

)

= 0

⇒ αN = (−1)N .

Note that the solution α = 0 is discarded since we required α 6= 0, and therefore the eigen-

values of M ′ are the N-th roots of (−1) given by {exp(π + 2(k− 1)π/N)}k=1,...,N . Thus, the
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CHAPTER 1. HOMOGENEOUS STATES

eigenvalues λk of J ′1 satisfy

(1− ε)− λk
f ′(x∗)

ε
= exp(π +

2(k − 1)π

N
),

and hence,

λk = f ′(x∗) ((1− ε)− ε(cos(π + 2(k − 1)π/N) + i sin(π + 2(k − 1)π/N)))

= f ′(x∗) ((1− ε) + ε(cos(2(k − 1)π/N) + i sin(2(k − 1)π/N))) .
(1.4)

The geometrical representation of the eigenvalues λk is that they form the vertices of the

regular N-polygon centered at (1− ε)f ′(x∗) of radius εf ′(x∗) with the first vertex located at

the point f ′(x∗). In figure 1.2 we have the eigenvalues in the complex plane for N = 6; note

that we rescale the figure by the factor f ′(x∗).

10

ε

1−ε
ℜe(λ)

f ’(x*)

f ’(x*)

ℑm(λ)

λ’3,5

λ5 λ 6

λ 4

λ 3 λ 2

λ 1λ’2,6

Figure 1.2: Eigenvalues for the linear stability analysis of a fixed
homogeneous state in a one-way (λk) and a diffusive (λ′k) CML. The
eigenvalues for the diffusive case are the real part of the eigenvalues
for the one-way case. The modulo for all the eigenvalues is at most
f ′(x∗), so if the fixed point x∗ of the local map f is stable so is the
homogeneous fixed state.

It should be clear from the geometrical representation that if f ′(x∗) < 1 then all the

eigenvalues have modulus less than 1. In fact, by construction, all the eigenvalues satisfy

|λk| ≤
∣
∣f ′(x∗)

∣
∣ . (1.5)

Therefore we have proved the following result for the stability of homogeneous states in

one-way CML.

Theorem 1.2.1 An homogeneous state Xt = {x∗} of a one-way CML is linearly stable

provided that the fixed point x∗ is linearly stable for the local map f .
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1.3. STABILITY OF HOMOGENEOUS STATES IN DIFFUSIVE CMLS

1.3 Stability of homogeneous states in diffusive CMLs

For a diffusive CML the stability analysis may be performed by a similar diagonalization of

the corresponding linearized mapping. However we give here an alternative proof, by relating

the eigenvalues of the diffusive CML to the ones of the one-way CML.

The dynamics of a diffusive CML may be written in a matrix form as

Xt+1 = J2 ·Xt (1.6)

with

J2 =














(1− ε)f (ε/2)f 0 · · · (ε/2)f

(ε/2)f (1− ε)f (ε/2)f · · · 0

...
. . .

. . .
. . .

...

0 0 · · · (1− ε)f (ε/2)f

(ε/2)f 0 · · · (ε/2)f (1− ε)f














, (1.7)

whose linearization about the fixed x = x∗ point gives

J ′2 =














(1− ε)f ′(x∗) (ε/2)f ′(x∗) 0 · · · (ε/2)f ′(x∗)

(ε/2)f ′(x∗) (1− ε)f ′(x∗) (ε/2)f ′(x∗) · · · 0

...
. . .

. . .
. . .

...

0 0 · · · (1− ε)f ′(x∗) (ε/2)f ′(x∗)

(ε/2)f ′(x∗) 0 · · · (ε/2)f ′(x∗) (1− ε)f ′(x∗)














.

Let us now establish a relation between J ′1 and J ′2 using permutation matrices. Let us define

P+
N to be the right permutation N × N matrix and P−N the left permutation matrix. The

matrices have the following form

P+
N =














0 1 0 · · · 0

0 0 1 · · · 0

...
. . .

. . .
. . .

...

0 0 · · · 0 1

1 0 · · · 0 0














P−N =














0 0 0 · · · 1

1 0 0 · · · 0

...
. . .

. . .
. . .

...

0 0 · · · 0 0

0 0 · · · 1 0














,

that is {P+
N }ij = δi,j−1 and {P−N }ij = δi,j+1, where δ is the Kronecker delta modulo N . The

effect of these permutation matrices on a periodic lattice of N sites, is to permute cyclically

(shift with periodic boundary conditions) to the right (P+
N ) or to the left (P−N ) the whole

lattice.
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CHAPTER 1. HOMOGENEOUS STATES

Using the permutation matrices it is easy to rewrite the stability matrices as

J̃ ′1 = (1− ε)1N + εP

J̃ ′2 = (1− ε)1N + ε
(P + P−1)

2 ,
(1.8)

where, in order to simplify the notation, we have normalized the stability matrices J̃ ′1,2 ≡
J ′1,2/f

′(x∗), redefined P ≡ P−N and used the fact that (P−N )−1 = P+
N .

Let us introduce the operator Eig(M) that gives the eigenvalues of the matrix M . With

this notation the eigenvalues of the stability matrices are

Eig(J̃ ′1) = Eig [(1− ε)1N + εP ]

Eig(J̃ ′2) = Eig

[

(1− ε)1N + ε
(P + P−1)

2

]

.
(1.9)

On the other hand, the eigenvalues of P are the solutions of

|P − 1Nλ| = 0, (1.10)

that after transposing reads ∣
∣
∣P † − 1†Nλ

∣
∣
∣ = 0 (1.11)

but 1†N = 1N and because |P | = 1 we have that P−1 = P †. Thus eq. (1.11) reads
∣
∣
∣P−1 − 1Nλ

∣
∣
∣ = 0. (1.12)

Multiplying (1.10) and (1.12) yields

|P − 1Nλ|
∣
∣P−1 − 1Nλ

∣
∣ = 0

⇒
∣
∣PP−1 − λP−1 − λP + 1Nλ2

∣
∣ = 0

⇒ |2λ|
∣
∣
∣
∣

1
λ
+λ

2 1N − (P + P−1)
2

∣
∣
∣
∣ = 0

⇒
∣
∣
∣
∣<e(λ)1N −

(P + P−1)
2

∣
∣
∣
∣ = 0,

(1.13)

where we use the fact that the eigenvalues of the permutation matrices have modulus equal

to one and thus it is easy to show that ((1/λ) + λ) /2 = <e(λ), where <e(λ) denotes the real

part of λ. The last equation of (1.13) now reads

Eig

(

(P + P−1)

2

)

= <e(Eig(P )). (1.14)

Using (1.14) in (1.9) we finally obtain an equation that relates the eigenvalues of the one-way

case to the diffusive one:

Eig(J̃ ′2) = <e(Eig(J̃ ′1))

⇒ Eig(J ′2) = <e(Eig(J ′1))

⇒ λ′k = <e(λk)
= f ′(x∗)<e [(1− ε) + ε(cos(2(k − 1)π/N)

+ i sin(2(k − 1)π/N))] ,

(1.15)
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1.4. STABILITY OF PERIODIC HOMOGENEOUS STATES

where we denote by λ′k the eigenvalues of the stability matrix J ′2. Therefore taking the real

part of the eigenvalues of the stability matrix, for the homogeneous case of a one-way CML,

gives the eigenvalues for the diffusive CML case. This gives a simple way of relating the the

stability of the two models. As an illustration we depict the eigenvalues of both the diffusive

CML and the one-way CML for N = 6 in figure 1.2.

Again it is straightforward to show (cf. (1.5)) that the eigenvalues for the stability of

homogeneous states in diffusive CML satisfy

∣
∣λ′k
∣
∣ = |<e(λk)| ≤

∣
∣f ′(x∗)

∣
∣ . (1.16)

Hence we have the theorem for the stability of homogeneous states in diffusive CML:

Theorem 1.3.1 A homogeneous state Xt = {x∗} of a diffusive CML is linearly stable pro-

vided that the fixed point x∗ is linearly stable for the local map f .

1.4 Stability of periodic homogeneous states

Up to now we have given the conditions for homogeneous fixed states to be stable in both one-

way and diffusive CML. There are however other forms of homogeneous states, like periodic

homogeneous states or even more complex states like the spatially periodic ones. We first

address the question of stability of periodic homogeneous states.

Consider a periodic orbit (x0, x1, . . . , xp = x0) of period p of the local map f and construct

the periodic homogeneous state Xt = {xt}. In this case the stability matrices J ′1,2(X) for the

periodic homogeneous state are given by the multiplication of the stability matrices J ′1,2(xi)

along the periodic orbit. Recall that the subscripts 1 and 2 correspond to the one-way CML

and the diffusive CML respectively. Therefore,

J ′1,2(X) =
p
∏

i=1

J ′1,2(xi)

= η
p
∏

i=1

J̃ ′1,2(xi)

⇒ J̃ ′1,2(X) =
p
∏

i=1

J̃ ′1,2(xi),

where again we are using the normalized matrices J̃ ′1,2(xi) = J ′1,2(xi)/f
′(xi) and we define

the global normalized stability matrix J̃ ′1,2(X) ' J ′1,2(X)/η with η ≡ ∏p
i=1 f

′(xi) being the

multiplier of the periodic orbit of the local map f . A closer inspection to the matrices

J̃ ′1,2(xi) reveals that they do not depend anymore on the orbit since the factors f ′(xi) have

been absorbed by the normalization, thus the matrices J̃ ′1,2(xi) are exactly the same matrices

J̃ ′1,2 defined in (1.8). Therefore the global stability matrices reduces to

J̃ ′1,2(X) =
(

J̃ ′1,2

)p
,
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CHAPTER 1. HOMOGENEOUS STATES

and because Eig
(

(J̃ ′1,2)
p
)

=
(

Eig(J̃ ′1,2)
)p
, the eigenvalues for the homogeneous periodic

state are

Eig(J ′1,2(X)) = η
(

Eig(J ′1,2)
)p

. (1.17)

Consider again the geometrical representation of the eigenvalues (cf. figure 1.2), the eigen-

values of J ′1,2(X) fall again in the circle of radius ε centered at 1 − ε (but they are rotated

w.r.t. the ones of J ′1,2 because of the power p in (1.17)) with a rescaling factor of η instead of

f ′(x∗). Thus if the multiplier of the periodic orbit η is less than 1 then all the eigenvalues of

the homogeneous periodic orbit are contracting. The formal result for periodic homogeneous

states reads

Theorem 1.4.1 An homogeneous periodic orbit {Xt}t=1,...,p with Xi = {xi} of a one-way or

diffusive CML is linearly stable provided that the periodic orbit {xi}i=1,p of the local map f

is linearly stable.

Though the stability for homogeneous and periodic states has already been extensively

studied [10, 11, 32, 33, 34] we thought of giving a straightforward proof leading to a very

simple geometrical representation of the eigenvalues. For our purpose the only relevant case

is the homogeneous state, however, more complex structures like spatio-temporally periodic

states could appear so we refer the reader interested in their stability to the above papers.
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Chapter 2

Localized states and propagating

fronts

In this chapter we introduce some notation and definitions of localized states in CMLs and

establish some of their basic properties as a framework for the propagation of fronts.

2.1 Localized states

Let ∆xt(i) = |xt(i+1)−xt(i)|. The mass M(Xt) of a state Xt is defined as the total variation

of the local states

Mt = M(Xt) =
∞∑

i=−∞

∆xt(i). (2.1)

Since Mt ≥ max{xi} −min{xi} we restrict our attention to states with positive finite mass;

a zero-mass state is a uniform state (xi = constant) and an infinite mass state is spread over

an infinite region (therefore not localized) or has at least one xi = ±∞. Thus we consider

states where the sum (2.1) is finite.

For each lattice site i ∈ Z we define the probability

pt(i) =
∆xt(i)

Mt
, (2.2)

which is normalized and gives the relative amount of ‘mass’ concentrated along the lattice.

In order to describe a mass distribution we use the mean µ and the variance σ of the variable

i with respect to the probability distribution (2.2):

µt = µ(Xt) =
∞∑

i=−∞

i pt(i)

σ2
t = σ(Xt)

2 =
∞∑

i=−∞

(i− µt)
2 pt(i).

The quantity µt corresponds to the centre of mass of the state Xt, and σt to its width.

The centre of mass and the width give, respectively, the average position and spread of the

distribution.
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CHAPTER 2. LOCALIZED STATES AND PROPAGATING FRONTS

A state Xt with finite centre of mass and width is said to be localized. If, in addition, there

exists a positive constant κ < 1 such that ∆xt(i) = O(κ|i|), then the state is exponentially

localized. For an exponentially localized state, not only the mean and variance exist, but also

all central moments of the distribution (2.2). The above definitions of centre of mass and

width are a natural description for the evolution of travelling wave fronts. Nevertheless it will

be more useful for our purpose, as we shall see in chapters 4 and 5, to think of the number

of interfacial sites instead of its width and to take its centre of mass at the central site of

the interface. Nonetheless, for the numerical experiments —computation of the travelling

velocity for example— we will continue to use the definition of centre of mass in order to

locate the interface position.

We are interested in localized states that can model wave fronts. So we define a step state

to be a localized state for which the configuration {xt(i)} is asymptotic, for i→ ±∞, to two

distinct fixed points of f [35]:

lim
i→±∞

xt(i) = x∗±; f(x∗±) = x∗±. (2.3)

The mass of a step state is then bounded from below

M(Xt) ≥ ∆x∗ = |x∗+ − x∗−|. (2.4)

The simplest such state is a pure step state, that is, a step function between the two fixed

points

P (k) ≡ xt(i) =

{
x∗− if i ≤ k

x∗+ if i > k.
(2.5)

For this pure state µ(P (k)) = k and σ(P (k)) = 0. It is plain that a pure state is a fixed

point of the CML when ε = 0 since all local states {xi} are fixed points of the local map.

Moreover, an initial condition that is any combination of fixed points of the local map is a

fixed point of the CML when ε = 0.

A step state has minimal mass or minimal variation, i.e. M(xt) = ∆x∗ (cf. (2.4)), if and

only if its local states are ordered, that is if xt(i) ≤ xt(i+1) when x∗− < x∗+ (or xt(i) ≥ xt(i+1)

when x∗− > x∗+) for all i.

Proposition 2.1.1 If the local map f of a CML (one-way or diffusive) is a non-decreasing

function (if x∗− < x∗+) or non-increasing (if x∗− > x∗+) then if Xt is a minimal mass state

then so is Xt+1.

Proof. We prove it by induction for a diffusive CML with a non-decreasing f and an increasing

minimal mass state. For non-increasing f and one-way CML the proofs are very similar. Take

a minimal mass state X0 = {x0(i)}:

· · · ≤ x0(−1) ≤ x0(0) ≤ x0(1) ≤ · · · .

Suppose that the configuration of the CML at time t is that of a minimal mass state:

xt(j) ≤ xt(j + 1) ∀ j ∈ Z (2.6)

then
ε

2
f(xt(j)) ≤

ε

2
f(xt(j + 1)) (2.7)
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and

(1− ε)f(xt(j)) ≤ (1− ε)f(xt(j + 1)), (2.8)

since f is non-decreasing and 0 ≤ ε ≤ 1. Adding (2.8) with j = i and (2.7) with j = i − 1

and j = i+ 1 leads to

(1− ε)f(xt(i)) +
ε
2 (f(xt(i− 1)) + f(xt(i+ 1)))

≤ (1− ε)f(xt(i+ 1)) + ε
2 (f(xt(i)) + f(xt(i+ 2))) ,

thus

xt+1(i) ≤ xt+1(i+ 1).

Therefore the minimal mass condition is preserved under iteration if f is a non-decreasing

function. For the case of a non-increasing f the inverted inequalities hold. 2

The global dynamics causes the centre of mass and the width of a localized state to evolve.

In this respect, two points need consideration. Firstly, the existence of the probability pt
does not automatically imply that of pt+1, and secondly, the image of a localized state is

not necessarily localized. To achieve the above conditions, we impose some mild restrictions

on the local map f as well on the state Xt. The importance of the states defined above is

that their properties (minimal mass and localization) are invariant under the dynamics of

the CML under those restrictions.

Lemma 2.1.2 Let Xt be a localized state of a one-way CML, let x∗± = limi→±∞ xt(i), and

let M(Xt+1) 6= 0. Then, if f is bounded and continuous at x∗±, Xt+1 is a localized state. If,

in addition, Xt is exponentially localized, so is Xt+1.

Proof. We begin considering the case i→∞. Because Xt is localized, x
∗
+ is finite. Moreover,

since f is continuous at x∗+, then there exists a constant ρ > 0 and an integer N such that,

for all i ≥ N we have |f(xt(i+ 1))− f(xt(i))| < ρ|xt(i+ 1)− xt(i)|, whence

∆xt+1(i) = |(1− ε) f(xt(i+ 1)) + ε f(xt(i))− (1− ε) f(xt(i))− ε f(xt(i− 1))|
≤ (1− ε) |f(xt(i+ 1))− f(xt(i))| + ε |f(xt(i))− f(xt(i− 1))|
< ρ (1− ε) |xt(i+ 1)− xt(i)| + ρε |xt(i)− xt(i− 1)|
= ρ (1− ε)∆xt(i) + ρε∆xt(i− 1), i > N.

(2.9)

Then, from absolute convergence

∞∑

i=N+1

∆xt+1(i) < ρ(1− ε)
∞∑

i=N+1

∆xt(i) + ρε
∞∑

i=N+1

∆xt(i− 1) <∞.

A similar inequality holds for i → −∞. From the above and the fact that any finite sum

of ∆xt+1(i) is bounded (because f is bounded) it follows that Mt+1 is finite (and non-zero,

by hypothesis), so that the probability pt+1 exists. Finally, multiplying both sides of the

inequality (2.9) by i and by i2, respectively, and summing over i > N shows that µt+1 and

σt+1 are finite, whence Xt+1 is localized.

If Xt is exponentially localized, then there exist positive constants c and κ < 1 for which

∆xt(i) < cκi. (2.10)
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Combining the above with (2.9) we obtain

∆xt+1(i) < κicρ

(

(1− ε) +
ε

κ

)

, i > N. (2.11)

A similar estimate holds for negative i, showing that Xt+1 is exponentially localized (possibly

with a larger constant c). 2

From Lemma 2.1.2 and the fact that the mass of a step state is bounded (cf. (2.4)) we

obtain immediately

Corollary 2.1.3 Let Xt be a step state of a one-way CML, and let f be bounded and con-

tinuous at x∗±. Then Xt+1 is a step state. If, in addition, Xt is exponentially localized, so is

Xt+1.

This last property comes from the bistability of the CML, that is the local map f to have

two fixed points x∗± that support the step state. We are dealing with CML models with

nearest-neighbour coupling, so it is impossible for any kind of signal, originated from the

coupling, to travel faster than one site per time step (unit velocity). On the other hand, the

bistability allows a state of the form

Xt = (. . . , x∗−, x
∗
−, xt(k), . . . , xt(k + l), x∗+, x∗+, . . .), (2.12)

with k and l fixed, to evolve after s iterations to

Xt+s = (. . . , x∗−, x
∗
−, xt+s(k), . . . , xt+s(k + l + s), x∗+, x∗+, . . .)

for a one-way CML and to

Xt+s = (. . . , x∗−, x
∗
−, xt+s(k − s), . . . , xt+s(k + l + s), x∗+, x∗+, . . .)

for a diffusive CML. Thus, a step state of the form (2.12) will remain of the same form, with

generally more sites in the intermediate regime between x∗− and x∗+, if x
∗
± are fixed points of

f . For the special case of ε = 0 the state (2.12) evolves like

Xt+s = (. . . , x∗−, x
∗
−, f

s(xt(k)), . . . , f
s(xt(k + l)), x∗+, x∗+, . . .),

and will remain localized in the same region (between i = k and i = k+ l) at any time. Thus

in the uncoupled case there is no propagation of any kind through the lattice.

It is important to notice that Lemma 2.1.2 and Corollary 2.1.3 do not prove the expo-

nential localization when t→∞. In fact, there are cases where the state becomes infinitely

spread along the lattice as t→∞ and so they loose localization.

2.2 Travelling velocity and basic properties

From the previous definitions and results it is clear that if the initial state X0 is a step state,

then µ(Xt) and σ(Xt) are defined for all t ≥ 0. Our main interest is to determine the average

velocity v of the centre of mass, namely

v = v(ε,X0) = lim
t→∞

1

t
(µt − µ0).
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The velocity of the travelling front as a function of the coupling parameter ε obeys quite

general properties, such as monotonicity (theorem 2.2.1), symmetry with respect to the point

(1/2,1/2) (theorem 2.2.2) and continuation of the non-propagating case v(ε = 0) = 0 for small

ε (theorem 2.2.3). The precise statements of these properties are given in the theorems. We

consider the evolution of step states between x∗− and x∗+ (x∗− < x∗+ and f(x∗±) = x∗±) for

non-decreasing local maps. The same results apply for a non-increasing f and x∗− > x∗+. For

the following results we suppose that a travelling front with velocity v(ε) exists.

Theorem 2.2.1 The velocity v(ε) of a step state with minimal mass is a non-decreasing

function of ε in a one-way CML provided that the local map f is non-decreasing.

Proof: We proceed by induction. We start with a minimal mass state X0 = (. . . , x0(−1),
x0(0), x0(1), . . .) with

· · · ≤ x0(−1) ≤ x0(0) ≤ x0(1) ≤ · · · .
Let us consider two parameter values ε and ε′ such that

∆ε = ε′ − ε > 0. (2.13)

We now follow the evolution of the configurations Xt and X ′
t with corresponding coupling

parameters ε and ε′ and starting with the same initial condition X0 = X ′
0. We know that

the minimal mass property of Xt and X ′
t is preserved under iteration if f is non-decreasing

(cf. proposition 2.1.1). Thus

xt(i) ≥ xt(i− 1) (2.14)

and

x′t(i) ≥ x′t(i− 1). (2.15)

The dynamics of two configurations is given respectively by

xt+1(i) = (1− ε)f(xt(i)) + εf(xt(i− 1)) (2.16)

and

x′t+1(i) = (1− ε′)f(x′t(i)) + ε′f(x′t(i− 1)). (2.17)

By subtracting eq. (2.17) from eq. (2.16) after one iteration we obtain

x1(i)− x′1(i) = [(1− ε)f(x0(i)) + εf(x0(i− 1))]− [(1− ε)f(x′0(i))

+ εf(x′0(i− 1))] + ∆ε (f(x′0(i))− f(x′0(i− 1))) .
(2.18)

Because the initial condition is the same for both configurations the first two terms cancel

each other, and eq. (2.18) reduces to

x1(i)− x′1(i) = ∆ε
(
f(x′0(i)− f(x′0(i− 1))

)
.

Thus, if f is a non-decreasing function and recalling eq. (2.13) and (2.15) we have

x1(i) ≥ x′1(i) ∀i. (2.19)

Equation (2.19) says that, after the first iteration, any i-th site of X ′
1 is below, or equal to,

the i-th site of X1. This may be denoted as X1 ≥ X ′
1 and may be referred by saying that the

configuration X ′
1 is below, or equal to, the one of X1. Since we are dealing with step states
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Figure 2.1: Configuration of two, initially identical, minimal mass
step states with different coupling parameters. The step states Xt

and X ′t correspond, respectively, to coupling parameters ε and ε′ with
ε′ > ε. The centre of mass µ′t of the state with largest ε advances
further (the propagation is from left to right).

with minimal mass between x∗− and x∗+, saying that the configuration X ′
1 is below or equal

to the one of X1 is the same that saying that the centre of mass µ1 of X1 is smaller or equal

to the centre of mass µ′1 of X ′
1. Hence the configuration X ′

1 has advanced more than the one

of X1 —with configurations not necessarily of the same shape— see figure 2.1. Therefore, for

the first iteration, increasing ε results in a further advance (to the right) of the step state.

We now extend the above result for any successive iteration. Suppose that at time t

xt(i) ≥ x′t(i). (2.20)

Applying the corresponding dynamics (2.16) and (2.17) and subtracting the two resulting

configurations gives

xt+1(i)− x′t+1(i) = [(1− ε)f(xt(i)) + εf(xt(i− 1))]− [(1− ε)f(x′t(i))

+ εf(x′t(i− 1))] + ∆ε (f(x′t(i)− f(x′t(i− 1))) .
(2.21)

It is plain that the last term in eq. (2.21) is non-negative since f is non-decreasing and X ′
t

has always minimal mass. But this time, the first two terms does not cancel each other.

Applying f to both sides of (2.20) for i and i−1, and multiplying by 1−ε and ε respectively,

leads to
(1− ε)f(xt(i)) ≥ (1− ε)f(x′t(i))

εf(xt(i− 1)) ≥ εf(x′t(i− 1)),

whence to

(1− ε)f(xt(i)) + εf(xt(i− 1)) ≥ (1− ε)f(x′t(i)) + εf(x′t(i− 1)).

Therefore, the first two terms of (2.21) combine to a positive quantity and hence

xt(i) ≥ x′t(i) ⇒ xt+1(i) ≥ x′t+1(i). (2.22)

Because (2.22) is true for t = 0 (cf. (2.19)) then, by induction, (2.22) is true for any t.

The two initially identical configurations X0 and X ′
0 evolve with a corresponding coupling
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parameter ε < ε′. From the above result one has that xt(i) ≥ x′t(i) for all t, and because

X(t) and X ′(t) are minimal mass step states between x∗− and x∗+ we have

µt ≤ µ′t ∀t.

Thus if the limits

v(ε) = lim
t→∞

µt − µ0

t
and v′(ε) = lim

t→∞

µ′t − µ′0
t

exist, we conclude that

ε′ > ε ⇒ v(ε′) ≥ v(ε).

Therefore v(ε) is non-decreasing provided that f is non-decreasing. 2

It is worth to mention that the one-way CML model we are using (cf. (0.6)) is coupling

a site to its left neighbour, and hence the propagation of any kind of information through

the lattice ought to be from left to right. For a diffusive CML the sites are coupled both to

the right and to the left neighbours and hence, in this case, a signal could propagate in any

direction. As we will see later in section 3.3 the direction of propagation is determined by

the local map.

Another general feature of the velocity of the travelling front in a one-way CML is its

symmetry around its centre point:

Theorem 2.2.2 The velocity of the travelling front in a one-way CML of the form (0.6) is

symmetric with respect to the point (ε, v(ε)) = (1/2, 1/2), that is v(ε) = 1− v(1− ε).

Proof. Let δ = 1− ε and consider a moving reference frame with a unit positive velocity:






yt(i) = xt(i)

yt+1(i) = xt+1(i+ 1)
...

...
yt+k(i) = xt+k(i+ k).

The one-way CML in the moving frame now reads

yt+1(i− 1) = δf(yt(i)) + (1− δ)f(yt(i− 1))

=⇒ yt+1(i) = (1− δ)f(yt(i)) + δf(yt(i+ 1)).
(2.23)

Equation (2.23) represents a one-way CML of the type (0.6) but coupled in the opposite

direction. Thus, taking into account the moving reference frame and the definition of δ we

can conclude that

1− v(ε) = v(1− ε). (2.24)

This important symmetric property allows one to restrict the study of the velocity to the

ε-interval [0, 1/2] when dealing with a one-way CML. 2

As we mentioned earlier, when ε = 0 there is no propagation through the lattice. We

expect the step state to evolve as we increase the value of the coupling parameter and do

so continuously from the uncoupled limit [36]. The limit when ε → ∞ corresponds to the

continuum limit so the ε→ 0 is called the anti-continuum limit —first introduced by Aubry

as the anti-integrable limit [37]. A formal analysis on the stability of exponentially localized

step states establishes the following quite general property of the velocity of a step state in

one-way CML:
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Theorem 2.2.3 Let X0 be an exponentially localized step state of a one-way CML. Let the

local map f be bounded, and let f be a contraction mapping in a neighbourhood of the fixed

points (2.3). Then, for all sufficiently small ε, v(ε) = 0 and v(1 − ε) = 1, independently of

X0.

Proof. We deal with the case of small coupling first, and positive i. From Corollary 2.1.3

we know that Xt is an exponentially localized step state for all t ≥ 0. By assumption f is a

contraction mapping in some domain |x − x∗+| < r. Let N ′ be such that for all i ≥ N ′ we

have |xt(i) − x∗+| < r/2, so that ∆xt(i) < r. Then, for i ≥ N ′, the constant ρ appearing in

(2.9) can be chosen to be smaller than 1.

Let N ′′ be such that ∆xt(i) < 1 for all i ≥ N ′′, and let N = max(N ′, N ′′). Then since

Xt is exponentially localized, we can choose κ so that the bound (2.10) holds for i ≥ N with

c = 1. Letting c = 1 in (2.11) it follows that

∆xt+1(i) < κi i > N (2.25)

provided that

ε <
κ

ρ

1− ρ

1− κ

which is satisfied for sufficiently small ε, since the right hand side is positive.

It remains to consider the case i = N . Because f is bounded, the quantity

∆f = supxf(x)− infxf(x)

is finite. We have, in place of (2.9)

∆xt+1(N) < ρ (1− ε)∆xt(N) + ε∆f

giving, for all t ≥ 0

∆xt+1(N) < αt+1κN + ε∆f
1− αt+1

1− α
,

where α = ρ(1 − ε) < 1. The right-hand side of the above inequality can be made smaller

than κN for all t, provided that ε is sufficiently small. Thus the inequality (2.25) holds also

for i = N .

Let i be negative. Assuming that ∆xt(i) < κ−i for all sufficiently large (negative) i, and

proceeding as above, we find that the bound ∆xt(i) < κ−i for i ≤ −N implies that

∆xt+1(N) < κ−iρ (1− ε+ εκ) < κ−i; i < −N

for all ε (all constants have been redefined). The case i = −N gives the recursive inequality

∆xt+1(−N) < (1− ε)∆f + ρεκN+1

which, as before, yields ∆xt+1(−N) < κN for sufficiently small ε.

The above induction establishes the time-independent bound

∆xt(i) < κ|i|, |i| ≥ N, t ≥ 0,

for a suitable choice of κ and N , and for all sufficiently small ε. In this ε-range, from the

boundedness of f we conclude that |µt| and σt are bounded from above for all times. Thus
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v(ε) = 0, and Xt remains a step state also in the limit t→∞. Using the symmetric property

(2.24), it follows that the same result holds for v(1− ε). 2

The above theorem is a general property of travelling front in a one-way CML. Using the

same ideas as in [36, 38] for a network of units, one could find an estimate for the value of ε up

to where the non-propagating case persists. The condition that f be a contraction mapping

is a bit stronger than the condition that x∗± be attracting. We shall see (chapter 4) that for

an initial localized pure step state of the type (2.5), the critical behaviour is much richer than

a discontinuous transition from v = 0 to v = 1, at some intermediate value of ε. Rather, the

dependence of v on ε is characterized by infinitely many critical values, in correspondence to

the boundaries of intervals in ε, where the velocity is a given rational number.
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Chapter 3

Travelling wave fronts

In this chapter we deal with the coherent propagation of a wave front, without damping or

dispersion, along the lattice. We confine our attention to states with minimal mass. In order

to ensure that this property is preserved under iteration, we shall require the local map f to

be non-decreasing as stated before.

3.1 A bistable local map f

As it should be clear from the previous chapter, two fixed points of the local map f are

necessary in order for the CML to support a step state (also called kink or wave front) for

zero coupling. As mentioned before (cf. Theorem 2.2.3) the steady step state persists for

small values of ε. We would like now to be able to increase further ε for the step state to

travel along the lattice. We now describe a simple mechanism that allows step states to

travel.

Consider a continuous non-decreasing local map f with two fixed attracting points x∗−
and x∗+ (with x∗− < x∗+), i.e. |f(x∗±)| < 1. The case of a non-increasing f and x∗− > x∗+ is

equivalent. We focus our attention on the restricted map

f : [x∗−, x
∗
+]→ [x∗−, x

∗
+].

It is plain that if the initial state of the lattice verifies the condition x∗− ≤ x0(i) ≤ x∗+, then for

any t > 0 all the dynamics takes place in the interval [x∗−, x
∗
+], i.e. x∗− ≤ xt(i) ≤ x∗+, provided

that 0 ≤ ε ≤ 1. The fixed points x∗± are attractive but not necessarily superattractive (a

note on this respect is given in the next section). A typical plot of such smooth local maps

is shown in figure 3.1. By the continuity of f , there exists an unstable fixed point x∗0 with

x∗− < x∗0 < x∗+. We denote the basins of attraction of x∗− and x∗+ to be I− = [x∗−, x
∗
0) and

I+ = (x∗0, x
∗
+] respectively.

Let us consider the initial state X0 to be a step state with minimal mass such that

limi→±∞ xt(i) = x∗±. The dynamics at ε = 0 is trivial since any site in I− (I+) tends to x∗−
(x∗+); thus after a transient —recall that X0 has minimal mass so all the sites to the left

(right) of x∗0 tend to x∗− (x∗+)— the final state will be a pure step state (see figure 3.2.a).

The marginal case when one or more sites have the initial position at the unstable point
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Figure 3.1: A bistable continuous map f . The local map f has two
(a) stable ((b) superstable) fixed points x∗±, because of continuity there
exists an unstable fixed point x∗0 between them.

x∗0 is unstable. As we switch on the coupling parameter, these sites are pushed out of the

unstable equilibrium to one of the basins of attraction I± (no matter how small ε is), so that

the lattice tends to a pure step state as well (see figure 3.2.b). Therefore, from now on we

will consider the initial configuration to be a pure step state.

x−
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I−

I+

x−
*

x−
*

x−
*

x0
*

x0
*

x0
*
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x+
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a)
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ε = 0

ε = 0

0 < ε << 1

t → 

t → 

Figure 3.2: Evolution of an initial minimal mass step state for zero
coupling. (a) All the sites that where initially in I− (I+) tend to x∗−
(x∗+) and the final state is then a pure step state. (b) A site initially
set at the unstable fixed point x∗0 remains at its position at all times
for zero coupling, but if the coupling is slightly increased (0 < ε ¿ 1)
the configuration tends to a pure step state.

As we increase the coupling parameter, the interaction between neighbours may ‘pull out’

some sites of their initial basin of attraction to the other basin of attraction, possibly causing

the step state to evolve. We consider first the case of a one-way CML and then the diffusive

one.
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3.2 Travelling wave fronts in one-way CMLs

An initial pure step state is stable for ε = 0 since the individual sites are located at the

stable fixed points of f . We know (Theorem 2.2.3) that if ε is small enough the resulting

exponentially localized step state does not travel. What is happening internally in the lattice

is that the coupling causes the first (left-most) sites of I+ (grey site in figure 3.3.a) to be

‘pulled down’ towards I− by the last (right-most) sites of the basin I− (white site in figure

3.3.a) but at the same time the internal dynamics ‘pulls up’ the sites in I+ towards the stable

fixed point x∗+. Overall, for ε small enough, the ‘pulling down’ by the coupling is balanced

by the ‘pulling up’ of the stable internal dynamics, and then the step state cannot evolve

(figure 3.3.a). This balance is broken when we increase further the coupling (figure 3.3.b).
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coupling

coupling

coupling

internal dyn. internal dyn.

internal dyn.

internal dyn.

ε↑

t ↑

t↑

Figure 3.3: Competing dynamics in the interface of a step state in a
one-way CML. (a) the coupling exerted by the white site pulls the grey
site downwards but the attraction by the internal dynamics towards
the stable point x∗+ pulls upwards with the same strength. (b) If we
increase ε the coupling supersedes the upwards pulling and the grey
site is pulled into I− (c) where both, the coupling and the attraction
towards x∗−, pull in the same direction (d).

If the coupling is strong enough to break the balance, the first sites of I+ are ‘pulled down’

sufficiently and fall into the basin of attraction I− (figure 3.3.c). Once a site is in I− it will,

not only be ‘pulled down’ by the previous neighbours, but it will be attracted towards x∗−
as well, making the dynamics of those sites to converge rapidly to x∗− (figure 3.3.d). Loosely

speaking, every time a site is ‘pulled down’ from I+ to I− the step state moves to the right.

Once the first site of I+ has been pulled into I−, its right neighbour will in turn follow the

same destiny. This procedure may be pictorially portrayed as a battle between the I− and

the I+ kingdoms where both armies are fighting for territory and once a prisoner is taken it

switches party and then its new kingdom has one more head to help in the combat. This

battle is very unfair since the overall capture of enemies is biased: the I− army is the only

one that can ‘pull’ enemies towards its territory and convert them into new recruits (the

coupling is in one direction only). Maybe later, the army I+ will have more chances in a

diffusive CML case...

The result of the bias in the competing dynamics at the interface is to induce a gradual

advance of the step state. An example of this phenomenon may be observed in figure 3.4.a

where we plotted the evolution of a step state in a one-way CML with a cubic local map.
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Figure 3.4: (a) Travelling step state in a one-way CML with the
cubic local map defined in 3.6 for ε = 0.25 and α = 0.4. The travelling
velocity is v(ε) = 1/4. (b) For the same value of the parameters it is
possible to send a whole kink in the same travelling direction.
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The value of the coupling parameter, ε = 0.25, in figure 3.4 is large enough to break the

balance between the competing dynamics and to create a bias for the sites to pass from I+

to I−. Since the local map is symmetric, whatever happens to a left step state will happen

to a right step state, that is, we could send a whole kink (a combination of a left plus a right

step state separated by an homogeneous region) through the lattice. Both ends of the kink

travel with the same velocity and then its shape remains unchanged (see figure 3.4.b) thanks

to the symmetry of the local map.
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Figure 3.5: Velocity v(ε) of the travelling step state as a function of
the coupling parameter ε for the family of smooth local maps depicted
in figure 3.6. Each curve, from left to right, corresponds to the local
maps in figure 3.6 but from right to left. As the derivative at the
unstable fixed point x∗0 = 0 increases in figure 3.6 the velocity decreases
because the unstable point repels sites trying to switch from the basin
of attraction I+ to I−.

The effect of the superattractiveness of the points x∗± is to enhance the overall attraction

towards it and thus the travelling step state is more stable under perturbations. On the other

hand, the unstable point x∗0, at the boundary of the two basins of attraction, repels any site

that gets closer to it making more difficult for any site to pass from one basin of attraction

to the other. A measure of how repulsive is x∗0 is given by f ′(x∗0). Consider two close maps

f1 and f2 whose derivatives at the unstable point satisfy 1 < f ′1(x
∗
0) < f ′2(x

∗
0). The sites of

the travelling step state will find more opposition to pass from I+ to I− with f2 rather than

with f1 and thus one would expect that the velocity is smaller for f2 than for f1. In order to

illustrate this phenomenon we plotted in figure 3.5 the velocity of the travelling step state as

a function of ε for the family of local maps given in figure 3.6. As we may notice, the largest

velocity curve corresponds to the map with smaller derivative at the unstable point x∗0 = 0.

It is important to note that this is not always the case as it is possible to find maps with

smaller derivative at x∗0 but whose velocity is smaller for certain values of ε. This is because

the derivative at x∗0 is a local property of f , while the wave front velocity is also affected by

other features of the map (derivatives at x∗±, sizes of I±, concavity, etc.).

Another feature that changes when we vary the derivative at the unstable point, is the

critical parameter εc corresponding to the value of ε where there is a transition from a

stationary front (v(ε) = 0) to a moving one (v(ε) > 0). As we mentioned above, the
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Figure 3.6: Family f = (−α2 x3 +3x)/(3−α2) of bistable local maps
used in figure 3.5. This cubic map has two stable fixed points x∗± = ±1
and an unstable fixed point x∗0 = 0 for 0 < α <

√
(3/2) ' 1.22474 and it

is antisymmetric with respect to x∗0. The curves, from left to right,
correspond to α = 1, 0.9, 0.7, 0.4 for which f ′(x∗0) = 3/(3 − α2) =
1.5, 1.3698 . . . , 1.1952 . . . , 1.0563 . . ..

transition from I+ to I− becomes more difficult as we increase f ′(x∗0). This is reflected in

figure 3.5 where the curves, from left to right, present values of εc that increase as f ′(x∗0)

increases. To have a clearer picture of this phenomenon we plotted in figure 3.7 the value of

the critical point εc as a function of the derivative at the unstable point of the cubic map in

figure 3.6. The plot clearly shows a strictly increasing function corroborating our intuition.

Finally, it is worth mentioning that the direction of propagation of the travelling wave

front in a one-way CML is completely determined by the direction of the coupling itself.

It is obviously impossible to send a right-to-left signal in the one-way CML defined before

(eq. (0.6)); to do so we must invert the direction of the coupling by coupling the i-th site

to its right neighbour (i + 1), instead of the left one (i − 1). To construct a CML that can

support travelling fronts in both directions, by suitably changing the local map f , one must

choose a coupling that involves left and right neighbours, in order to have the possibility of

information travelling in both directions in the lattice. A possible candidate is the diffusive

CML (0.5) as explained in the next section.

3.3 Travelling wave fronts in diffusive CMLs

The travelling wave front in one-way CMLs is the result of the bias between competing

attractors created by the one-directional coupling. Let us consider now a diffusive CML of

the type (0.5) with an antisymmetric local map f as the one used in the previous examples

for the one-way CML case. In this diffusive CML the coupling itself is symmetric, i.e. there

is a factor of ε/2 for both directions of coupling, and thus taking an antisymmetric f will

result in an even contribution from both sides of the i-th site. The overall result is that the

front stays in the same position, i.e. the centre of mass does not move, but this does not
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Figure 3.7: Dependence of the critical parameter value εc, at which
the wave front begins to travel, upon the derivative at the unstable
point x∗0 = 0, for the cubic map of figure 3.6.

mean that the front has the same shape at all times. In order to illustrate this phenomenon

take the initial condition to be the pure step state P (40) (cf. 2.5) and iterate the diffusive

CML with the cubic local map defined in figure 3.6 for several values of α and ε. The result,

after 10 000 transients, is plotted in figure 3.8.

We have then a non-propagating front. It is possible to show that there exists a sta-

ble configuration for the lattice [39, 7, 40], depending on the local map and the coupling

parameter, to which any front tends. The shape of the front can be obtained by means

of a continuum approximation [41, 42, 43]. For doing so one supposes that the wave front

is widely spread in order to approximate the discrete space by a continuous one. The wave

front in the CML is then approximated by a single ODE and it corresponds to an heteroclinic

connection of two unstable points [44, 45]. This procedure is very similar to the one used in

[46, 47] where the travelling fronts in LDEs (Lattice Dynamical Systems, that is a lattice of

coupled ODEs) are described by a single ODE.

The fixed shape solution h(i) is determined by the system of equations

h(i) = (1− ε)f(h(i)) +
ε

2
(f(h(i− 1)) + f(h(i+ 1))) , (3.1)

for i running from −∞ to +∞. If we assume that the space is continuous, i.e. i ∈ R, equation
3.1 reduces to that for the motion of a particle of mass m = ε/2 in the potential

V (h) =

∫

(f(h)− h) dh.

For the cubic local map f(x) = (−α2 x3 + 3x)/(3− α2) the potential reduces to

V (h) =

∫
(

−α2 h3 + 3h

3− α2 − h

)

dh

= α2h2

4(3− α2)

(
2− h2

)
.

(3.2)
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Figure 3.8: The stationary front shape, starting with a pure step state
at i = 40, after 10 000 transients, in the diffusive CML with the cubic
local map defined in figure 3.6 with the following parameter values: (¦)
α = 0.2, ε = 0.995; (+) α = 0.2, ε = 0.5; (2) α = 0.2, ε = 0.1; (×)
α = 0.7, ε = 0.1; (4) α = 0.7, ε = 0.5 and (×+) α = 0.7, ε = 0.995.
The dashed lines represent the continuum approximation (3.5).
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Figure 3.9: The rescaled profiles translated to the origin for the pa-
rameter values of figure 3.8. The dashed curve represents the hyperbolic
tangent function.
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The total energy E for this system is equal to the potential at the extremums

E = V (x∗±) =
α2

4(3− α2)
, (3.3)

whereas the first integral of motion, the energy, is the sum of the kinetic T and potential V

energies

E = T + V =
1

2
mḣ2 + V (h). (3.4)

Combining (3.2) and (3.3) in (3.4), and replacing m = ε/2, leads to the differential equation

3− α2

α2 ε ḣ2 −
(

h2 − 1
)2

= 0.

whose solution is given by

h(y) = tanh(β y) (3.5)

where

β =

√
√
√
√

α2

ε(3− α2)
.

A comparison between the shape of the stable stationary state and the continuum approxi-

mation is shown in figure 3.8 where the graph of (3.5) for the corresponding values of α and

ε is plotted with dashed lines. The approximation is quite good. In order to have a better

comparison notice that the continuum approximation only depends on the parameters α and

ε, so one can rescale the front by a factor of β−1 on the X-axis so that the remaining profile

no longer depends on α nor ε. In figure 3.9 we plotted such rescaled profile, translated to

the origin, for the same curves that in figure 3.8 with the curve of the hyperbolic tangent

tanh. One notices that all profiles follow the same shape. For fronts with few sites in the

interface (case (×) α = 0.7, ε = 0.1 for example) the continuum approximation is not as

good for fronts with many sites in the interface (case (¦) α = 0.2, ε = 0.995 for example),

this is because the approximation assumes a continuum space and thus the approximation

will be better as there are more sites in the interface, i.e. a ‘less’ discrete space.

For the front to advance one needs asymmetry, either in the coupling or in the local map

(with respect to the repeller point x∗0) which generates a bias between competing attractors.

This assertion can be formalized in the following sense [39]. Suppose we have a diffusive CML

that has a propagating front h(z) with z = i − vt, that is, a travelling interface with shape

h(i) and velocity v. Let us suppose that the front is moving with a small velocity v ¿ 1 and

assume, for the time being, that the variable i is continuous. The first order approximation

of h(z − v) is

h(z − v) = h(z)− v
dh

dz

∣
∣
∣
∣
z=i−vt

,

which, using a continuum approximation of the diffusive CML (0.5) gives

h(z)− vh′(z) = f(h(z)) +
ε

2
∇f(h(z)). (3.6)

Integrating eq. (3.6) over R and taking into account that

∫ +∞

−∞
h′(z) dz = x∗+ − x∗−
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Figure 3.10: (a) Velocity of the travelling front in a diffusive CML
with the non-symmetric map f(x) = ν x(1 − x2) + p with ν = 1.01
and p = −0.0001. The solid line represents the velocity computed
numerically iterating 10 000 times a 200 sites lattices and the dashed
line represents the continuum approximation (3.9). (b) Amplification
of the lower-left corner of (a) showing the continuation of the non-
propagating solution up to εc ' 0.00575 for the numerical computation.
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and that ∫ +∞

−∞
∇f(h(z)) dz = 0

since we are dealing with step states, the velocity v is approximately given by

v =
1

x∗+ − x∗−

∫ +∞

−∞
(h(z)− f(h(z))) dz. (3.7)

Thus, taking an antisymmetric local map f results in a symmetric profile h and the velocity

computed with (3.7) vanishes. It is clear then that f has to be non-antisymmetric if we want

the front to propagate in a diffusive CML. An analogous analysis in a continuous space-time

model of chemical reactions had led to similar conclusions [48].

Let us consider then an non-symmetric map, the perturbed cubic map:

f(x) = ν x(1− x2) + p, (3.8)

where 1 < ν < 2, while |p| ¿ 1 breaks the symmetry. For this map a similar analysis

than the one for the symmetric cubic map may be performed and it is possible to find an

approximation for the velocity of the corresponding travelling front given by [39, 49]:

v ' −3p

2

√
νε

ν − 1
. (3.9)

In figure 3.10 we plot the velocity of the travelling wave front for ν = 1.01 and p = −0.0001
computed numerically (solid line) and using the continuum approach (3.9) (dashed line).

The continuum approximation gives a good fit. However, it does not reproduce the lack of

propagation for very small values of ε. Figure 3.10.b depicts a magnification of figure 3.10.a

around ε = 0 showing the discrepancy between the numerical experiment where v(ε) = 0 for

ε ≤ εc ' 0.00575, and the approximation (3.9) where the transition occurs at εc = 0.
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Figure 3.11: Travelling direction of an interface in a diffusive CML.
(a) |I−| > |I+|: the kink shrinks and (b) |I−| < |I+|: the kink grows.
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Figure 3.12: Propagating kink in a diffusive CML with the asymmet-
ric local map (3.8) with ν = 1.01 and ε = 0.9. (a) p = −0.0001: the
kink solution shrinks (see figure 3.11.a) and (b) p = +0.0001: the kink
solution grows (see figure 3.11.b).
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In a diffusive CML the direction of travel of the interface is determined by the asymmetry.

An important issue is the size of the basins of attraction I±. If |I−| > |I+| it is easier for a

site to go from I+ to I− than the other way around, while if |I−| < |I+| the opposite happens.
The situation is depicted in figure 3.11, where the two cases are shown: (a) if |I−| > |I+|
the kink solution shrinks since the left (right) interface travels to the right (left) and (b)

if |I−| < |I+| the kink solution grows. In order to illustrate this phenomenon we plotted

in figure 3.12 the evolution of the kink configuration with the asymmetric cubic map (3.8)

for (a) p = −0.0001 and (b) p = +0.0001. Figure 3.12.a represents the case (a) in figure

3.11.a and figure 3.12.a the case (b). On the other hand, the coupling is symmetric, and thus

the velocity of the left interface and the right one have the same magnitude but opposite

directions, as it may be noticed in figure 3.12.

3.4 Mode-locking of the travelling velocity: first numerical

evidence
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Figure 3.13: The hyperbolic tangent local map f(x) = tanh(x/ν)
(ν = 2/5, 1/3, 2/7, 1/4, 1/5, 1/7 from right to left) used in figure 3.14.

In this chapter a simple mechanism for propagating interfaces in CMLs (one-way or

diffusive) has been qualitatively described. The numerical experiments shown up to now

(figures 3.10 and 3.5) seem to suggest smooth dependence of the velocity v as a function of

ε with only one critical transition from the stationary state (v(ε) = 0) to the propagating

solution at εc > 0 for the diffusive CML and two transitions (at εc > 0 and 1−εc) for the one-

way CML. In this section we give some numerical evidence of a quite striking phenomenon:

mode-locking of the velocity of a travelling interface in CMLs. By mode-locking we understand

that the velocity of the interface remains with the same value vlock in the interval [ε1, ε2] with

ε1 < ε2.

As a first example, we used a one-way CML with the hyperbolic tangent f(x) = tanh(x/ν)

as local map (see figure 3.13); the results are shown in figure 3.14 for different values of

the parameter ν. The velocity presents finite ε-regions where the velocity is locked to a
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Figure 3.14: Velocity of the travelling interface for the hyperbolic
tangent local map of figure 3.13 with ν = 2/5, 1/3, 2/7, 1/4, 1/5, 1/7
from left to right. The velocity shows plateaus where the velocity is
locked. The plateaus become larger as ν decreases.

particular value. The velocity curve corresponding to ν = 2/5 (left-most one) does not

apparently features any plateaus. However, as we decrease ν (curves going from left to right)

the plateaus become more and more evident, and appear at the same heights for all the

curves. A closer look reveals that they correspond to rational values of v(ε).

Mode-locking implies the velocity to have a much more complex structure that the one

previously described. It possesses several critical transitions as ε is varied. To understand this

mode-locking phenomenon in detail we introduce, in the next chapter, the simplest local map

that fulfills the basic conditions for supporting travelling wave fronts: a particular piece-wise

linear local map for which the dynamics of the whole lattice is reduced to a one-dimensional

map.
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Chapter 4

A piece-wise linear local map:

towards understanding the

mode-locking phenomenon

In this chapter a piece-wise linear local map is introduced in order to analyze the mode-locking

of the travelling velocity of interfaces in a one-way CML. We found the velocity to have an

infinite number of critical transitions: it is indeed a Devil’s staircase. The lattice dynamics

is reduced to a one-dimensional circle map which is described using symbolic dynamics.

4.1 The piece-wise linear local map

x*
+

x

fa (x)

x*
0

x*
_

−a
a 1

0

1

−1

−1

Figure 4.1: The simplest local map that allows travelling interfaces
in one-way CML: the piece-wise linear local map fa.

In the previous chapter we have described a very simple mechanism, allowing travelling

interfaces in one-way CMLs consisting of a bistable local map. We now introduce a partic-

ularly simple example of a bistable local map that fulfills the following requirements: it is

continuous, non-decreasing and has two superstable fixed points x∗±, symmetric with respect

to the unstable point x∗0. We ask the fixed points x∗± to be superstable in order the travel-

ling interface to be stable to perturbations and we require, without loss of generality, that
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CHAPTER 4. A PIECE-WISE LINEAR LOCAL MAP

x∗− < x∗+. The simplest map of this kind is given by the 2-parameter family (see figure 4.1)

fa(x) =







−1 if x ≤ −a
1
a x if −a < x < a

1 if x ≥ a

0 < a ≤ 1, (4.1)

and by the step function between −1 and 1 centered at the origin with fa(0) = 0 when a = 0.

The fixed points x∗− = −1 and x∗+ = 1 are then superstable, with basins I− = [−1, 0) and

I+ = (0, 1] respectively, and the repeller is the origin x∗0 = 0. The coupled map lattice now

depends on the two parameters ε and a, and the parameter space is the unit square. The

one-way CML with local mapping fa and coupling ε will be denoted by Fε,a:

Fε,a : R
∞ −→ R

∞

Xt+1 = {xt+1(i)}
+∞

i=−∞
= Fε,a

(

Xt = {xt(i)}
+∞

i=−∞

)

s.t. ∀ i∈ Z, xt+1(i) = (1− ε) fa(xt(i)) + εfa(xt(i− 1)).

(4.2)

We partition the interval I = [−1, 1] into the unstable domain U = (−a, a) and the super-

stable domains S− = [−1,−a] and S+ = [a, 1]. Any site falling within S± maps, under fa,

to x∗± at the next iteration. With this piece-wise linear local map the mode-locking is much

more obvious as it may be observed in figure 4.2 where velocity curves as a function of ε are

shown for several values of the local map parameter a.
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Figure 4.2: Velocity curves for the piece-wise linear local map as a
function of ε for the following a values: a) a = 1/2, b) a = 2/5, c)
a = 2/7 and d) a = 1/5.

We begin considering localized states of minimal mass Xt whose configurations {xt(i)}
form a non-decreasing sequence. The case of a non-increasing configuration could be treated

in the same way since the map fa is antisymmetric w.r.t. x∗0. Because Xt is a localized state,

only a finite number n of local states belong to U (see figure 4.3.a), namely

i ∈ {k + 1, . . . , k + n} ⇐⇒ xt(i) ∈ U. (4.3)
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For i ≤ k (i > k + n), the local states belong to the superstable domain S− (S+) and their

image under fa is −1 (+1). Consequently, if we let X ′
t be the state obtained from Xt by

replacing xt(i) with −1 for i ≤ k and with +1 for i > k + n, then Fε,a(Xt) = Fε,a(X
′
t). The

state X ′
t is said to be the reduced state associated with Xt, and we write Xt ∼ X ′

t (see figure

4.3). We will reduce all states after each iteration of the mapping Fε,a.

a) b)

X t X’
t

+1 +1

+a +a

S− S−

U U

S+ S+

−1 −1

−a −a
{ {
{ {

{ {
~

Figure 4.3: Reducing a minimal mass state. (a) A minimal mass state
has a finite number of sites in U , (b) the remaining sites are reduced
to −1 (+1) if they belong to S− (S+).

So, without loss of generality, we shall restrict our attention to states of the type

Xt = ( . . . ,−1,−1, xt(k + 1), . . . , xt(k + n), 1, 1, . . . ) (4.4)

where

xt(i) ∈ U, i = k + 1, . . . , k + n.

The number n of local states in U is called the size of Xt. Thus, the non-trivial part of Xt

consists of the set of sites belonging to U giving the transition between the the stable local

states x∗− and x∗+, this set is precisely defined as the interface. In more general terms, when

the reduction of the states is not possible —that is the case when the local map does not have

the superstable domains S±— the interface is defined as the whole set of sites, belonging to

the open interval (x∗−, x
∗
+), giving the transition between the stable local states x∗− and x∗+

(see figure 4.4).

interfacex *
−

x *
+

Figure 4.4: The interface of a minimal mass step state

The knowledge of the range (4.3) provides useful information about position and width

of a step state. In fact, it is easy to show that the centre of mass of Xt satisfies the bounds

k +
n(1− a)

2
< µ(Xt) < (k + n)− n(1− a)

2

and the width
n(1− a)

2
< σ(Xt) <

n

2
.
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Let us follow the dynamics of Fε,a by iterating the configuration (4.4). The image of Xt

is

Xt+1 = (. . . ,−1,−1, xt+1(k + 1), . . . , xt+1(k + n), xt+1(k + n+ 1), 1, . . . ), (4.5)

and its size is at most one bigger (n+ 1) that the one for Xt. We say at most because Xt+1

has not yet being reduced and therefore its size could have, after reduction, a smaller value.

In order to compute Xt+1 in (4.5) we have to apply the recipe xt+1(i) = (1 − ε)f(xt(i)) −
εf(xt(i− 1)) to every site. Nevertheless, the first (k+ 1) and the last (k+ n+ 1) non-trivial

sites of Xt+1 have a simpler form:

xt+1(k + 1) = (1− ε)f(xt(k + 1))− ε

xt+1(k + n+ 1) = (1− ε)− εf(xt(k + n))

since they are in the boundary of the interface where the neighbouring sites xt(k) = −1 and

xt(k+n+1) = 1 simplify, respectively, to −1 and 1 under iteration of fa. Thus, defining the

linear maps

f0(x) ≡ 1− ε
a x− ε

f1(x) ≡ ε
a x+ (1− ε),

(4.6)

it is possible to rewrite (4.5) as

Xt+1 = (. . . ,−1,−1, f0(xt(k + 1)), xt+1(k + 2), . . . , xt+1(k + n), f1(xt(k + n)), 1, . . . ).

As we said, Xt+1 has at most n + 1 sites in U . The reduced state X ′
t+1 is then one of the

following (see figure 4.5):

(a) (. . . ,−1,−1, xt+1(k + 1), xt+1(k + 2), . . . , xt+1(k + n), 1, 1, . . . )

(b) (. . . ,−1,−1, xt+1(k + 1), xt+1(k + 2), . . . , xt+1(k + n), xt+1(k + n+ 1), 1, . . . )

(c) (. . . ,−1,−1, −1, xt+1(k + 2), . . . , xt+1(k + n), xt+1(k + n+ 1), 1, . . . )

(d) (. . . ,−1,−1, −1, xt+1(k + 2), . . . , xt+1(k + n), 1, 1, . . . )

(4.7)

In figure 4.5 we illustrate the simplest example, when only one site, at each boundary of

the interface, is allowed to change from one basin of attraction to another. In general this

picture is more complex since for one iteration there may be several sites interchanging basins

at each end of the interface. However, the configuration remains a non-decreasing sequence

(minimal mass state) since fa is non-decreasing (proposition 2.1.1). The size of the interface

is n in cases (a) and (c), n + 1 in case (b) and n − 1 in case (d). Loosely speaking, as the

time increases from t to t + 1, the state has not propagated in case (a), it has advanced to

the right in case (c), it has propagated with dispersion in case (b) and it has shrunk without

propagation in case (d).

To decide among these 4 possibilities, one needs to investigate the value of f0 and f1 at

the boundary sites i = k + 1 and i = k + n, respectively. Defining

γ− ≡
a(ε− a)

1− ε
, γ+ ≡

a(a+ ε− 1)

ε
(4.8)
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Figure 4.5: Reduction of the state Xt+1 where 4 different cases are
possible depending on the combination of the extremes sites of the
interface.

−1 −a

f0
f1

γ−γ+

1−2ε

−a

+a

+a

+1

+1

−1 −a γ−

f0

f1

γ+

1−2ε

−a

+a

+a

+1

+1
a) negative gap (γ = γ−−γ+< 0)

−1 −a

f0

f1

γ±

1−2ε

−a

+a

+a

+1

+1
b) zero gap (γ = γ−−γ+= 0) c) positive gap (γ = γ−−γ+ > 0)

Figure 4.6: The maps f0 and f1 defining the dynamics at the ends of
the interface.
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one verifies that the functions f0 and f1 satisfy the following equations (see figure 4.6)

f0(−a) = −1 f1(−a) = 1− 2ε

f0(a) = 1− 2ε f1(a) = 1

f0(γ−) = −a f1(γ+) = a.

(4.9)

We define the gap of Fε,a to be the closed interval Γ = [γ+, γ−]. Its length (with sign) is

given by

γ(ε, a) = γ− − γ+ =
a(1− a− 2ε(1− ε))

ε(1− ε)
. (4.10)

We will often omit the arguments (ε, a) and refer to the gap as γ. Let us consider first states

having only one site in the unstable regime U .

4.2 The auxiliary map and its symbolic dynamics

In this section we reduce the dynamics of the whole lattice to a one-dimensional circle map

that describes the evolution of the only site contained in the interface.

4.2.1 The auxiliary map for an increasing step state

Let us first consider an increasing step state, i.e. a step state with minimal mass. The

simplest of all the configurations (4.4) is a state with at most one site in U , i.e. at most one

site in the interface. We call these states minimal mass 1-states or minimal 1-states and they

have the form

Xt = (. . . ,−1,−1, xt(i), 1, 1, . . .), (4.11)

where either xt(i) ∈ U or xt(i) = −1, for which we introduce the shorthand notation

Xt = [x, i]t,

(the subscript t will often be dropped). Thus a pure step state (cf. (2.5)) is a particular case

of a minimal 1-state, i.e. [−1, i] = P (i). We would like to deal with minimal 1-states, but

in general the image of a minimal 1-states is not again a minimal 1-state. Nevertheless it is

possible to establish a region of the parameter space were the minimal 1-states are preserved

under iteration:

Theorem 4.2.1 If Xt is a minimal 1-state then so is Xt+1, provided that the gap size is

non-negative.

Proof. Suppose that Xt+1 has two sites in U (xt+1(k), xt+1(k+1) ∈ U). Because the coupling

is with one neighbour, the minimal 1-state Xt is of the form Xt = [x, k]t (see figure 4.7).
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In order that Xt+1 = Fε,a(Xt) the images of xt(k) have to verify xt+1(k) = f0(xt(k)) ∈ U ,

xt+1(k + 1) = f1(xt(k)) ∈ U and xt+1(k) ≤ xt+1(k + 1), that is







−a< 1− ε
a xt(k)− ε

a> ε
a xt(k) + (1− ε)

⇒ a(ε− a)
1− ε < xt(k) <

a(a− (1− ε))
ε

⇒ ε− a
1− ε <

a− (1− ε)
ε

⇒ 1− a− 2ε(1− ε) < 0

⇒ a(1− a− 2ε(1− ε))
ε(1− ε)

< 0

⇒ γ(ε, a) < 0.

Thus two sites in U implies that γ(ε, a) < 0 and therefore it is not possible for Xt+1 to have

two sites in U when the gap size is non-negative. 2

X t X t+1xt (k)
xt +1(k)

xt +1(k+1)

+1 +1

+a +a

S− S−

U U

S+ S+

−1 −1

−a −a
{ {
{ {

{ {
→

Figure 4.7: A minimal 1-state Xt going, after one iteration, to a state
with two sites in the unstable regime U . (This does not happen when
the gap size is positive (γ(ε, a) ≥ 0).

Therefore if the gap size is non-negative the image of a minimal-1 state is a minimal

1-state. This fact will simplify enormously the global dynamics. On the other hand, when

the gap size is negative it is possible for more than one site to be in U at the same iteration:

nevertheless the interface dynamics can still be described in terms of one-dimensional maps

via delay maps (see section 5.2).

We have characterized the (ε, a)-parameter region where the dynamics consists solely of

minimal 1-states if starting with a minimal 1-state. A plot of this region is depicted in figure

4.8, lying below the zero-gap line, γ(ε, a) = 0. Let us now follow the evolution of a minimal

1-state in the positive-gap case. The image of Xt (cf. (4.11)) is given by

Xt+1 = (. . . ,−1,−1, f0(xt(i)), f1(xt(i)), 1, . . .). (4.12)

Notice that Xt+1 is given in terms of the new functions f0 and f1 (cf. (4.12)).

We define

εc =
1− a

2
(4.13)
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Figure 4.8: The parameter region where the minimal 1-states are pre-
served under iteration is the positive-gap region (shaded area). Above
the zero-gap line (γ(ε, a) = 0) it is possible to have states with more
than one site in U .

and note that εc is the area enclosed between the graph of fa and the diagonal, for x∗0 < x <

x∗+. The following two results characterize completely the evolution of Xt in the parameter

ranges ε ≤ εc and ε ≥ 1− εc.

Theorem 4.2.2 Let Xt be a minimal 1-state of the form (4.11), and consider the fixed points

of f0 and f1 (f0(x−) = x− and f1(x+) = x+)

x− =
εa

1− ε− a
x+ =

a(1− ε)

a− ε
. (4.14)

(i) If ε ≤ εc, then for x(i) < x− (x(i) > x−) the state [x, i] reaches P (i) (P (i − 1)) in a

finite time. The state [x−, i] is fixed and unstable.

(ii) If ε ≥ 1−εc, then for x(i) < x+ (x(i) > x+) the state [x, i] reaches P (i+k) (P (i+k−1))
in a finite time. The state [x+, i] is fixed and unstable under G ◦ F , where G is the shift

mapping

G ({xt(i)}) = {xt(i+ 1)}.

Proof. (i) The image of the i-th site, if it remains in U , is given by xt+k(i) = fk0 (xt(i)) since

it is coupled to the (i − 1)-th site whose value is −1. As to the (i + 1)-th site, since ε ≤ εc
and a ≤ f1(x) for any x ∈ U , we have that xt+k(i + 1) ∈ S+. Therefore at time t + k the

state of the lattice will be equivalent to Xt+k = [fk0 (xt), i] which depends exclusively on the

initial condition xt(i). If ε ≤ εc the derivative of the map f ′0(x) = (1− ε)/a ≥ 1 and then f0

has a repeller at x−. Therefore fk0 (xt(i)) will decrease (increase), for xt(i) < x− (xt(i) > x−)

until it reaches S− (S+) when the state of the lattice is P (i) (P (i − 1)). For the marginal

case xt(i) = x− the state of the lattice Xt+k = [fk0 (x−), i] = [f0(x−), i] is fixed and unstable

since x− is an unstable fixed point of f0. A picture of these 3 situations is given in figure
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4.9 where the cases x(i) > x−, x(i) = x− and x(i) < x− correspond, respectively, to a black,

grey and white site x(i).

t ↑

x(i) x(i)

x +
* x +

*

x −
* x −

*

x − x −

Figure 4.9: Dynamics of minimal 1-states for positive gap when ε <
εc. The final state of the lattice is one of a pure step state P (i− 1) or
P (i) or it remains unchanged, but is unstable, when x(i) = x−.

(ii) Using a similar reasoning, if ε ≥ 1 − εc, x+ is an unstable fixed point of f1 and the

state of the lattice at time t+ k is Xt+k = [fk1 (xt), i+ k]. Therefore the lattice will reach the

state P (i + k) (P (i + k − 1)) for xt(i) < x+ (xt(i) > x+). In the marginal case xt(i) = x+,

the state of the lattice is Xt+k = Gk
(

[fk1 (x+), i+ k]
)

= Gk ([f1(x+), i]), which is fixed and

unstable under G ◦ F . 2

From Theorem 4.2.2 it follows that the velocity of the travelling interface satisfies

v(ε) =







0 if 0 ≤ ε ≤ εc

1 if 1− εc ≤ ε ≤ 1
(4.15)

where εc is the upper bound for the existence of the non-propagating wave front (see Theorem

2.2.3). At the other extreme, when ε is near 1, the interface propagates with a velocity equal

to 1 and this case may be extended, from ε = 1 down to ε ≥ 1 − εc. As a consequence, we

have that if ε ≤ εc then Fε,a(P (i)) ∼ P (i), and if ε ≥ 1 − εc then Fε,a(P (i)) ∼ P (i + 1). In

the rest of this chapter we shall assume that εc < ε < 1− εc.

We partition U into three intervals, namely

U+ = {x : −a ≤ x < γ+}

Γ = {x : γ+ ≤ x ≤ γ−}

U−= {x : γ− < x ≤ a}.

Because we are assuming the gap length to be non-negative, we are dealing with a minimal

1-state and then the four possible configurations of the state (4.12) are reduced to three since

the case of two coexisting sites in U is not attainable. Thus the three possibilities for the

configuration (4.12) are

(a) xt ∈ U− ⇒ f0(xt) ∈ U, f1(xt) ∈ S+

(b′) xt ∈ Γ ⇒ f0(xt) ∈ S−, f1(xt) ∈ S+

(b) xt ∈ U+ ⇒ f0(xt) ∈ S−, f1(xt) ∈ U.

(4.16)
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corresponding to the reduced states —see (4.7)

(a) Xt+1 = (. . . ,−1,−1, xt+1, 1, 1, . . .)

(b′) Xt+1 = (. . . ,−1,−1, −1, 1, 1, . . .)

(b) Xt+1 = (. . . ,−1,−1, −1, xt+1, 1, . . .)

depicted in figure 4.10.
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Figure 4.10: The 3 different possibilities of evolution for a minimal
1-state when the gap is non-negative and εc < ε < 1− εc.

For the case (b′) we have the evolution

[x, i]t −→ [−1, i]t+1 −→ [1− 2ε, i+ 1]t+2. (4.17)

All possibilities are accounted for by defining the auxiliary map Φε,a to be the 2-parameter

map (see figure 4.11)

Φε,a(x) =







f1(x) if x ∈ U+

a if x ∈ Γ

f0(x) if x ∈ U−

εc < ε < 1− εc. (4.18)

It is plain that Φε,a maps U onto itself and if, in addition, γ is positive, then U−, Γ and U+

have positive measure. This characterizes the domain and range of Φε,a. The map Φε,a is a
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1−2ε 1−2ε

f1 f1

f0f0

γ−

γ (ε,a)

γ±γ+−a −a+a +a

+a +a
a) positive gap b) zero gap

Figure 4.11: The auxiliary map Φε,a.

circle map because from the periodicity condition Φ(−a) = Φ(a) = 1 − 2ε it can be made

to map the circle of diameter 2a into itself. The evolution (4.17) is determined by the flat

region Φ(Γ) = a since Φ (Φ(Γ)) = Φ(a) = 1 − 2ε. It is worth mentioning that instead of

choosing the value of Φ(Γ) = a we may have used Φ(Γ) = −a since after a further iteration

both a and −a are mapped to 1 − 2ε by Φ. The reason for this arbitrariness becomes clear

in the next section.

The auxiliary map reduces the dimensionality of our system. The global map Fε,a is

an infinite dimensional system since it has an infinite number of sites. But in the case of

minimal 1-states for non-negative gap the dynamics of the whole lattice is reduced to that

of the auxiliary map Φε,a, as illustrated schematically in figure 4.12. Iterating Fε,a q times

amounts to applying the auxiliary map q times on the interface site. During these q iterations,

whenever the branch f0 is used the interface is not shifted; whenever f1 is applied we shift

the interface by one site to the right; and finally, when the interface site falls into the gap Γ

it essentially undergoes two iterations —cf. (4.17)— to end up with the value 1− 2ε as well

as being shifted one site to the right.
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(Φε,a)
q: 1-D motion

Figure 4.12: Reduction of the dynamics of the travelling front for
minimal 1-states via the auxiliary map Φε,a.

Thus the dynamics of Fε,a for minimal 1-states, when the gap size is non-negative, is

accounted for by the auxiliary map Φε,a. The nature of the auxiliary map (piece-wise linear)

suggests a symbolic dynamics description.
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4.2.2 The auxiliary map for a decreasing step state

Let us now consider a decreasing step state of the form

Xt = (. . . , 1, 1, xt(i),−1,−1, . . .), (4.19)

which is the simplest configuration for a decreasing step state. The state (4.19) is mapped

to

Xt+1 = (. . . , 1, 1, g0(xt(i)), g1(xt(i)),−1, . . .). (4.20)

where
g0(x)≡ 1− ε

a x+ ε

g1(x)≡ ε
a x− (1− ε).

(4.21)

The dynamics is then reduced to the auxiliary map (see figure 4.13)

1−2ε

− (1−2ε)
1

0

o

f1

g1

f0g0

γ− −γ−γ+ −γ+−a +a

+a

Figure 4.13: The auxiliary map Υε,a accounting for the dynamics of
the interfacial site for a decreasing step state.

Υε,a(x) =







g0(x) if −a ≤ x ≤ −γ−

−a if −γ− < x < −γ+

g1(x) if −γ+ < x ≤ a

εc < ε < 1− εc. (4.22)

It is easy to show that g0 is the symmetric version of f0 (with respect to the origin O = (0, 0))

and similarly for g1 and f1. Thus the dynamics of a decreasing step state is the symmetric

counterpart of that of an increasing step state. As a consequence, the velocity of propagation

and shape (just symmetrized) of a decreasing and an increasing step state are equal.

4.2.3 Symbolic dynamics of minimal 1-states

We develop a symbolic description of the dynamics of minimal 1-states in the case of non-

negative gap length. Their dynamics can be reduced to the iteration of a one-dimensional

piece-wise linear circle map —the auxiliary map Φε,a. The following binary symbolic dy-

namics for the auxiliary map Φε,a will play a decisive role in the rest of this chapter. This

approach is quite standard when dealing with circle maps (cf. [50, 51]).
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1−2ε

f1

f0

γ−γ+
−a

U−ΓU+

+a

+a

1

0

Figure 4.14: Symbolic dynamics of the auxiliary map. An iteration
falling in the upper (lower) branch of Φ is given the symbol ‘1’ (‘0’).

f0

f1

γ−γ+

x0x5 x6x7 x4x3 x2 x1

0

0

0

0

1

1

1
1

Figure 4.15: Symbolic dynamics for an orbit of the auxiliary map.
The initial point x0 is iterated under Φ and we obtain the semi-infinite
sequence of symbols S(x0) = (1, 0, 0, 1, 0, 1, 0, 1, . . .).
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We assign the symbols ‘0’ to U−, the symbol ‘1’ to U+, and again the symbol ‘1’ to Γ, see

figure 4.14, thus the upper branch of Φ (f1 and gap) is coded with ‘1’ and the lower branch (f0)

with ‘0’. This choice originates from the prescriptions (4.16), according to which the location

of a minimal 1-state remains unchanged for x ∈ U−, increases by one for x ∈ (U+ ∪ Γ). To

the orbit of the auxiliary map with initial condition x we associate the semi-infinite sequence

of symbols (see figure 4.15 for an example)

S = S(x) = (s1, s2, s3, . . . )

where

si =







1 if Φi(x) ∈ (U+ ∪ Γ)

0 if Φi(x) ∈ U−
.

The space of binary sequences is denoted by Σ2, and is equipped with the usual topology.

Any orbit with an element in Γ will be called a gap orbit. If this orbit is periodic, then

the period of its symbolic representation is that of the orbit. Because every ‘1’ in S accounts

for a global displacement of the front by one site it is possible to compute the velocity of the

travelling front by counting the fraction of ‘1”s in the binary sequence, namely

v(ε, a) = lim
T→∞

1

T

T∑

t=0

st (4.23)

provided that the limit exists. If this is the case, it is plain that 0 ≤ v(ε, a) ≤ 1. The right

hand side of equation (4.23) is equivalent to the rotation number of the auxiliary map (see

next section).

We will show that the symbol sequence S(x) can be characterized in terms of the spectrum

of v(ε, a), which is defined as the following sequence of integers

Spec(v) = b0× vc, b1× vc, b2× vc, . . . = (a0, a1, a2, . . .) (4.24)

where b·c is the floor function. The elements of Spec(v(ε, a)) are arranged in increasing order

and they differ by zero or one since 0 ≤ v(ε, a) ≤ 1. Thus defining

τ(a1, a2, . . . ) = (a1 − a0, a2 − a1, a3 − a2, . . . ),

we find that τ(Spec(v(ε, a))) is a binary sequence.

Using symbolic dynamics it is easy to follow the evolution of the minimal 1-state: every

iteration corresponds to a new symbol in the sequence. If the symbol is ‘0’ then the minimal 1-

state remains in the same site and if the symbol is ‘1’ the minimal 1-state is shifted one site to

the right. If we assume the velocity of the travelling front to be constant, so that the spectrum

of the velocity gives the integer position of the minimal 1-state at every iteration —the

location of the minimal 1-state can only take integer values. Thus τ applied on Spec(v(ε, a))

gives a ‘0’ when the position of the minimal 1-state remains unchanged and a ‘1’ when it

jumps one site to its right neighbour. This is exactly what the symbolic sequence S gives,

therefore the symbolic binary sequence associated to a given velocity v(ε, a) can be computed

as

S = τ (Spec(v(ε, a))) . (4.25)
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If v(ε, a) is rational, then τ(Spec(v(ε, a))) is periodic, as is easily verified. For example,

the sequence S(3/7) is given by, see figure 4.16,

S(3/7) = τ (Spec(3/7))

= τ(0, 0, 0, 1, 1, 2, 2, 3, . . .)

= (0, 0, 1, 0, 1, 0, 1),

where the bar denotes periodicity. From now on we will drop the bar, representing the

symbolic sequence for a rational velocity by just one period.

f0

f1

γ−γ+

x0x5 x6x7 x4x3 x2 x1

0

0

0

0

1

1

1

Figure 4.16: Symbolic dynamics for a periodic orbit of the auxiliary
map. The periodic sequence of symbols is S(x0) = (0, 0, 1, 0, 1, 0, 1).

The symbolic dynamics of Φε,a is then that of a uniform rotation with rotation number

v(ε, a) analogous to that of a homeomorphism of a circle map, as we shall see in section 4.4.

We will denote the iterations of the auxiliary map as follows. Every time the upper branch

is used we denote the applied function by f1, and f0 when the lower branch is used. An orbit

through Φ is then a multiple composition of f0’s and f1’s depending on its symbolic coding.

We simplify further the notation by defining

fS(x)(x) = fs1,s2,...,sp ≡ fsp
(
fsp−1 (. . . fs2(fs1(x)) . . .)

)
. (4.26)

As an example let us write the iteration of an initial point x0 through the periodic symbolic

sequence obtained from v = 3/7:

fS(v=3/7)(x0) = f0010101(x0)

= f1 (f0 (f1 (f0 (f1 (f0 (f0(x0))))))) .

Thanks to equation (4.26) it is possible to represent explicitly the dynamics of an orbit

starting at x0 in a compact way.
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4.3 The travelling velocity

Using the equivalence between the rotation number of Φ and the velocity v(ε, a) we show

that the latter exists, independently from the initial state, is continuous with respect to the

parameters (ε, a) and, is a non-decreasing function of ε.

4.3.1 Existence of the travelling velocity

The auxiliary map Φ maps the interval [−a, a] onto itself. Let us define a lift [52, 53] of Φ

as Ψ : R→ R such that πΨ(x) = Φπ(x), where π(x) = x (mod 2a) is the standard projection

from the real line to the circle of circumference 2a. The lift Ψ is not unique, we chose then

the following form
Ψ : R→ R

Ψ(x) = Φ(x− 2a k1(x)) + 2a k2(x)
(4.27)

where k1(x) is the integer such that −a ≤ x− 2a k1(x) < a and k2(x) is the smallest integer
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Figure 4.17: Lift of the auxiliary map.

such that Ψ(x) ≥ x. Since Φ is non-decreasing and continuous in (−a, γ−) and in (γ−, a),

and because Φ(−a) = Φ(a) and limx↑γ− Φ(x) = 2a + Φ(γ−) = 2a + limx↓γ− Φ(x) (see figure

4.11), the function Ψ is continuous, non-decreasing and has the following periodic property

(see figure 4.17):

Ψ(x+ T ) = Ψ(x) + T, (4.28)

where we defined T ≡ 2a to be the spatial period of the lift Ψ. Any iterate Ψn of the auxiliary

map will be of the same type as Ψ, that is, continuous, non-decreasing and with the same

periodic property (4.28). For simplicity, in this section, we will let xn = Ψn(x).
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4.3. THE TRAVELLING VELOCITY

In order to define the rotation number, we first consider the following limit

ρ0(ε, a) = lim
n→∞

xn
nT

. (4.29)

Then the rotation number of the auxiliary map is defined as

ρ(ε, a) = ρ0(ε, a)− bρ0(ε, a)c, (4.30)

that is, the integer part of ρ0. Consequently, ρ and ρ0 differ by an integer. The rotation

number gives the average rotation of an orbit through Φ. This is equivalent to the relative

number of times that the orbit touches the upper branch of Φ. Therefore, from (4.23),

v(ε, a) = ρ(ε, a). From now on we will use interchangeably v(ε, a) and ρ(ε, a).

First of all let us prove that v(ε, a) is a function, in other words, that for any 0 ≤ ε ≤ 1

and a such that γ(ε, a) > 0 the velocity of the travelling wave front is well-defined. This

problem is the same that the existence of the rotation number for a circle map and it has

already been proved [52, 54] for a monotone increasing map. In our case the auxiliary map

is non-decreasing —it has intervals where it is constant— but the same line of proof may be

followed:

Theorem 4.3.1 The limit (4.29) exists and is independent of x = x0. Consequently the

rotation number ρ(ε, a) also exists and is independent of x = x0.

Proof. First suppose that ρ0 exists for some x∗. Then there exists an integer m such that

mT ≤ x− x∗ < (m+ 1)T

⇒ x∗ +mT ≤ x < x∗ + (m+ 1)T,

and because Ψn is non-decreasing

Ψn(x∗ +mT ) ≤ Ψn(x) ≤ Ψn(x∗ + (m+ 1)T )

⇒ x∗n +mT ≤ xn ≤ x∗n + (m+ 1)T

⇒ m
n ≤

xn − x∗n
nT ≤ (m+ 1)

n .

Taking the limit n→∞ and recalling that m and T are fixed, we have that

lim
n→∞

xn − x∗n
nT

= 0

and therefore if ρ0 exists for x∗, it exists for any x and it is the same number.

Finally, we prove that ρ0 exists for at least one point x∗. We consider two cases: (a) when

a power of Φ has a fixed point and (b) when it does not.

(a) Suppose that x∗ is a fixed point of Φm, i.e. we have for the lift,

x∗m = x+ r T,

for some integer r. By induction, any multiple iteration of Ψm(x), (Ψm)n (x), has the property

x∗nm = x+ nr T.
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CHAPTER 4. A PIECE-WISE LINEAR LOCAL MAP

Every integer k can be written as k = nm+ s, where n, s are integers and 0 ≤ s < m. Thus

x∗k = x∗nm+s = Ψs(x∗nm) = Ψs(x∗ + nr T ) = Ψs(x∗) + nr T = x∗s + nr T,

and then
x∗k
k T

=
x∗s
k T

+
nr

k
.

Since m is fixed and s < m, x∗s/k T → 0 as k →∞, and

lim
k→∞

x∗k
k T

= lim
n→∞

nr

nm+ s
=

r

m
.

Hence ρ0 exists for x∗ = Φm(x∗), and is the rational number r/m.

(b) We show that if no power of Φ has a fixed point, then ρ0 still exists. Saying that no

power of Φ has a fixed point means that no integers m and r exist such that

xm = x+ r T.

Thus for any m there exists an integer r such that

x+ r T < xm < x+ (r + 1)T (4.31)

independently from the choice of x. If we apply repetitively Ψm to (4.31) we obtain the

sequence of inequalities

x+ r T < xm <x+ (r + 1)T

xm + r T ≤ x2m ≤ xm + (r + 1)T

x2m + r T ≤ x3m ≤ x2m + (r + 1)T
...

...
x(n−1)m + r T ≤ xnm≤ x(n−1)m + (r + 1)T,

(4.32)

which added up together lead to

x+ nr T < xnm < x+ n(r + 1)T. (4.33)

If we combine the first inequality of (4.32) with (4.33), with x = x∗ = 0 we obtain
∣
∣
∣
∣

x∗nm
nmT

− x∗m
mT

∣
∣
∣
∣ <

1

m
. (4.34)

Interchanging m and n in (4.34) and adding in to (4.34) again, we obtain
∣
∣
∣
∣

x∗n
nT
− x∗m

mT

∣
∣
∣
∣ <

1

n
+

1

m
,

showing that the sequence {x∗n/nT} is a Cauchy sequence, which converges in R. Therefore,
when no power of Φ has a fixed point, the rotation number still exists for x∗ = 0 and then it

exists and is the same for all x. 2

Moreover, following the same proofs than in [52, 54] but taking into account that Ψ is

not strictly increasing, it is possible to show that

Theorem 4.3.2 The rotation number ρ(ε, a) is irrational if and only if Φ has no periodic

points.

Now that the existence of the rotation number —the velocity of the travelling interface—

has been established, we can proceed to prove its continuity.
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4.3. THE TRAVELLING VELOCITY

4.3.2 Continuity of the travelling velocity

We show that the velocity v(ε, a) of a minimal 1-state of Fε,a depends continuously on the

parameters ε and a.

Theorem 4.3.3 The limit (4.29) depends continuously on the parameters a and ε and so

does the rotation number ρ(ε, a).

Proof. Let us consider two pairs of parameter values (ε, a) and (ε′, a′) of the auxiliary map

Φ such that max (|ε′ − ε| , |a′ − a|) < δ, and choose m sufficiently large such that 2/m < ε0
for any ε0 > 0. It is important to notice that the dummy variable ε0 used in this proof is not

related to the coupling parameter ε (ε0 6= ε). We define Ψε,a and Ψε′,a′ the corresponding

lifts of Φε,a and Φε′,a′ . It is possible to find an integer r such that

x∗ + (r − 1)T < Ψm
ε,a(x

∗) < x∗ + (r + 1)T, (4.35)

and choosing δ small enough we can make Ψε′,a′ to satisfy the same inequality, since Ψ

depends continuously on the parameters a and ε:

x∗ + (r − 1)T < Ψm
ε′,a′(x

∗) < x∗ + (r + 1)T. (4.36)

Applying repetitively Ψm
ε,a and Ψm

ε′,a′ to (4.35) and (4.36) respectively and adding the resulting

series of inequalities as in the previous proof leads to

x∗ + n(r − 1)T < Ψnm
ε,a (x

∗) < x∗ + n(r + 1)T

x∗ + n(r − 1)T < Ψnm
ε′,a′(x

∗) < x∗ + n(r + 1)T,

which implies that ∣
∣
∣
∣
∣

Ψnm
ε,a (x

∗)

nmT
−

Ψnm
ε′,a′(x

∗)

nmT

∣
∣
∣
∣
∣
<

2

m
< ε0

for any n. By taking m large enough it is possible to find that for any ε1, ε2 > 0, one could

approximate the rotation numbers by:
∣
∣
∣
∣

Ψnm
ε,a (x

∗)
nmT − ρ0(ε, a)

∣
∣
∣
∣ < ε1,

∣
∣
∣
∣

Ψnm
ε′,a′(x

∗)
nmT − ρ0(ε

′, a′)

∣
∣
∣
∣ < ε2.

Therefore, by adding the last three inequalities together, one arrives to the following bound

for the difference of the rotation numbers

∣
∣ρ0(ε, a)− ρ0(ε

′, a′)
∣
∣ < ε, (4.37)

where we defined ε = ε0+ε1+ε2, whose value could be made as small as required by choosing

m large enough. Hence, for any ε > 0, there exists δ > 0 such that (4.37) is satisfied, and

the continuity of ρ0(ε, a) w.r.t. the parameters ε and a follows. 2

In summary, the velocity v(ε, a) of the travelling front exists, is continuous with respect

to the parameters ε and a and it is independent from the choice of the initial minimal 1-state,

i.e. v(ε, a) is independent from the choice of −1 ≤ x0 ≤ 1 of [x0, i] as initial configuration for

Fε,a.
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4.3.3 The travelling velocity is non-decreasing

We have proved in Theorem 2.2.1 that the velocity of the travelling interface is a non-

decreasing function of the coupling parameter. We give here another proof for a decreasing

step state.

− (1−2ε)

− (1−2ε’)

g1

g’1

g0

g’0

-γ−-γ’−

-γ+-γ’+−a +a

+a

Figure 4.18: If ε′ > ε then −γ′+ < −γ+, −γ′− < −γ−, g′0 ≥ g0 and
g′1 ≥ g1, thus, the auxiliary maps corresponding to ε′ (Υε′,a(x), solid
lines) and to ε (Υε,a(x), dashed lines) satisfy Υε′,a(x) ≥ Υε,a(x).

Theorem 4.3.4 The rotation number ρ(ε, a) is a non-decreasing function of ε.

Proof. Let us consider two coupling parameter values, ε and ε′, such that ε′ > ε and consider

their respective auxiliary maps, Υε,a and Υε′,a. It is easy to verify that

ε < ε′ ⇒







−γ′+ < −γ+ and − γ′− < −γ−

g′0(x) ≥ g0(x) and g′1(x) ≥ g1(x) in U × U,

and thus Υε′,a(x) ≥ Υε,a(x), see figure 4.18. The same inequality then holds for the corre-

sponding lifts and therefore, from the definition of rotation number, it is straightforward to

show that ρ(ε′, a) ≥ ρ(ε, a). 2

4.3.4 The velocity tree

Here we address the problem of finding an algorithm providing the velocity for a given value

of the parameters (ε, a). This algorithm is characterized in terms of a velocity tree where,

depending on the values of ε and a, we follow a determined path. We begin with a pure

step state of the form X0 = (. . . ,−1,−1, 1, 1, . . .). In order to simplify the notation we recall

that this step state may only evolve to the right with the one-way CML (0.6), so we may

rewrite X0 = (−1, 1, . . .), since the homogeneous part to the left of the interface remains

unchanged. After one iteration we have X1 = (−1, 1 − 2ε, 1, . . .), which for the symbolic

dynamics representation reads X1 = (−1, f0(a), 1, . . .). In the following we will drop the
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4.3. THE TRAVELLING VELOCITY

argument of fS(x0)(x0) and write only fS(x0) when there is no ambiguity. Thus X1 is written

as X1 = (−1, f0, 1, . . .), the following iterations may be chosen from (4.7). There are in total

4 different choices (cf. (4.7)), but one of them is impossible when the gap size is positive.

X1= (−1, f0 ,1,...) X0 = (−1,1,...) 

X1 = (−1,1,...) 

X1 = (−1,−1,1,...) 

v > 2/3

1/2 < v < 2/3

1/3 < v < 1/2

v < 1/3

X2 = (−1,−1, f01,1,...) 

X3 = (−1,−1, f011,1,...) 

X3 = (−1, f001,1,...) 

X3 = (−1,−1,−1,1,...) 

X3 = (−1,−1,1,...) 

X3 = (−1,−1, f010 ,1,...) 

X3 = (−1, f000 ,1,...) 

X2 = (−1,−1, 1,1,...) 

X2 = (−1, f00 ,1,...) 

!

!

!

v = 2/3

v = 1/3

v = 1/2

v = 1

v = 0
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Figure 4.19: Velocity tree

The choices may be represented in a velocity tree, (figure 4.19), where each branch corre-

spond to a different choice. Every branch has a condition to be satisfied for the initial state

X0 to evolve there. A branch terminating with an exclamation mark denotes an inadmissible

choice since the gap size is positive and thus two sites are not simultaneously allowed in the

interface. It is important to mention that, in order to arrive to a particular branch, we have

to pass through a path of branches dictated by the symbolic sequence of the particular chosen

orbit. Taking an upper (lower) branch in the tree corresponds to a ‘1’ (‘0’) in the sequence;

thus large velocities correspond to upper paths in the tree and vice-versa.

The overall parametric condition to be satisfied for a given velocity, is obtained by all

the individual conditions of the corresponding path. We work out such conditions in some

simple cases. For v = 1 the only condition to be satisfied is f0 ∈ S−, that is −1 ≤ f0(a) ≤
−a ⇒ −1 ≤ 1− 2ε ≤ −a, thus ε ≤ 1 and ε ≥ 1+a

2 = 1− εc. The area corresponding to

v = 1 is plotted in figure 4.20 (left shaded area). For v = 0 the condition is f0 ∈ S+ that

amounts to ε ≥ 0 and ε ≤ 1−a
2 = εc and it is also plotted in figure 4.20 (right shaded area).

The zone where v = 0 corresponds to the solution of (4.15) giving the bounds on the extent

of the non-propagating case (Theorem 2.2.3). Finally, for v = 1/2 the conditions are f0 ∈ U ,

f0 < γ− and f0 > γ+ whose solution is shown in figure 4.20 as the central shaded area.

Using this procedure it is possible to determine the regions where a given rational velocity

v = p/q is present. Nevertheless, the tree representation does not tell if such regions are non-

empty. In the next section we show that such regions, for the positive gap, are non-empty

and we give a simpler way of computing them.
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Figure 4.20: Parameter space regions where v = 0, 1, 1/2. The left
(right) shaded area correspond to the (ε, a)-values where v = 0 (v = 1)
and the central shaded area corresponds to v = 1/2.

4.4 Mode-locking of the auxiliary map

In this section we focus our attention on the dynamics of the auxiliary map Φε,a and we

show that there exists a mode-locking (ε, a)-region for every rational rotation number. It is

important to say that the results of the following section rely on the parametric stability of

periodic gap orbits (orbits that fall in the gap Γ). The study of non gap orbits will be dealt

in section 4.4.2 and we show how they do not contribute towards the mode-locking since

they all are unstable. Therefore we are firstly interested in the mode-locking of periodic gap

orbits.

4.4.1 Mode-locking

Using the auxiliary map as a representation of the interface of the travelling front, we now

prove that the gap Γ forces the velocity to be locked to rational values if Φε,a has a periodic

orbit containing a point of Γ. This gives an easier way, when compared with the one provided

by the velocity tree, for computing the mode-locking regions in the (ε, a) plane.

The symbolic coding of the orbit of the auxiliary map Φε,a gives the velocity of the

travelling interface via equation (4.23). The presence of a non-negative gap Γ induces a

mode-locking of the rotation number in the following way. Since the rotation number, i.e. the

velocity of the travelling interface, does not depend on the choice of the initial interfacial site

(Theorem 4.3.1), let us take as initial condition the step state X0 = [x0, i]0 with x0 in Γ.

The dynamics on the auxiliary map gives then the orbit generated from an arbitrary point

x0 in Γ. Suppose that for the parameter values (ε, a) we have that after q iterations the orbit

falls into Γ. The orbit is then periodic of period q with rotation number p/q, p being the

number of times the orbit visits the upper branch of Φ. In figure 4.21 we show an example

of a periodic orbit of period 5, starting with an x0 in Γ, corresponding to a rotation number
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f0
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γ−γ+

x0 x5 x4x3 x2 x1

0

0
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1

Figure 4.21: Period 5 orbit of the auxiliary map for (ε, a) =
(0.44, 0.4), the coding sequence for this orbit is S(x0) = (0, 0, 1, 0, 1)
and corresponds to a rotation number v = 2/5.

v = 2/5.

Suppose now that we introduce a small perturbation of the parameters and the initial

condition: (x0, ε, a) −→ (x′0, ε
′, a′). The perturbed orbit x′t = Φt

ε′,a′(x
′
0) is initially at a

distance ∆x0 = x′0 − x0 from the unperturbed one. The continuity of the lift of Φ (Theorem

4.3.3) ensures that x′t depends continuously on the parameters ε, a and the initial condition.

The distance ∆xt between the two orbits at time t can be made as small as we want by

making (x0, ε, a) sufficiently close to (x′0, ε
′, a′). Because Γ is an open interval, if xq belongs

to Γ, then so does x′q for a sufficiently small perturbation (figure 4.22). Therefore we have

established the crucial result:

Theorem 4.4.1 If the gap orbit of Φε,a is finite (periodic), then it is stable under a suffi-

ciently small perturbation of parameters and initial condition.

Thus there is a region in the parameter space (ε, a), where the given rotation number

is constant or mode-locked. An example of mode-locking ε-regions for a fixed value of a

is given in figure 4.23. The mode-locked region, corresponding to a given rotation number

ρ = p/q, can be computed by noting that in order that an orbit, starting at any x0 in Γ, falls,

after q iterations, in Γ we must have that Φq
ε,a(Γ) ⊆ Γ. This condition may be rewritten as

Φq−1
ε,a (a) ∈ Γ giving the inequalities

γ+ ≤ Φq−1
ε,a (a) ≤ γ−, (4.38)

since

∀x0 ∈ Γ =⇒ x1 = Φε,a(x0) = a.

We shall mention that the end points of (4.38) are included because an orbit arriving at γ±
after q−1 iterations will also reach 1−2ε in two more iterations: Φ2

ε,a(γ−) = Φε,a(−a) = 1−2ε
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Figure 4.22: Parametric stability of a gap orbit. The solid and the
dashed lines correspond to two nearby values of ε. The corresponding
gap orbits have the same symbolic sequence and fall into the gap in the
same number of iterations.
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Figure 4.23: Velocity of the travelling interface for a = 2/5. The
mode-locked regions correspond to gap orbits that are stable to para-
metric perturbations. The period of the gap orbit is given the denom-
inator of the rational velocity v = p/q, some of the velocity plateaus
are indicated.
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and Φ2
ε,a(γ+) = Φε,a(+a) = 1− 2ε (cf. (4.9)) —these two orbits correspond to the kneading

sequences of the local map [55, 56]. The closed ε-interval, for a constant value of a, given

by the inequality (4.38), for which the velocity is mode-locked to a given rational, is called a

plateau.

Equation (4.38) ensures that the orbit starting at x0 ∈ Γ falls again into the gap after q

iterations and therefore repeats itself every q iterations. The value of Φq
ε,a(x0) is determined

by the coding sequence of the associated rotation number. So if we want to compute the mode-

locked region for a given velocity v = p/q we have to determine the (ε, a) region where (4.38)

is satisfied in correspondence to the code S(p/q) given by (4.25). For example, to compute

the mode-locked region for the velocity v = 2/5 we first compute S(2/5) = (0, 0, 1, 0, 1), and

so we know that the orbit visits the regions U−, U−, U+, U− and Γ (see figure 4.21). If fact,

all the gap orbits starting at x0 ∈ Γ finish in the gap after q iterations and therefore the last

digit of S(v = p/q) is a ‘1’. This detail is very important: the last digit of any sequence

S(v = p/q) does not represent an iteration of f1 in the auxiliary map, but it indicates that

the orbit has fallen into the gap. Applying the last digit ‘1’ (f1), to both sides of (4.38) we

replace the latter with

f1(γ+) ≤ Φq
ε,a(a) ≤ f1(γ−), (4.39)

The advantage of the inequality (4.39) is that we can now use directly the coding sequence

by applying f0 (f1) every time a ‘0’ (‘1’) is encountered in S(v = p/q) without having to pay

attention if the last digit comes from the gap and not from f1.
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Figure 4.24: Mode-locking region for v = 2/5 obtained by solving the
inequalities 4.39.

We illustrate this method to compute the mode-locking region for v = 2/5. The coding

sequence for v = 2/5 is S(2/5) = (0, 0, 1, 0, 1) (see figure 4.21) and thus we have to compute

Φ5
ε,a(a) with f1 (f0 (f1 (f0 (f0(a))))). The mode-locking region for v = 2/5 is then given by

f1(γ+) ≤ f1 (f0 (f1 (f0 (f0(a))))) ≤ f1(γ−),

and is plotted in the (ε, a)-plane in figure 4.24.

The same procedure may be followed to obtain the zones where a given v = p/q is present.

In figure 4.25 we depict some of this zones corresponding to the principal mode-locking ratios.
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These regions, represented as shaded areas, are the so-called Arnold’s tongues [57, 58]. It can

be observed that as we approach the zero-gap line (dashed line) —given by γ = 0 in (4.10)—

the tongue size decreases, as the latter is related to the gap size.

We have shown several examples and given the general formula for finding the mode-

locking regions (inequality (4.39)). The next result show that these regions have positive

measure.

Theorem 4.4.2 The (ε, a) region where any given rational velocity 0 < v = p/q < 1 has

positive measure.

Proof. Since v(ε = 0) = 0 and v(ε = 1) = 1, using the continuity of v(ε) (cf. Theorem 4.3.3),

it is possible to find at least one point ε∗ such that for any given rational velocity p/q we have

that v(ε∗) = p/q. Thus there exist a periodic orbit of Φ with the periodic symbolic sequence

S(p/q). On the other hand, Theorem 4.3.1 also tells us that the rotation number does not

depend on the initial condition, thus we could take as the initial condition a point in the gap

Γ giving us a periodic gap orbit. From Theorem 4.4.1, such periodic gap orbits are stable to

sufficiently small parametric perturbations if the gap size is positive and therefore the set of

(ε, a)-values where this is true has positive measure. 2
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Figure 4.25: Arnold’s tongues in the (ε, a)-plane corresponding to
the zones where rational velocities of the travelling interface of Fε,a are
present.

The above theorem tells that there always exists a non-empty ε-interval, for a fixed a,

where the velocity is mode-locked to any given rational velocity. Such a function is called a

Devil’s staircase [58, 59]. This mode-locking phenomenon is very similar to the one observed

for a uniform rotation in a perturbed circle map [57]. The fractal nature of v(ε) will be

revealed in more detail in section 4.5.4.
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4.4.2 Linear stability of periodic non gap orbits

In the previous section we dealt with the parametric stability of periodic gap orbits which is

responsible for the mode-locking phenomenon. In this section we study the linear stability of

periodic non gap orbits —orbits that never touch the gap Γ— and we prove that they do not

contribute towards the mode-locking tongues because they are all contained in a unstable

zone.

Let us construct periodic non gap orbits first. A periodic orbit x(t), with velocity v = p/q,

that never touches the gap has p 1’s and (q − p) 0’s in its symbolic sequence. None of its

symbols comes from the gap and therefore every 1 (0) corresponds to a f1 (f0). Thus, the

multiplier λ(p, q) giving the linear stability of a periodic non gap orbit with velocity v = p/q

is given by

λ(p, q) =
q
∏

i=1

Φ(x(i)) =
(
f ′1
)p (

f ′0
)q−p

=

(
ε

a

)p(1− ε

a

)q−p

.

For the periodic orbit x(t) to be unstable we need its multiplier to be larger than 1, that is

λ(  ,  ) > 1p q

λ(  ,  ) < 1p q

(1/2,1/2)

(γ=0, λ=1)

λ(  ,  ) = 1
p q

γ=0

v
p

q
=

/

ε

a

Figure 4.26: Schematic representation of the unstable region (light
shaded area) for a periodic non gap orbit with velocity v = p/q. The
whole p/q-mode-locking tongue corresponding to a periodic gap orbit
is inside the unstable region.

λ(p, q) > 1 ⇒
(
ε

a

)p(1− ε

a

)q−p

< 1

⇒ a < ε
p
q (1− ε)

q−p
q

⇒ a < εv(1− ε)1−v.

(4.40)

For a given velocity v = p/q the inequality (4.40) gives the (ε, a) region where a particular

periodic non gap orbit is unstable. Such regions seem to contain the whole p/q-tongue

obtained in the previous section for the gap orbits (see figure 4.26 and figure 4.27). On the

other hand, the monotonicity of v(ε, a) w.r.t ε (cf. section 4.3.3) ensures that the mode-

locking tongues cannot possess two disjoint regions. Thus there is strong numerical evidence

showing that no stable periodic non gap orbit exists and therefore the analysis of the previous
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Figure 4.27: Several examples of the unstable regions for periodic non
gap orbits. The tongues always fall inside the corresponding unstable
region.

section, using gap orbits, is sufficient for describing the mode-locking in the non-negative gap

region.
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4.4.3 Stability diagram of the auxiliary map

An interesting feature of the auxiliary map is its stability diagram. Theorem 4.4.2 states that

for a fixed value of a there is a non-empty ε-interval where any given rational rotation number

v(ε, a) = p/q is present. Thus, varying continuously ε for a given value of a gives a Devil’s

staircase featuring ε-mode-locked intervals. The dynamics of the auxiliary map at each mode-

locked interval is that of a periodic orbit. For the mode-locking ε-interval corresponding to

the rational rotation number v(ε, a) = p/q the period of the orbit through Φ is exactly q. As

we vary ε we browse through all the possible periods for the orbit. Therefore bifurcations

should occur changing the stability of the periodic points of Φ as well as introducing (or

removing) other periodic points.

Let us first recall the value of the fixed point of the interface for the extreme cases

v(ε, a) = 0 (ε ≤ εc) and v(ε, a) = 1 (ε ≥ 1− εc). It is important to recall that these cases are

not accounted for by the auxiliary map, since the latter is only defined when εc < ε < 1− εc.

In the proof of Theorem 4.2.2 we showed how the dynamics of the interface site tends to x−
(x+) when ε ≤ εc (ε ≥ 1 − εc) where x− (x+) is the fixed point of f0 (f1). Therefore the

value of the interface site xt is

xt =







x−= aε
1− ε− a if ε ≤ εc

x+ =
a(1− ε)
a− ε if ε ≥ 1− εc,

whose period is one —corresponding to the denominator of the velocity v = 0/1 and v = 1/1.

Let us now concentrate our attention on to the non-trivial region εc < ε < 1 − εc. It is

possible to find analytically the periodic orbits of Φ via standard methods, but we present

here only the numerical results. It is worth mentioning that the periodic gap orbits of Φ are

superstable, because the map in the gap has zero derivative. In figure 4.28 we depict the

stable points of Φ for a = 0.25 and a = 0.5. Figure 4.28.a presents several bifurcation points.

The principal mode-locking ratios (v = 1/q and v = 2/q, some of them are indicated in the

figure) embrace almost all the ε interval making this bifurcation diagram look quite simple.

However, we have to keep in mind that when all periods are accounted for, this diagram is

really a fractal one. This feature may be better observed in figure 4.28.b where we show a

similar bifurcation diagram but now with a = 0.5. In figure 4.28.b the multiple bifurcations

near ε = 0.5 are more visible since we are taking a path in the (ε, a)-parameter space where

the tongues are much narrower than in the path used in figure 4.28.a, see figure 4.29.

In order to have a clearer picture of the bifurcation diagram, we recall that the size of

the mode-locked regions is directly related to the size of the gap. Thus, avoiding a path

that cuts some tongues in narrow regions and some others in thick regions, and taking a

path with constant gap leads to a better comparative size between plateaus. Figure 4.30

depicts the bifurcation diagram for a gap size of 0.1 (see figure 4.29 for a picture of this

path). The bifurcations are now more evident, since the gap size is quite small (γ = 0.1),

and the self-similar structure is quite striking, as we may observe a blow-up of figure 4.30.a

in 4.30.b. This fractal structure will be revealed in more detail by means of envelopes using

Farey series and unimodular transformations in section 4.5.4.

Because of symmetry we only plotted half (ε ≤ 1/2) of the bifurcation diagrams in figures

4.28 and 4.30. Replacing ε by 1 − ε and vice-versa in the definition of the auxiliary map,
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Figure 4.28: Bifurcation diagram of the stable points of the auxiliary
map. (a) a = 0.25 and (b) a = 0.5 plotting 100 points after 10 000
transitory iterations.
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Figure 4.29: Paths in the (ε, a)-parameter space used for the bifur-
cation diagrams in figures 4.28 and 4.30.

equation (4.18), leads to

Φ′ε,a(x) =







f ′1(x) if −a ≤ x ≤ −γ−

a if −γ− < x < −γ+

f ′0(x) if −γ+ ≤ x ≤ a

with
f ′0(x)≡ ε

a x− (1− ε)

f ′1(x)≡ 1− ε
a x+ ε.

With the exception of the gap, Φ′ and Φ are symmetric w.r.t. the origin O (figure 4.31).

For Φ′ and Φ to be completely symmetric, the gap of Φ′ should be placed at −a and not at

a. However, the iterates of −a and a, by any of the auxiliary maps, give the same result:

Φ(±a) = 1− 2ε and Φ′(±a) = −(1− 2ε). So, for the purpose of the bifurcation diagram, it

does not really matter if the gap is at a or −a. Thus, we could use the symmetric w.r.t. O

of Φ instead of Φ′. Therefore the bifurcation diagram inherit a symmetry w.r.t the point

(ε, v(ε)) = (1/2, 1/2) allowing us to restrict the study to ε-values smaller than 1/2.

4.4.4 Velocity in the zero-gap case

In this section we give an analytical expression for the velocity v(ε, a) for the zero-gap case.

As it may be noticed from figure 4.25 the thickness of the tongues seems to tend to zero as

we approach the zero-gap curve (γ = 0). In fact, we shall demonstrate that the width of the

tongues in the zero-gap case is zero. The reason is that the auxiliary map, for the zero-gap

case, only consists of the two linear parts f1 and f0, with no gap Γ, see figure 4.11.b, and

therefore the lack of mode-locking.

The orbit of the auxiliary map is fS0
(x0), where the sequence S0 = S(x0) gives the order

in which the maps f0 and f1 have to be applied. However, in the zero gap case, this order
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Figure 4.30: Bifurcation diagram of the stable points of the auxiliary
map with γ = 0.1 plotting 100 points after 10 000 transitory iterations.
Figure (b) is a blow-up of a figure (a) showing the self-similarity struc-
ture.
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1−2ε

− (1−2ε)

o

f1

f ’1 f0

f ’0
γ− −γ−γ+ −γ+−a +a

+a

Figure 4.31: The auxiliary map Φ′ε,a is obtained by replacing ε by
1−ε and vice-versa in the original auxiliary map Φ. With the exception
of the gap, Φ′ and Φ are symmetric w.r.t. the origin O.

is not important since f0(f1(x)) = f1(f0(x)) ⇔ γ = 0 as easily verified (see Lemma 4.5.5).

Let us suppose that the (ε, a)-parameter values are such that γ = 0 and that v(ε, a) = m/n.

Thus f1 is applied m times in fS0
and f0 is applied n−m times. The n-th iterate is then

fS0
(x0) = fm1

(

fn−m0 (x0)
)

= fm1

((
1− ε
a

)n−m
(x0 − x−) + x−

)

=
( ε
a
)m
[((

1− ε
a

)n−m
(x0 − x−) + x−

)

− x+

]

+ x+

=
( ε
a
)m
(
1− ε
a

)n−m
(x0 − x±) + x±,

where x− and x+ are, respectively, the fixed points of f0 and f1 (cf. (4.14)) which coincide

(x± = x− = x+) when γ = 0. Since we are dealing with the rational velocity m/n, the orbit

Φn(x0) must return to its initial value, i.e.

(
ε

a

)m (1− ε

a

)n−m

(x0 − x±) + x± = x0

therefore (
ε

a

)m (1− ε

a

)n−m

= 1. (4.41)

Equation (4.41) has been obtained for a rational velocity m/n. To find the analytical form

of v(ε, a) one has to extend, by continuity, to irrational values of the velocity. Let us then

assume that the velocity v(ε, a) = r is an arbitrary real number in the interval [0, 1]. Since

any irrational v(ε, a) = r may be approximated, as close as desired, by a rational m/n, it is

possible to write m ' rn and thus, in the limit equation (4.41) reads

( ε
a
)rn

(
1− ε
a

)n(1−r)
= 1 ⇒

(
ε

1− ε

)r
= a

1− ε

⇒ v(ε) = r =
ln

(
1− 2ε(1− ε)

1− ε

)

ln

(
ε

1− ε

) ,

(4.42)
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Figure 4.32: Velocity curve for the zero-gap case. Here the velocity
is an analytical function and does not present mode-locking.

where we replaced a by 1−2ε(1− ε) (zero-gap condition) obtaining a function of ε. The plot

of v(ε) for the zero gap is presented in figure 4.32 and it completes the study of the dynamics

for the zero-gap case.

4.5 Representing the velocity tree with an integral lattice

In this section we give a useful geometric representation of the velocity tree using an in-

tegral lattice. This new representation allows us to calculate in a straightforward manner

the sequence associated with the Farey sum of two given velocities with known associated

sequences. This lattice representation for rational numbers has been known for centuries and

it has been used before in the context of rotation numbers (cf. [51, 60]).

4.5.1 The integral lattice

We are going to identify the rational velocities with points in the integral lattice Z2. We first

introduce the Farey numbers. The Farey series [61, 62] of order r, Fr, is defined to be the set

of irreducible fractions, in ascending order, belonging to [0, 1] whose denominators are smaller

than or equal to r (figure 4.33). If m/n and m′/n′ are two consecutive rationals of the Farey

series Fmax(n,n′) then |m′n− n′m| = 1. This unimodular property is very important and will

be used later (section 4.5.4). With it is possible to represent the Farey series as a tree: first

take the rationals 0/1 and 1/1 —they satisfy the unimodular property, |1× 1− 1× 0| = 1—

and add to the tree their mediant. The mediant of two rationals p/q and p′/q′, denoted by
p
q ⊕

p′

q′ is obtain by adding their respective numerators and denominators, i.e. p
q ⊕

p′

q′ =
p+p′

q+q′ .

Thus the mediant of 0/1 and 1/1 is 0
1⊕ 1

1 = 1/2. The whole Farey tree is then constructed by

repeatedly inserting the mediants of every two consecutive Farey numbers, see figure 4.33. It
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Figure 4.33: Construction of the Farey numbers using the Farey tree.
In between any two consecutive Farey numbers of the same order we
include their mediant. Note that Fr ⊂Fr+1.

is possible to show that any two consecutive Farey numbers satisfy the unimodular property

[61].

We want to identify the elements of the Farey series with points on the integral lattice

Z2. To do so we associate to every Farey number m/n the point P (m/n) = (n −m,m). It

is obvious that distinct Farey numbers correspond to distinct points in Z2. Let us take O

as the origin of the lattice, and consider the ray OP (m/n) emanating from the origin and

passing through P (m/n). Defining θ(m/n) to be the angle between OP (m/n) and the X-axis,

i.e. θ(m/n) = tan−1(m/(n −m)), it can be shown that distinct Farey numbers correspond

to distinct angles θ.

Lemma 4.5.1 m/n < m′/n′ ⇔ θ(m/n) < θ(m′/n′).

Proof. m/n < m′/n′ ⇔ n/m > n′/m′ ⇔ n/m−1 > n′/m′−1⇔ (n−m)/m > (n′−m′)/m′ ⇔
m/(n−m) < m′/(n′ −m′)⇔ tan(θ(m/n)) < tan(θ(m′/n′))⇔ θ(m/n) < θ(m′/n′). 2

In section 4.2.3 we showed that S(m/n) = τ(Spec(m/n)). Consider now the spectrum of

m/n, Spec(m/n) = s1s2 . . . sm with si ≡ bim/nc. We have

Lemma 4.5.2 The sequences {si/i}i=1,2,...,n and {(si + 1)/i}i=1,2,...,n give, respectively, the

series of lower and upper approximants of order i to v = m/n.

Proof. si = bim/nc ⇒ si ≤ im/n < si+1 ⇒ si/i ≤ m/n < (si + 1)/i. Therefore si/i and

(si + 1)/i give, respectively, the lower and upper approximants of order i of m/n. 2

We know (section 4.2.3) that a ‘0’ in S(m/n) means one iteration of the CML without

advance of the interface, and a ‘1’ in S(m/n) means that the interface has advanced one
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site after one iteration of the CML. Let us now illustrate the effect of moving vertically and

horizontally from adjacent points on the lattice Z2. Moving horizontally to the right on Z2

has the effect (n − m,m) 7−→ (n + 1 − m,m), i.e. from P (m/n) to P (m/(n + 1)). This

corresponds to a single iterate of the lattice without any advance of the interface. Moving

vertically upwards has the effect (n−m,m) 7−→ (n−m, (m+1)) = ((n+1)− (m+1),m+1),

i.e. from P (m/n) to P ((m+1)/(n+1)) which corresponds to a shift of one site of the interface

after one iteration. Therefore we may identify a ‘0’ with an horizontal vertex joining two

adjacent points and a ‘1’ with a vertical vertex joining adjacent points. Hence taking a path

of right-horizontal and upward-vertical vertices in Z2 from the origin to the point P (m/n)

will give us a possible coding sequence for the velocity v = m/n, since we have to take m

upward-vertical vertices (m ‘1”s) and n −m right-horizontal vertices (n −m ‘0”s) in order

to arrive to P (m/n) = (n−m,m).
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Figure 4.34: There exists many different possible paths in the integral
lattice joining the origin and a given point P (m/n) corresponding to
different symbolic sequences. In this example between the possible
symbolic sequences for P (3/7) are: i) P (3/7) = (1, 1, 0, 1, 0, 0, 0), ii)
P (3/7) = (0, 1, 0, 1, 0, 1, 0) and iii) P (3/7) = (0, 0, 0, 1, 0, 1, 1).

But the problem of selecting the right path on the lattice arises: there are several paths

that can be taken in Z2 in order to arrive to a desired velocity v = m/n (see figure 4.34)

corresponding to all the possible permutations of n−m ‘0”s and m ‘1”s.

Lemma 4.5.3 The path in Z2 giving the coding sequence of v = m/n is obtained by taking

the nearest vertices to OP (m/n) contained in the lower semi-plane defined by it.

Proof. The lower approximants of order i to v = m/n are given by si/i (Lemma 4.5.2): they

are contained in the lower semi-plane defined by the line OP (m/n) since they are smaller

than v = m/n (Lemma 4.5.1), and they are to be as close as possible to the line OP (m/n)

because they give the closest rational to v = m/n with denominator equal to i. 2

In figure 4.35 the correct path of the velocity v = 3/7 is depicted using the above tech-
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Figure 4.35: The correct path in the integral lattice giving the coding
sequence for v = m/n may be found by choosing the closest path in Z2

that is under the line OP (m/n). In this example the method gives us
P (3/7) = (0, 0, 1, 0, 1, 0, 1).
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Figure 4.36: Another method giving the correct path in the integral
lattice of the coding sequence P (3/7) = (0, 0, 1, 0, 1, 0, 1), this time we
use the intersections with the lattice.
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nique. Another simple geometrical construction is to associate a symbol to every cross

between the segment [OP (m/n)]: beginning with a symbol ‘0’ from the origin, associate a ‘1’

every time [OP (m/n)] crosses an horizontal vertex of the lattice and associate a ‘0’ when it

crosses a vertical one. The resulting sequence, taking first the ‘0’ of the origin and ordering

the crosses by taking first the ones closer to the origin, is equivalent to the coding sequence

of v = m/n. This follows from an argument similar to that used in Lemma 4.5.3. This

construction is illustrated in figure 4.36 for the same velocity v = 3/7.

4.5.2 Concatenating sequences using the lattice representation

We wish to relate the sequences of S(m/n) and S(m′/n′) with the sequence S((m+m′)/(n+

n′)) of the mediant. We first define the concatenation of two sequences S(m/n) = (s1, . . . , sp)

and S(m′/n′) = (s′1, . . . , s
′
q), denoted by S(m/n)S(m′/n′), as the concatenation of their

respective periods:

S

(
m

n

)

S

(
m′

n′

)

= (s1, . . . , sp, s′1, . . . , s
′
q).

The following result then follows.

Lemma 4.5.4 If m/n < m′/n′ are two consecutive Farey numbers, then the sequence S((m+

m′)/(n+n′)) associated to their mediant is the concatenation of S(m/n) and S(m′/n′). That

is

S

(
m+m′

n+ n′

)

= S

(
m

n

)

S

(
m′

n′

)

= (s1, . . . , sp, s′1, . . . , s
′
q). (4.43)
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Figure 4.37: The symbolic sequence for the mediant, v′′ = 2/5, of the
two velocities v = 1/3 and v′ = 1/2 is obtained by vector-like adding
their path of their symbolic sequences.

Proof. Let us define P ′′ ≡ P ((m + m′)/(n + n′)), P ′ ≡ P (m′/n′) and P ≡ P (m/n). The

coordinates of these points are P ′′ = (n + n′ − (m + m′),m + m′), P ′ = (n′ −m′,m′) and
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P ′ = (n−m,m), and therefore
−−→
OP ′ =

−−→
PP ′′ (figure 4.37). Let T be the triangle T = OPP ′.

Because m/n and m′/n′ are consecutive Farey numbers of Fmax(n,n′) there is no fraction p/q

such that m/n < p/q < m′/n′ with q ≤ max(n, n′). Therefore there are no points of Z2

contained in the triangle T . Analogously the same happens on the triangle T ′ = OPP ′′

where there are no points of Z2 inside it. Because there are no lattice points inside T , the

closest path to the line OP ′′ from O to P ′′ is the same as the path taken from O to P , hence

the first part of the sequence S((m + m′)/(n + n′)) is the sequence S(m/n). On the other

hand, since
−−→
OP ′ =

−−→
PP ′′, a possible path for arriving from P to P ′′ is the path from O to P ′,

i.e. the path associated with the sequence S(m′/n′), but translated by
−−→
OP and since there

are no points in T ′ this path is the closest to the line OP ′′. Therefore the last part of the

sequence S((m+m′)/(n+ n′)) is given by the sequence S(m′/n′). 2

An example of this construction is shown in figure 4.37 where the velocities v = 1/3 and

v′ = 1/2 give the mediant v′′ = 2/5. The associated sequence of v = 1/3 is S(1/3) = (0, 0, 1)

(horizontal+horizontal+vertical), the one for v′ = 1/2 is S(1/2) = (0, 1) (horizontal+vertical)

and the one for the mediant v′′ = 2/5 is S(2/5) = (0, 0, 1, 0, 1) which corresponds to the

concatenation of S(1/3) and S(1/2).

Two questions arise from the above method: (a) is the concatenated sequence periodic?

If yes, what is the period. And (b) is the order of concatenation important? The following

result answers both questions.

Lemma 4.5.5

(a) The concatenation of two periodic sequences gives again a periodic sequence whose

period is the sum of their periods.

(b) The maps f0 and f1 commute if and only if the gap size is zero.

Proof (a). The concatenation of the sequences S = (s1, . . . , sp) and S′ = (s′1, . . . , s
′
q) of respec-

tive periods p and q gives, by definition, the periodic sequence SS ′ = (s1, . . . , sp, s′1, . . . , s
′
q)

whose period is clearly p+ q.

Proof (b). Recall that the semi-infinite symbolic sequence gives the order in which we have

to apply f0 and f1. The functions f0 and f1 does not commute in general. Requiring

f0(f1(x)) = f1(f0(x)) for any x is equivalent to

1− ε
a

( ε
a x+ (1− ε)

)
− ε = ε

a

(
1− ε
a x− ε

)

+ (1− ε)

⇔ 1− ε
a (1− ε)− ε = − ε

aε+ (1− ε)

⇔ a = ε2 + (1− ε)2 = 1− 2ε(1− ε)

⇔ γ = 0,

where we imposed a 6= 0. The case a = 0 is trivial since the ε = εc = 1/2 and the velocity

curve is a step function centered at ε = 1/2. Therefore, the functions f0 and f1 commute if

and only if the gap size is zero. 2

The second part of this lemma shows that periodic orbits for zero gap size could be found

without taking into account the order in which the maps f0 and f1 are applied —this fact
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was already used in section 4.4.4 in order to find an explicit expression for the travelling front

velocity, as a function of the parameters ε and a, in the zero gap case.

On the other hand, the symmetry of v(ε) w.r.t. the point (1/2,1/2) has already been

established in (2.24). Now let us see how this property reflects itself into the symbolic

sequence representation. The general formula for the i-th symbolic symbol for a velocity

v = p/q may be written as (cf. (4.25))

S(p/q)i = bip/qc − b(i− 1)p/qc,

where i = 1, . . . , q and S(p/q)i stands for the i-th symbol of S(p/q). First notice that

S(p/q)1 = 0 and S(p/q)q = 1 for any irreducible fraction 0 < p/q < 1. The following two

results are directly related with the symmetric property (2.24).

Property 4.5.6 Consider 0 < v = p/q < 1, then

(a) S(1− p/q)q−j+1 = 1− S(p/q)j ∀ j = 1, . . . , q

(b) S(1− p/q)j = 1− S(p/q)j ∀ j = 2, . . . , q − 1.

Proof (a).

S(1− p/q)q−j+1 = b(q − j + 1)(1− p/q)c − b(q − j + 1− 1)(1− p/q)c
= q − j + 1 + b(−q + j − 1)p/qc − (q − j)− b(j − q)p/qc
=1 + (−1 + b(j − 1)p/qc)− (−1 + bjp/qc)
= 1− (bjp/qc − b(j − 1)p/qc)
= 1− S(p/q)j .

Proof (b).
S(1− p/q)j = bj(1− p/q)c − b(j − 1)(1− p/q)c

= j + b−jp/qc − (j − 1)− b−(j − 1)p/qc,
but if j 6= 0, 1, q, q+1 (always true since property 4.5.6.b only requires j = 2, . . . , q− 1) then

S(1− p/q)j = 1− bjp/qc − 1 + b(j − 1)p/q + 1c

since b−xc = −x− 1 when x 6∈ Z. Thus

S(1− p/q)j =1− (bjp/qc − b(j − 1)p/qc)
= 1− S(p/q)j ∀ j = 2, . . . , q.

2

The property 4.5.6.a means that if we have already the coding sequence for v = p/q to be

S(p/q) = (s1, s2, . . . , sq−1, sq) then the coding sequence for its symmetric velocity 1 − p/q

is S(1 − p/q) = (1 − sq, 1 − sq−1, . . . , 1 − s2, 1 − s1), i.e. invert the sequence and take its

conjugate (replacing 0 by 1 and vice-versa). The property 4.5.6.b says that S(1 − p/q) =

(0, 1− s2, 1− s3, . . . , 1− sq−2, 1− sq−1, 1), i.e. conjugate all the symbols but leave unchanged

the first and the last symbols that ought to be ‘0’ and ‘1’ respectively.

As an example of properties 4.5.6.a and 4.5.6.b let us derive the coding sequence of

v = 4/7 = 1− 3/7 from the one of v = 3/7. In order to apply property 4.5.6.a to the coding
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sequence for v = 3/7, S(3/7) = (0010101), we have to invert it, i.e. (1010100), and then take

its conjugate, i.e. (0101011). Thus, the first method tells us that S(1 − 3/7) = S(4/7) =

(0101011). For property 4.5.6.b we take the conjugate of S(3/7), i.e. (1101010), and change

the first and last symbols to 0 and 1 respectively, which gives S(4/7) = (0101011). In fact

the correct sequence for v = 4/7 is S(4/7) = (0101011), the same we obtained via the two

methods.

4.5.3 Concatenating a family of sequences

In section 4.5.2 we gave a straightforward algorithm for finding the sequence corresponding

to the mediant of two given sequences. By applying this result repeatedly it is possible to

compute directly the sequences associated to a given family of mediants. Let us consider

the two distinct rational velocities va = ma/na and vb = mb/nb, with corresponding coding

sequences Sa ≡ S(va) and Sb ≡ S(vb), and the family of mediants:

S(va → vb)n = S

(
ma + nmb

na + nnb

)

,

where n = 1, 2, . . .. The series S(va → vb)n consists of a branch of mediants between va
and vb, starting at va = S(va → vb)1 and tending to vb = S(va → vb)∞. Two cases

may be considered, va < vb and va > vb, since the concatenation of two sequences is not

commutative (Lemma 4.5.5, the sequence associated with the smallest velocity goes first in

the concatenation). Applying repeatedly the concatenation of Lemma 4.5.4 we obtain for

the former case

S

(
ma + nmb

na + nnb

)

= Sa

n
︷ ︸︸ ︷

Sb . . . Sb

and for the latter case

S

(
ma + nmb

na + nnb

)

=

n
︷ ︸︸ ︷

Sb . . . Sb Sa.

We will now use the notation Sn for n concatenations of S and recall that S1S2 means the

concatenation of the sequences S1 and S2, in that order. The two cases may be written as

S

(
ma + nmb

na + nnb

)

=







SaS
n
b if va < vb

Snb Sa if va > vb.
(4.44)

4.5.4 Unimodular transformations and envelopes

The structure of the parameter space of the mapping Fε,a at the boundary of a tongue

can be described analytically by means of envelopes. These are functions characterizing the

structure of sequences of adjacent tongues. The study of envelopes proceeds in two stages.

Firstly we derive upper and lower envelopes for the so-called first order plateaus (i.e. v = 1/n

and v = (n− 1)/n, n = 1, 2, . . .). Then with the use of unimodular transformations we find

envelopes for any order plateaus.

The zeroth order plateaus are defined as the two plateaus given by (4.15) with velocities

{0/1, 1/1}. In order to construct any order of plateaus, the k-th order plateaus, we take any
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two consecutive elements of the previous order k−1 denoted by va = ma/na and vb = mb/nb
(va < vb). Then the next order of plateaus is defined as the following infinite increasing

sequence of mediants

{

· · · , 3ma +mb

3na + nb
,
2ma +mb

2na + nb
,
ma +mb

na + nb
,
ma + 2mb

na + 2nb
,
ma + 3mb

na + 3nb
, · · ·

}

(4.45)

The first order plateaus are thus given by

{

· · · , 1
4
,
1

3
,
1

2
,
2

3
,
3

4
, · · ·

}

.

They form a unique family. On the other hand, between any two consecutive plateaus of a

given order there is a new family of plateaus of the next order and so on. This construction

is similar to that of the Farey series [61]. In particular, any two consecutive plateaus p/q and

p′/q′ (p/q < p′/q′) of the same order and family are consecutive fractions of a Farey series

(i.e. qp′ − pq′ = 1).

From the definition of the sequence of plateaus (4.45) and by applying the sequence

concatenation for a series of mediants (4.44) it is possible to find the sequences associated to

a given family of plateaus
{

. . . , S3
aSb, S

2
aSb, SaSb, SaS

2
b , SaS

3
b , . . .

}

,

where we used the shorthand notation Sa = S(ma/na) and Sb = S(mb/nb). It will be useful

to distinguish the left Σa and right Σb subfamilies of sequences defined by

Σa=
{
. . . , S3

aSb, S
2
aSb, SaSb

}

Σb=
{
SaSb, SaS

2
b , SaS

3
b , . . .

}
.

(4.46)

Note that the sequence SaSb, corresponding to the mediant of va and vb, appears in both

families. The elements of the subfamilies Σa (Σb) tend, to the left (right), to Sa (Sb). Thus

the subfamilies Σa (Σb) correspond to velocities going from the mediant of va and vb to the

plateau va (vb).

First we derive the envelopes for Σa. The elements of Σa are of the form

S ∈ Σa =⇒ S = Sn
aSb n = 1, 2, . . . (4.47)

which correspond to the velocities

v(SnaSb) =
nma +mb

nna + nb
n = 1, 2, . . . (4.48)

We recall that the transformations (4.48) are unimodular since we always deal with consec-

utive fractions of Farey series.

The sequences Sa and Sb correspond to a particular combination of f0 and f1. Since f0

and f1 are linear, any such combination will again give a linear function. We denote by fSa
(fSb), as prescribed by (4.26), the linear function resulting from the combination of f0 and

f1 specified by the sequence Sa (Sb):

fSa(x) = αax+ βa

fSb(x) =αbx+ βb.
(4.49)
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Composing fSa and fSa with itself n times gives

fnSa(x) = fSna (x) = αna(x− ξ∗a) + ξ∗a

fnSb(x) = fSn
b
(x) = αnb (x− ξ∗b ) + ξ∗b

(4.50)

where ξ∗a ≡ βa/(1−αa) and ξ∗b ≡ βb/(1−αb) are the fixed points of fSa and fSb respectively.

Combining (4.49) and (4.50) in (4.47) we obtain the iterates of x0 = a under Φε,a for the

coding sequences Sn
aSb

fSnaSb(x0) = fSb
(
fnSa(x0)

)
. (4.51)

Replacing (4.51) in (4.39) we obtain the mode-locking region for a given series of plateaus

f1(γ+) ≤ αb(α
n
a(x0 − ξ∗a) + ξ∗a) + βb ≤ f1(γ−). (4.52)

As we mentioned earlier, the plateaus include their endpoints. These are obtained from

solving the inequalities (4.52) for the extremes f1(γ±). Therefore, all the end points of a

given family of plateaus are given by

αb(α
n
a(x0 − ξ∗a) + ξ∗a) + βb = f1(γ±), (4.53)

where the positive (negative) sign gives the left (right) endpoints of the plateaus. As we vary

n = 0, 1, . . . in (4.53) we browse all the boundaries of the series of plateaus going from the

mediant of va and vb to va.

Solving (4.53) for n yields

n±(ε, a) =
1

lnαa
ln

f1(γ±)− βb − αbξ
∗
a

αb(x0 − ξ∗a)
.

Finally, replacing the value of n in (4.48) by n±(ε, a) gives the continuous functions

v±(ε, a) =
n±(ε, a)ma +mb

n±(ε, a)na + nb
, (4.54)

that passes through all the left (v+) and right (v−) boundaries of the plateaus. Therefore,

v± gives the upper (+) and lower (−) envelopes of the series of plateaus (4.48).

Now let us derive the envelopes for Σb. Using exactly the same definitions as before we

obtain the iterates of x0 under Φε,a for the sequences S = SaS
n
b :

fSaSnb (x0) = fSn
b
(fSa(x0)) . (4.55)

The end points of the plateaus are, in this case,

αnb (αax0 + βa − ξ∗b ) + ξ∗b = f1(γ±), (4.56)

which gives for the envelopes

n±(ε, a) =
1

lnαb
ln

f1(γ±)− ξ∗b
αax0 + βa − ξ∗b

.

with

v±(ε, a) =
ma + n±(ε, a)mb

na + n±(ε, a)nb
, (4.57)
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Figure 4.38: Upper and lower envelopes for v(ε, 0.4). a) The en-
velopes for the first order plateaus. b) The envelopes of the second
order plateaus between v(ε) = 1/3 and v(ε) = 1/2.
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In figure 4.38.a we display the first order plateaus for a = 0.4. We only plotted the left

family (v ≤ 1/2) since the right family (v ≥ 1/2) is symmetrical from (2.24). An example of

a second order family, for the same value of a, is shown in figure 4.38.b where we display the

lower and upper envelopes for the left and right families of second order plateaus between

v = 1/2 and v = 1/3.

With the method described above, it is possible to find the envelopes of any sequence of

higher order plateaus via unimodular transformations. The self-similarity structure of the

Devil’s staircase, evident in figure 4.38, is then controlled by the unimodular transformations

(4.48) and the envelopes.
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Chapter 5

Higher order interface dynamics

In this chapter the mode-locking phenomenon for travelling fronts with more than one site

in the interface is described. We also investigate the mode-locking for CMLs with smooth

local maps and reduce the dynamics of the whole interface to a circle map via a delay map.

The delay map is shown to account for the velocity of the travelling wave front and its

mode-locking through its rotation number. We then study the dependence of the size of

mode-locking plateaus on the number of sites in the interface as well on the range of the

coupling of the CML.

5.1 High order dynamics of minimal states

In the previous chapter it was established that minimal 1-states for the piece-wise linear

CML correspond to a non-negative gap size. Here we investigate the case of a negative

gap where there is more than one site in the interface. The dynamics in the negative gap

case is N -dimensional, where N is the eventual number of sites in the interface. We show

how, in principle, one may find a N -dimensional toral map describing the N -dimensional

dynamics of the interface. The velocity mode-locking of the travelling wave front comes from

a N -dimensional gap in the same way that for the non-negative gap case.

5.1.1 Convergence to minimal states

When the gap size is non-negative, the dynamics of the whole lattice was reduced to one-

dimensional dynamics via the auxiliary circle map. If the gap size is negative there may be

more than one site in the interface at the same time. Thus a one-dimensional reduction of

the whole lattice does not seem attainable. However, if the number of sites in the interface

is still finite —less than or equal to N— one could reduce the dynamics of the whole lattice

to a N -dimensional system containing the information of the interface sites.

Before reducing the dynamics, one has to find the parameter regions where a particular

number of sites is present in the interface. Minimal 1-states were defined (section 4.2.1) to

have N = 0 or 1 sites in the interface. Generalizing the idea, define a minimal mass N -state

or minimal N -state to be a minimal mass state having, during its evolution, either N − 1
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+a

−a

t t+1

−1

+1

1

1

2

Figure 5.1: The space discretization induces a change on the number
of sites in the interface for a travelling front whose shape remains un-
changed. At time t (black sites) there is only one site in the interface,
though at time t+ 1 (white sites) there are two.

+a

h−1(−a) h−1(+a)

h

−a

−1

+1
H }

Figure 5.2: The sites belonging to the interface must lie between
h−1(−a) and h−1(+a) (shaded area). The number of sites in the inter-
face is determined by the shape h and position, at a particular time, of
the propagating front.
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Figure 5.3: Minimal N -states layers in the parameter space. The
minimal N -states layers where obtained by numerically iterating an
initially minimal 1-state, dropping the transients (1 000 transients) and
checking the number of sites in the interface during several iterations
(500 iterations). This was done for the parameter range where the
gap size is negative in a grid defined by the discretization (δε, δa) =
(0.005, 0.0005).
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or N sites in the interface. This apparent duality in the definition of a minimal N -state

comes from the fact that the front shapes are embedded in a discrete space. Suppose that

the shape of the front remains constant during the evolution —as happens for the stationary

front in a diffusive CML with a symmetrical local map (section 3.3). Figure 5.1 illustrates

how the number of sites may change as the front is shifted when iterating the CML. At time

t (black sites) there is only one site present in the interface, while, at time t+1 (white sites),

the number of sites increases to two. After a further iteration the number of sites in the

interface will, eventually, be reduced to one again. This process repeats itself all along the

front evolution. Let us explain how. If the front shape is given by the function h (figure 5.2),

the sites falling in the interfacial zone, i.e. the interface itself, are the sites contained in the

interval H = (h−1(−a), h−1(+a)) (shaded area). Thus the number of sites in the interface

amounts to the number of nodes (black points) in H. Since the length of H and the distance

between nodes remains constant, the number of sites in H can only vary by one during the

evolution. In the case of a minimal N -state the number of sites in the interface is then N or

N − 1.

In figure 5.3 we depict the (ε, a) regions where the minimal N -states are present. In the

calculations, the initial condition was set to be a minimal 1-state which evolved towards a

minimal N -state. Numerical experimentation reveals that N does not depend on the initial

condition. Any initial configuration we have tried in the interface (figure 5.4) converged to

+a

−a
−1

+1
a) b) c) d) e)

Figure 5.4: Set of initial configurations: a) decreasing, b) oscillatory,
c) concave oscillatory, d) convex oscillatory and d) random. All of them
tend, after transient, to a minimal N -state where N depends only on
the (ε, a)-parameter value.

a minimal N -state depending only on the parameter value (ε, a). Obviously, the length of

the transient needed to reach the final minimal N -state depends on the initial configuration.

The parameter space is then divided into minimal N -states layers where the value of N

is constant. The boundary between the first layer (minimal 1-state) and the second one

(minimal 2-state) is the zero-gap curve. Above that curve, the gap is negative, and there

appears to be an infinite family of layers, labeled by N , and separated by boundary curves.

As it may be observed in figure 5.3, these boundary curves do not seem to be differentiable:

they have a fractal-like structure.

5.1.2 Two-dimensional auxiliary map

Throughout this section consider the case N = 2, i.e. take (ε, a)-parameter values lying in

the minimal 2-state layer. One would like to derive an auxiliary map that contains all the

information of the interface dynamics as the auxiliary map Φε,a does for the non-negative

gap case. In order to find such a map one has to take into account all possible evolutions of

a minimal 2-state. The various possibilities are summarized in figure 5.5. The general form
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Figure 5.5: Possible evolution combinations of a minimal 2-state. The
considered sites are denoted by the pair (x1, x2) and their images by
(x′1, x

′
2).

for a minimal 2-state Xt is

Xt = (−1, x1, x2, 1, . . .),

but because the size of the interface may be 1 or 2 one has the two possibilities −a < x1 <

x2 < a or −a < x1 < a ≤ x2. Therefore, the first site x1 is always in the interface while the

second, x2, may or may not be in the interface. If the second site is not in the interface one

could assign to it any value between +a and +1 and its image by the piece-wise linear map

fa would remain the same. In this case we choose to reduce x2 ≥ a to x2 = a. Iterating the

state Xt = (−1, x1, x2, 1, . . .) will give one of the 6 possibilities depicted in figure 5.5 where

the maps f0 and f1 are the same as before (cf. equation (4.6)) and the new map g(x1, x2) is

g(x1, x2) =
1− ε

a
x2 +

ε

a
x1. (5.1)

While the map f0 (f1) originates from the interaction between the left-most (right-most)

f0(x1)

x1

x’1 = Ω1(x1,x2) x’2 = Ω2(x1,x2)

x2x2

x1

f1(x2)
g(x1,x2)

γ− γ−

γ− γ−

γ+ γ+

γ+ γ+
−a −a+a +a

+a +af1(x1) f0(x1) f1(x1) aa

a g(x1,x2)

Figure 5.6: The auxiliary map Ω for the two-dimensional case. The
pair of interfacial sites (x1, x2) is mapped to (x

′
1, x

′
2) using the indicated

functions. The shaded areas are not reachable, see text.

site of the interface with the homogeneous region, the map g originates from the interaction
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between the two sites in the interface. Take any of the cases d), e) or f) in figure 5.5

where the pair (x1, x2) is in the interface. The image of Xt = (−1, x1, x2, 1, . . .) is then

Xt+1 = (−1, f0(x1), g(x1, x2), f1(x2), 1, . . .).

Therefore, the pair of interfacial sites (x1, x2) is mapped to (x′1, x
′
2) in 6 different ways

depending on their value. The dynamics then induces a two-dimensional map Ω(x1, x2) =

(x′1, x
′
2). The map Ω, obtained by considering the possibilities in figure 5.5, is depicted in

figure 5.6 by separating it into its two components x′1 = Ω1(x1, x2) and x′2 = Ω2(x1, x2). The

shaded areas in figure 5.6 correspond to unreachable situations for a minimal 2-state. Since

Xt is a minimal mass state, x1 has to be less or equal than x2, thus we eliminate the area

where x2 < x1 —light shaded area. On the other hand, if x1 and x2 are both at the same

time in the interval [γ−, γ+], the resulting state is a minimal 3-state (figure 5.7), and thus we

eliminate this possibility —dark shaded area.

+a

γ−

γ+

−a

−1

+1

x’3= f1(x2)

x1

x’1= f0 (x1)

x’2= g(x1,x2)

x2

Figure 5.7: Three sites entering in the interface. When γ− < x1 <
x2 < γ+ there is an extra site entering the interface. This does not
happen in the minimal 2-state layer.

In the one-dimensional case the auxiliary map Φε,a is a one-dimensional circle map whose

rotation number gives the velocity of the travelling interface. For the 2-dimensional case

(minimal 2-state layer) the auxiliary map Ω is a toral map in two dimensions —a toral map

is the generalization of a circle map to more than one dimension (cf. [63]). In figure 5.8 we

plot the maps Ω1(x1, x2) and Ω2(x1, x2) (they are from R2 to R) separately.

Generalizing the idea of rotation number in more dimensions one could think of a rotation

vector [63] whose entries correspond to the rotation number in every component. The rotation

vector ρ = (ρ1, ρ2) of Ω(x1, x2) is then two-dimensional. But since both sites (x1, x2) belong

to the same interface, that is moving with a defined velocity, the two components of the

rotation vector have to be equal (ρ1 = ρ2). This observation is the key point for reducing the

dynamics of any interface to a one-dimensional map and will be addressed again in section

5.2.1. Therefore instead of taking the whole rotation vector one may use a single scalar

to describe the rotation around Ω(x1, x2). Thus, the velocity of the travelling interface in

the minimal 2-state layer is given by this scalar, which will be simply called from now, the

rotation number of Ω(x1, x2).

5.1.3 The tongues for the two-dimensional case

The two-dimensional auxiliary map Ω is piece-wise linear —it is a combination of planes— and

possesses the equivalent of the gap Γ for the one-dimensional case: the region [−a, γ−]×[γ+, a],
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Figure 5.8: Plot of the two-dimensional auxiliary map Ω(x1, x2) =
(Ω1(x1, x2),Ω2(x1, x2)) in three dimensions for (ε, a) = (0.365, 0.7).
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see shaded region in figure 5.8. This region, which we refer to as the two-dimensional gap and

denote by Γ2, acts in the same way as its one-dimensional analogue. Any (x1, x2)-orbit falling

into Γ2 —a gap orbit— is superstable and therefore is parametrically stable to perturbations.

This parametric stability gives rise to the mode-locking of the velocity. Thus one expects the

minimal 2-state layer to contain Arnold’s tongues in the same way the minimal 1-state layer

does.
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−a

−a

−1

−1

+1

+1

x1

x1

x’1 = f0(x1)

x’1 = f0(x1)

x1= g(x’1, x’2)
x’2 = f1(x1)

x1= f1(x’1)
x’1

x’1

x2

x2

x2

x2

x’2 x’2

x’2

a)

b)

. . .

. . .

Figure 5.9: The two possible orbits giving v = 1/2 in the two-
dimensional case.

Let us derive the tongues for v = 1/2 in the two-dimensional case. First of all one has

to choose the orbit. In the one-dimensional case the orbit was uniquely determined by the

symbolic coding of the velocity for fixed values of (ε, a). However, in the two-dimensional

case, there are different possible evolutions for a given velocity. This is due to the fact that

with more sites in the interface a wider selection of orbits is possible. Two such orbits of a

minimal 2-state giving a velocity v = 1/2 are depicted in figure 5.9, that is, a) with x2 > a

all the time and b) alternating one and two sites inside the interface. First of all the orbit

has to be periodic (period two). Therefore we must have a) f1(x
′
1 = f0(x1)) = x1 and b)

g(x′1 = f0(x1), x
′
2 = f1(x1)) = x1, i.e.

a) x1 =
a(a(1− ε)− ε2)
a2 − ε(1− ε)

,

b) x1 =
a(1− 2ε)

a2 + 2ε(ε− 1)
.

(5.2)

Now, one has to verify that the sites fall in the right intervals. From figure 5.9 is easy to

check that the conditions on the orbit a) and b) are

a) f1(x1) > a and f0(x
′
1 = f0(x1)) < −a,

b) f0(x
′
1 = f0(x1)) < −a and f1(x

′
2 = f1(x1)) > a.

(5.3)

Combining equations (5.2) and (5.3) gives the conditions that ε and a must satisfy in order

to have the period-2 orbits of figure 5.9. In figure 5.10 we display the regions where these

conditions are satisfied in the minimal 2-state layer.

The same procedure may be applied to find the tongues for any rational velocity in

the minimal 2-state layer. From the numerical experiments it is seen that for every chosen
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Figure 5.10: The v = 1/2 tongues in the minimal 2-state layer. The
tongues a) and b) are obtained by solving the inequalities (5.3) corre-
sponding to the two period-2 orbits in figure 5.9.
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Figure 5.11: Principal mode-locking tongues in the minimal 2-state
layer. One verifies that the number of tongues in this layer corresponds
to the denominator of the velocity.
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0 < v = p/q < 1 there are q possible different orbits, by combining 1 and 2 sites in the

interface, each one has a corresponding tongue in the minimal 2-state layer. In figure 5.11 we

present the computed tongues for the principal rational velocities. The number of tongues

for a given velocity corresponds to the denominator of the latter.

5.1.4 Higher order dynamics

Now let us consider the case of a minimal N -state layer for N > 2. The dynamics in that

layer may be reduced to a N -dimensional auxiliary toral map that controls the N -tuplet

of sites in the interface. Again, thanks to the superstable regions of the local map, this

N -dimensional toral map will have a N -dimensional gap ΓN such that any N -tuplet in ΓN
is mapped unto a by the N -dimensional auxiliary map. The parametric stability is again

induced by the presence of the gap ΓN when the latter exists.

Thus, in every minimal N -state layer there are q tongues corresponding to the velocity

v = p/q given by the q possible combinations for the periodic-q orbit, of the N -dimensional

auxiliary map. The regions where each tongue exists are given by a system of inequalities that

the N -tuplet has to satisfy for the orbit to undergo the right combination of N and N−1 sites

in the interface. In figure 5.12 we show the tongues for the velocities v = 1/2, 2/5, 1/3, 2/7

and 1/4 in the minimal N -state layers for N = 1, . . . , 8. We call the tongues in the minimal

N -state layer the sub-N -tongues since they emanate from the principal mode-locking tongues,

the principal tongues, for the one-dimensional case. Therefore, every principal tongue has

q sub-N -tongues in each N -layer. Observing carefully the enlargement in figure 5.12 one

notices that the structure of these sub-tongues is self-similar and repeats itself in every layer.

Besides of the self-similarity in the a-axis, there is a self-similarity in the ε direction inherited

from the principal tongues (the fractal Devil’s staircase).

It is interesting to notice that because of the continuity of v(ε, a) all the sub-N -tongues

touch each other. Another point to be addressed is that the sub-N -tongues touch in a single

point, i.e. in that particular point the width of the ε-plateau (for a fixed value of a) is zero.

This phenomenon is repeated all along each family of sub-N -tongues and it happens every

time a site of the interface touches the boundary of the superstable region when varying

the (ε, a)-parameters in order to go from one of the q possible combinations of the interface

orbit to the next. In figure 5.13 we show the state of the lattice at different stages of the

v = 1/3 tongue. The ε-width of the latter is zero in the transitional case between two different

interfacial orbits (cases b), d), f) and h)). One may consider this switch from one interfacial

orbit to the next as a bifurcation of the attracting cycle of the N -dimensional auxiliary map

[64]. In order to illustrate when this bifurcation takes place we show the bifurcation diagram

of the attracting cycle of the interface in figure 5.14 as the parameter a is varied. From the

figure it is possible to observe that when a stable point of the interface touches the boundary

of the superstable region (dashed diagonal lines a and −a) the attracting cycle changes and

one site is added to it. Where this happens (vertical dashed lines) the ε-width of the tongue

is zero (see figure 5.13).

With these remarks our study of the one-way CML with the piece-wise local map fa is

concluded. In the rest of these thesis we present further results, mainly numerical, showing

the mode-locking phenomenon in a wider range of CMLs.
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Figure 5.12: a) Tongues in the high dimensional minimal N -state lay-
ers. The tongues for the velocities v = 1/2, 2/5, 1/3, 2/7 and 1/4 in the
minimal N -state layers for N = 1, . . . , 8 are presented. b) Enlargement
of the upper-left section of a).
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minimal 2-state
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v = 1/3
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b)

i)g) h)
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Figure 5.13: Successive states of the lattice in the v = 1/3 tongue.
Every time a site touches the boundary of the superstable region, in
order to pass to a new configuration, the tongue ε-width is zero. The
states from a) to i) correspond to increasing values of a inside the
v = 1/3 tongues. The state a) is a minimal 1-state while the state b)
is the transitional state to a minimal 2-state (zero gap). The states c),
e) and g) correspond to the three different possibilities for a minimal
2-state and d) and f) correspond to the transition points between these
three states. State i) is already is a minimal 3-state and h) is the
transition point between the minimal 2-state to the minimal 3-state.
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Figure 5.14: Bifurcation diagram of the attracting cycle of the inter-
face sites in the v = 1/3 tongues. We plot the stable periodic 3 orbit
of the interfacial sites as a function of the parameter a after 10 000
transients.

5.2 Mode-locking for smooth maps

The goal of this section is to generalize the previous results by providing evidence that the

mode-locking phenomenon is common in the propagation of fronts in both one-way and

diffusive CMLs. The basic task is to understand the mode-locking process for the case of a

smooth local map that does not possess a superstable gap —recall that the gap is responsible

for the parametric stability for the piece-wise linear local map case.

5.2.1 Mode-locking in one-way CMLs

Let us consider again the example given in section 3.4 where the local map is the hyperbolic

tangent tanh(x/ν). The whole picture of the parameter space in given in figure 5.15 where

we depict the principal Arnold’s tongues for the one-way CML with f(x) = tanh(x/ν). As it

may be observed from the figure the mode-locking regions rapidly shrink as ν tends to 1 —

with the exception of the plateaus v = 0/0 and v = 1/1 which remain considerably large even

for ν ' 1. The same remark can be noticed from figure 3.14 where the mode-locking plateaus

tend to disappear as ν increases. The question that now arises is that of the existence of

mode-locking plateaus for large ν. In figure 5.16 we have the velocity for ν = 2/5, the curve

appears to be smooth for εc < ε < 1/2, at least at the observable scale. Do the mode-locking

plateaus really disappear as ν tends to 1? In figure 5.17 we show a magnification of the

velocity curve for ν = 2/5 around v = 1/3. The plateau around v = 1/3, which was invisible

in figure 5.16, now appears clearly.
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Figure 5.15: Arnold’s tongues for the one-way CML with the hyper-
bolic tangent local map f(x) = tanh(x/ν).
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Figure 5.16: Velocity curve for the hyperbolic tangent local map
with ν = 2/5. At this scale no mode-locking plateau for the velocity is
observable.
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Figure 5.17: Enlargement of figure 5.16 around v = 1/3. The v = 1/3
plateaus is now clearly observable.

This numerical experiment gives evidence that the mode-locking may be present on a

small scale. In order to understand this mode-locking for smooth maps and the mechanism

whereby the plateaus tend to disappear, one could try to find the corresponding auxiliary

map for the given local map. The number of sites N in the interface for smooth local maps

is typically infinite because there is not, in general, a superstable region. For the piece-wise

linear local map, a site falling in the superstable regime is set to the stable point after one

iteration, whereas for an smooth map the tendency towards the superstable point may take

an infinite time. Therefore it would be unpractical to find the associated N -dimensional

auxiliary map since it would be infinite. Thus, in order to have a simpler picture of the

interface dynamics one could try to reduce further the dynamics.

Suppose there are N sites in the interface, where N could be infinite, and that the front

is mode-locked in the v = p/q plateau. The orbit of the interface N -tuplet is then periodic

with period q and so is every one of its components. Thus one may focus on the dynamics

of a single site of the interface, since all the other interfacial sites are slaved to the same

period. The dynamics of the chosen site is then periodic with period q and the mode-locking

phenomenon should be reflected in its dynamics. Let us choose the j-th site of the interface

(i.e. 1 ≤ j ≤ N) and denote by xj(t) its dynamics. It is important to notice that the global

index of this site advances, as the CML is iterated, since the interface advances through the

lattice (for v 6= 0).

From the N sites of the interface choose, for the following numerical examples, the site

whose dynamics is closer to the unstable point x∗0 of f . In the case of symmetrical f the

unstable point is x∗0 = 0 and thus the dynamics of the chosen site happens around the origin.

We call this site the central site since, because of symmetry, it is at the centre of the interface.

We then reconstruct its dynamics, denoted xc(t), by taking the delay map xc(t+1) vs. xc(t).

The orbit xc(t) is periodic of period q (because v = p/q) and the delay map of xc(t) consists

of q points. If q is small it is impossible to reconstruct a continuous map giving the global

dynamics of xc(t). However, by considering a small perturbation of ε one could change the

period of the orbit without affecting much the front dynamics. Suppose that the v = p/q
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Figure 5.18: Taking an ε-value near a mode-locking plateau allows a
better reconstruction of the interface dynamics without changing con-
siderably the front velocity.

plateau happens in the interval (ε1, ε2), take a value ε′ such that ε′ < ε1 and |ε′ − ε1| ¿ 1

(figure 5.18). If v(ε) is continuous, v(ε′) can be made as close as desired to p/q by choosing

ε′ close enough to ε1. The same procedure could also be applied near ε2, i.e. ε′ > ε2 and

|ε′ − ε2| ¿ 1. The resulting reconstructed dynamics for the central site, now denoted x̃c(t),

at this new ε-value has a large period but the velocity of the front remains close to p/q,

i.e. x̃c(t) ' xc(t). The large period permits us to visualize the shape of the auxiliary map.

As an example consider again the v = 1/3 plateau of the travelling interface for the

hyperbolic tangent auxiliary map when ν = 2/5. From the enlargement of the velocity

(figure 5.17) one could give and approximation of the interval (ε1, ε2) ' (0.38237, 0.383) and

we choose ε′ = 0.3823 such that ε1−ε′ ' 0.00007 and |v(ε′)−1/3| ' 0.000377. In figure 5.19

we plot the delay map of the central site for ε = ε′ = 0.3823. We can see that the dynamics

for this reconstructed delay map is very close to a period-3 orbit (see the 3 orbits in figure

5.19). The clue for the mode-locking phenomenon relies on this delay map. The delay map

contains the information of the dynamics of the central site, it is equivalent to the auxiliary

map for the piece-wise linear CML and it is a circle map. The delay map plays then the

same role as the auxiliary map and thus if there is a mode-locking in the travelling velocity

it should come from the mode-locking of its rotation number. If the local map is nonlinear

we expect the delay map to be nonlinear as well. Therefore the mode-locking of the rotation

number for a smooth map in a one-way CML is a strictly nonlinear phenomenon triggered

by the nonlinearity of the delay map in the same way as the mode-locking in the standard

circle map [57].

5.2.2 Mode-locking in diffusive CMLs

The same delay map reconstruction may be carried out for a diffusive CML. As an example,

let us consider as local map the second iterate of the logistic map f(x) = µx(1 − x), see

figure 5.20, restricted to the interval between its superstable points x∗± for µ = 1 +
√
5.

The local map is then asymmetric with respect to the repeller x∗0 and thus can propagate
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Figure 5.19: Reconstructed delay map of the central site of the inter-
face of the travelling wave front for the hyperbolic tangent local map
with ν = 2/5 and ε = 0.3823. The parameter value ε = 0.3823 is
nearby the v = 1/3 plateau so the dynamics mimics very closely the
one for the v = 1/3 plateau: the orbits have period-3.
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Figure 5.20: The second iterate of the logistic map with µ = 1+
√
5.

For this value of the parameter µ the second iterate of the logistic map
possesses a suitable local map —the one inside the dashed square— for
the propagation of a travelling interface in a diffusive CML, i.e. it has
two superstable points x∗± separated by the unstable one x∗0 and it is
not symmetric.
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Figure 5.21: Velocity of the travelling interface for the second iterate
of the logistic map in a diffusive CML. The curve seems to be smooth
without any apparent mode-locking plateaus.

interfaces in a diffusive CML. The velocity of the travelling interface is shown in figure 5.21. It

exhibits an apparently smooth dependence on the coupling parameter without mode-locking

plateaus. Nonetheless, magnifications around v = 1/7 and v = 1/8 clearly show plateaus on

a smaller scale (figure 5.22). Therefore, the mode-locking phenomenon is also present under

magnification from a curve that appeared to be smooth at the first glance.

Following the same procedure as in the previous section, we reconstruct the delay map

for an ε-value near the v = 1/7 plateau of figure 5.22.a. We take the value ε′ = 0.9075 and

reconstruct the delay map of the central site (figure 5.23). In this case the reconstructed delay

map is almost linear, which is the reason why the mode-locking plateaus are barely detectable.

Nonetheless, the delay map is nonlinear —compare the lower part of the reconstructed delay

map with the fine straight line— and as such displays a weak mode-locking w.r.t. ε as seen

in figure 5.22.

It should be clear now that one-way or diffusive CMLs, whose local map is nonlinear in

order to propagate wave fronts, are likely to display velocity mode-locking with respect to

the coupling parameter. The size of the plateaus may be, however, very small. The goal of

the next section is to study the dependence of the plateaus size on the features of the local

map and the range of the coupling.

5.3 Width of the mode-locking plateaus

In this section we relate the size of the mode-locking plateaus to the number of sites present

in the interface and, finally, we turn around the problem to the range of the coupling for an

exponentially decaying interaction.
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Figure 5.22: Enlargement of the velocity for the second iterate of the
logistic map in a diffusive CML. The plateaus of a) v = 1/7 and b)
v = 1/8 are clearly observable at this scale.
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Figure 5.23: Reconstructed delay map of the central site of the in-
terface of the travelling wave front for the second iterate of the logistic
map with µ = 1 +

√
5 and ε = 0.9075 in a diffusive CML. The param-

eter value ε = 0.9075 is nearby the v = 1/7 plateau so the dynamics
mimics very closely the one for the v = 1/7 plateau: the orbit has
almost period-7.

5.3.1 Mode-locking versus number of sites in the interface

As noticed in section 5.2.1 the mode-locking plateaus tend to disappear as ν increases (figure

5.15) in the one-way CML with local map f(x) = tanh(x/ν). For large values of ν (ν ' 1) the

plateaus are almost imperceptible and they become more evident as ν is decreased. In order

to understand this behaviour we shall monitor the average number of sites in the interface

as a function of ν. In figure 5.24 we have the dependence of the average number of sites in

the interface N on the parameter ν. It is important to say that the interface in such smooth

maps is very difficult to characterize since it typically involves infinitely many sites. One

could try to use the width σ2 (cf. section 2.1) of the travelling interface (see figure 5.25)

whose size is finite. But as we shall see, for the purpose of the interface dynamics, it is more

useful to think of the number of sites in the interface.

Let us understand how the interfaces are infinite. Far from the localized region of the

interface, the sites tend to x∗− (left) and to x∗+ (right). The specific tendency towards the

stable points depends on the nature of the coupling and the local map. Far from the central

region of the interface, i.e. near the stable points x∗±, the lattice is almost homogeneous. In

other words x(i) ' x(i + 1) ' x(i − 1) ' x∗± if i → ±∞, thus the dynamics of these sites

could be rewritten as

xt+1(i) = (1− ε)f(xt(i)) +
ε
2 (f(xt(i− 1)) + f(xt(i+ 1)))

' (1− ε)f(xt(i)) +
ε
2 (f(xt(i)) + f(xt(i)))

' f(xt(i))

for a diffusive CML and the same result is obtained for a one-way CML. Therefore the

dynamics far from the central part of the interface is mainly governed by the attraction of

the local map towards the stable points. Hence the decay very near the attractors follows
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Figure 5.24: Average number of sites in the interface of the travelling
wave front. We used a one-way CML with the hyperbolic tangent local
map f(x) = tanh(x/ν). We set ε = 0.45 and averaged the number of
sites in the region [x∗− + δ, x∗+ − δ], with δ = 10−12, over 100 iterations.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ν

σ2

Figure 5.25: Width of the travelling interface for the hyperbolic tan-
gent local map with ν = 0.45 as in figure 5.24.
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the decay of the dynamics of the local map. For a linear attractor the decay is exponential,

thus the decay rate for a typical nonlinear stable point will be at least exponential. The

only way to avoid an infinite interface is to give a superstable region to the stable points,

like the piece-wise linear map used in the previous chapter. Such kind of maps possess

flat regions around x∗± that ‘artificially’ collapse trajectories that get close enough to x∗±.

For smooth local maps without such superstable regions, the convergence towards x∗± is an

infinite process giving rise to an infinite interface. Nevertheless, any numerical analysis has a

limited accuracy producing an artificial superstable convergence towards an attracting point.

Imagine we are numerically iterating a local map near a stable point, after a finite number of

iterations the distance of our trajectory from the stable point gets smaller than the accuracy

of our calculations and thus the trajectory is instantaneously set at the stable point. In

this case, the accuracy of our calculations defines the size of the artificial superstable region

around the stable point. Thanks to that, interfaces for smooth local maps, that in theory

are infinite, become finite. Therefore, from now on, to have a finite and manageable size of

the interface, we use a truncated interface [x∗− + δ, x∗+ − δ] with δ ¿ 1, i.e. the number of

sites contributing to the interface are the ones in this truncated interval.
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Figure 5.26: Size of the v = 1/3 plateau, ∆ε = ε2 − ε1, for the
hyperbolic tangent local map as a function of ν.

Using figure 5.15 with figures 5.24 and 5.25 one can conclude that for this example the

size of the plateaus decreases as the number of sites in the interface gets larger. To obtain

a clearer picture we computed the left (ε1) and right (ε2) extremes of the v = 1/3 plateau

as a function of ν and calculated its size size ∆ε = ε2 − ε1 (figure 5.26). Peculiar behaviour

occurs at the right extreme of the ν spectrum. We expected ∆ε to be a decreasing function

of ν for large ν (ν ' 1) but the figure shows an increasing tendency of ∆ε for ν > 0.45. We

show now that the problem is strictly numerical: when ν is close to 1 the plateaus are so

small that we are at the limit of the computational accuracy for the velocity —we took for

this example 999 iterations plus 100 transients and we used a dichotomy method to obtain

ε1,2. In figure 5.27 we refine the calculations of ∆ε for large ν by computing the velocity with

more iterations. As it may be noticed from this figure, when the number of iterations used

is increased, i.e. the accuracy is increased, the behaviour of ∆ε tends to what we expect: ∆ε

decreases, apparently to zero, as ν tends to 1.
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Figure 5.27: Size of the v = 1/3 plateau for the hyperbolic tangent
local map as a function of ν for several number of iterations taken for
computing the velocity. As the number of iterations is increased, one
obtains a more precise result saying that the plateau tends to disappear
as ν tends to one.

On the other hand, for ν < 0.11 the plateau do not continue to get larger as ν tends to 0

since the v = 0/1 and v = 1/1 plateaus occupy a large portion of the ε-space, see figure 5.15.

This is because εc → 0.5 (1 − εc → 0.5) as ν → 0. In the limit when ν = 0 the local map

f(x) = tanh(x/ν) is a square step (figure 5.28) and so is the velocity (i.e. εc = 1− εc = 0.5).

Therefore, for small ν, the non-trivial propagating region εc < ε < 1− εc becomes small and

then, because of this space constraint, all the non-trivial plateaus (0 < v(ε) < 1) shrink.

tanh (x /ν) tanh (x /ν)

ν 0

x x

Figure 5.28: As ν tends to zero the hyperbolic tangent tanh(x/ν)
tends to a square step function. At the same time the velocity tends
to a square step function.

The tendency of the plateaus to get smaller as the number of sites in the interface increases

is due to the increasing constriction on the movement of sites. In a minimal 1-state the only

site in the interface has its possible dynamics contained in the whole range [x∗−, x
∗
+], whereas

for a minimal N -state the story is quite different. As the number of sites in the interface is

increased, the dynamics of each site is restricted to a smaller interval —as is schematically

depicted in figure 5.29. Therefore, when the number of sites in the interface is very large

one may think of the delay map of a single site in the interface as a small portion of the

whole dynamics in [x∗−, x
∗
+] and thus it has to be almost linear. This effect is the same as

considering a sharp curve and focusing on a small portion (zooming in) where it may be

approximated by a linear function.
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x*
_

x*
+

Figure 5.29: As the number of sites in the interface is increased the
dynamics of each site is restricted to a smaller interval.

5.3.2 Mode-locking versus range of interaction

It should now be clear that by introducing more sites to the interface the mode-locking of

the travelling velocity is diminished. In order to increase the number of sites in the interface

we changed the shape of the local map; here we reverse this procedure by leaving the local

map unchanged and by modifying the coupling interaction. Up to now we have dealt with

CMLs with nearest neighbour coupling. We now consider a coupling with a broader range.
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N

Figure 5.30: Average number of sites N in the interface [x∗− +
δ, x∗+ − δ] (δ = 10−10) as a function of the range of the coupling
Nl for different values of the exponential decay α̃ of the coupling
(α̃ = 0.05, 0.1, 0.15, . . . , 1.0 from bottom to top). We used the CML
(5.5) with the tangent local map f(x) = tanh(7x) and with ε=0.45.

In the first chapter we introduced the general form of a homogeneous CML with l left

neighbours and r right neighbours (cf. (0.4)). Let us consider one-way coupling (r = 0) with

exponentially decreasing coupling coefficients (εk = e−α|k−1|). Normalizing the coupling
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yields to the following one-way CML

xt+1(i) = (1− ε)f(xt(i)) +

ε
Nl∑

k=1

e−α|k−1|f(xt(i− k))

Nl∑

k=1

e−α|k−1|

, (5.4)

where Nl is the number of left neighbours coupled and α is a non-negative real coefficient

measuring the decay rate of the exponential coupling. For Nl = 1, equation (5.4) recovers

the original form of a one-way CML (cf. (0.6)). From now on we will call Nl the range of the

coupling. By defining the new parameter α̃ = e−α equation (5.4) now reads

xt+1(i) = (1− ε)f(xt(i)) +

ε
Nl∑

k=1

α̃|k−1|f(xt(i− k))

Nl∑

k=1

α̃|k−1|

, (5.5)

where α̃ ∈ [0, 1] gives a measure of the extent of the exponential coupling, i.e. small values

of α̃ correspond to rapid decay and values of α̃ near 1 to slow decay.
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Figure 5.31: Average number of sites N in the interface as a function
of the range of the coupling Nl and its exponential decay α̃. We used
the same parameters as in figure 5.30. The shaded area corresponds to
the saturation region of N .

In figure 5.30 we plotted the average number of sites N in the interface [x∗− + δ, x∗+ − δ]

(δ ¿ 1) as a function of the range of the coupling Nl for different values of the exponential

decay α̃ with ε = 0.45. The first observation is that, as expected, the number of sites

in the interface increases as the number of coupled sites increases and as the exponential

decay gets slower. On the other hand a very interesting phenomenon happens for the curves

corresponding to α̃ < 0.3: N cease to increase for large Nl. The observed saturation of

N for large Nl and small α̃ is due to the fact that the exponential decay is so strong that

far neighbours, even if Nl is large, do not contribute. In fact, for any value of α̃ the same

behaviour is observed but, obviously, the saturation point happens for larger Nl if ones
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increases α̃. In our figure we plotted N for Nl ∈ [1, 20] and it is only possible to observe the

saturation when α̃ < 0.3, for larger α̃ the saturation occurs for values of Nl larger than 20.

In figure 5.31 we present a 3-dimensional plot of N vs. Nl and α̃ giving a global picture of

the behaviour of N .

From these figures one sees that it is possible to vary the number of sites in the interface

by changing the range of the coupling and leaving the local map and the coupling parameter

ε fixed. One could increase the number of sites in the interface by increasing α̃ and/or

increasing Nl —though one ought to be careful since only varying Nl could lead to saturation

of N before reaching the desired value.

Now let us see the dependence of the size of the mode-locking plateaus as the number of

sites in the interface is increased by means of increasing the range of the exponential coupling,

i.e. by varying Nl. Take the CML with exponential coupling (5.5) with the hyperbolic

tangent local map f(x) = tanh(x/ν) with ν = 1/7. We choose a slow exponential decay

rate (α̃ = 0.9) in order to avoid saturation of the number of sites in the interface as Nl is

increased. The results are shown in figure 5.32 where we plotted the velocity curves as a

function of ε for different values of Nl. Before commenting on the width of the plateaus

there are two interesting points worth to mention. First, since the coupling now involves Nl

left neighbours it is possible for the velocity to be larger than 1 since the information could

now propagate up to speeds equal to Nl; in fact, the maximum reachable velocity would be

vmax = Nl. In figure 5.32 all the curves for Nl > 1 reach a velocity greater than 1 for large ε.
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Figure 5.32: Effect of the range of the coupling Nl onto the mode-
locking plateaus. For the experiment we took the CML (5.5) with the
local map f(x) = tanh(7x) and with an exponential decay α̃ = 0.9, in
order to avoid saturation of the number of sites in the interface. We
averaged the velocity over 1 260 iterations after dropping 150 transients.
The mode-locking plateaus clearly shrink as Nl is increased.

The maximum observed speed in our numerical computations was slightly larger than 6 for

Nl = 20 when ε = 1, nevertheless it is possible to increase the velocity as much as desired by

increasing Nl whilst being careful that α̃ is large enough to avoid saturation of the number

of sites in the interface. The second interesting point is that all the velocity curves take off
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from zero at the same point, i.e. εc is independent of Nl and α̃.

Now let us concentrate on the mode-locking plateaus in figure 5.32. First of all notice

that there are mode-locked plateaus for velocities larger than 1. In this case the plateaus

occur at v = p/q where now p > q and the same mode-locking mechanism as for 0 ≤ v ≤ 1

prevails. The most important point to notice from this figure, for our purpose, is that the

plateaus tend to shrink as the range of the coupling is increased. The plateaus corresponding

to the principal mode-locking ratios, small denominator q, tend to prevail as Nl is increased

—more evident plateaus in the figure. On the other hand, the plateaus corresponding to

large denominator q, that are very small even for Nl = 1, are imperceptible, at least at

the plotting scale, for large Nl (see for example the plateaus between v = 1/2 and v = 1).

Therefore, we observed how the mode-locking tends to be diminished as the range of the

coupling is increased. This tendency is caused by the same mechanism explained in the

previous section, namely the fact that the mode-locking tends to disappear as the number of

sites in the interface is increased —recall that by increasing Nl one is increasing the number

of sites in the interface (cf. figures 5.30 and 5.31).
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Chapter 6

Conclusions and final remarks

This thesis presents the analysis of coherent propagation of signals through bistable CMLs.

By focusing our attention on the simplest propagating mechanism we discover a very peculiar

phenomenon: the mode-locking of the travelling velocity with respect to the coupling param-

eter. We introduced a piece-wise linear local map in order to understand the mode-locking

mechanism. This map allows us to select a parameter region for which there is only one site

in the interface —sites of the signal lying between the two stable points of the local map.

Thus it is possible to reduce the dynamics of the whole lattice to a one-dimensional map,

the auxiliary map, that accounts for the dynamics of the single interfacial site. The auxiliary

map is a map of the circle whose rotation number gives the travelling velocity of the interface.

In this framework the velocity mode-locking is caused by a superstable region (the gap) of

the auxiliary map which is responsible for collapsing nearby trajectories to the same periodic

orbit. The mode-locking is shown to occur for every rational velocity stressing the fact that

the piece-wise linear CML presents a very strong mode-locking reflected at any scale of the

velocity graph. In other words, the graph of the velocity represents a Devil’s staircase, a

fractal staircase. The fractal structure of the Devil’s staircase is described by means of a

symbolic dynamics description of the auxiliary map orbit. The end points of the plateaus are

given by envelopes corresponding to a Farey-like construction of the rationals using simple

rules of symbolic sequences concatenations. Using this procedure one can find the symbolic

sequence associated to a rational velocity by concatenating the symbolic sequences associated

to the two previous Farey rationals to that particular velocity.

Even though the auxiliary map deals with signals with only one site in the interface, the

mode-locking of its rotation number gives the first step towards the understanding of the

mode-locking of the travelling velocity. For more general values of the local map parameters

and coupling, the piece-wise linear CML propagates signals with more than one site in the

interface, up to N in the case of a minimal N -state. The study of these minimal N -states

could be approached by reducing the dynamics of the whole lattice to a N -dimensional

map of the torus. For the piece-wise linear CML it is possible, in principle, to find such N -

dimensional map. In this case the N -dimensional map of the torus possesses a N -dimensional

gap that again collapses the orbits causing the generalized rotation number to be mode-locked

to rational values as the coupling parameter is varied. Although this method is impossible to

visualize in more than two dimensions it explains the mode-locking of the travelling velocity

in a very straightforward manner.
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The mode-locking phenomenon is not a particular feature of the piece-wise linear CMLs

whose associated auxiliary map possesses aN -dimensional gap. The mode-locking is shown to

appear in more general CMLs, one-way or diffusive, with smooth local maps. Inspired by the

reduction of the dynamics on the piece-wise linear CML one may try to reduce the dynamics

for the more general kinds of local maps. While the piece-wise linear map propagates signals

with few sites in the interface, generic bistable CMLs give rise to signals with an infinite

number of sites in the interface. The construction of the associated N -dimensional auxiliary

map is then unpractical. Nevertheless we show how the reduction of the interface dynamics

is possible via a delay map of a single site. This delay map plays the role of the auxiliary

map and the mode-locking should be reflected in its dynamics. Interestingly, the delay map

is a map of the circle and its rotation number gives the travelling velocity. The mode-locking

of the travelling velocity is again a consequence of the mode-locking of the rotation number

of the delay map. Although the basic mechanism for the mode-locking is the same as for

the piece-wise linear CML there is one important subtlety. While the mode-locking in the

piece-wise linear CML is built on the collapse of orbits induced by the gap of the auxiliary

map, the mode-locking for a generic CML relies on the mode-locking of the rotation number

through a purely nonlinear effect. The nonlinearity of the local map of a generic CML is

inherited by the delay map and causes the rotation number to be mode-locked to rational

values in a manner akin to rational mode-locking for circle maps. Therefore the mode-locking

is more the rule rather than the exception in signal propagation through bistable CMLs.

The occurrence of velocity mode-locking in CMLs has not been reported in the literature

before because generic CMLs could present the mode-locking at a microscopic scale and

therefore not visible for the naked eye. In this work we relate the size of the mode-locking

plateaus to the number of sites in the interface. The results show how the mode-locking

tends to be diminished as the number of sites in the interface is increased. This effect is

understood by considering the available dynamic space for each site in the interface: as the

number of sites in the interface is increased, the available space for each site is reduced and

therefore any nonlinear effect is diminished. The number of sites in the interface depends on

the chosen local map, although it is possible to turn around the problem towards the range of

the coupling of the CML. By coupling a larger number of neighbours it is possible to increase

the number of sites in the interface and by those means abate the nonlinear mode-locking.

When coupling a large number of neighbouring sites one is approaching the continuum

limit. In the limit, when the separation between sites tends to zero, it is possible to consider

the discrete space signal as an approximation of the continuous case. The continuous analogue

of these CMLs would be a particular class of partial differential equations (PDE). If one tries

to solve numerically this class of PDEs one has to rely on discrete methods, such as the finite

difference methods [14, 65]. Such methods are based on a space-time discretization, the result

is a collection of sites, in one or more dimensions, coupled together via a deterministic formula

resembling the structure of a CML. Thus when numerically solving this class of PDEs one

is really iterating a discrete system and finding an approximate solution for the propagating

front. Recall that the mode-locking of the travelling velocity in CMLs is a nonlinear effect

strictly generated by the discrete nature of the space-time. Therefore one has to be careful

when numerically solving PDEs since we are discretizing the space and one could introduce

some spurious mode-locking of the travelling wave front, although the effect is expected not

to be observed at macroscopic levels unless the discretization is too coarse. Nonetheless,

as observed in the numerical experiments showed in section 5.3, the mode-locking tends to

disappear as we approach the continuum limit.
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The mode-locking occurrence in CMLs provides structural stability of the travelling ve-

locity. It may be very important in systems under the influence of external noise to be able

to rely on a specific travelling velocity. The mode-locking enables the travelling velocity

to remain mode-locked, i.e. constant, under the presence of external noise. The amount of

external noise to be applied in order to displace the travelling velocity out from a mode-

locked plateau depends on the size of the latter. The more structurally stable cases for a

particular choice of local map and coupling are the plateaus corresponding to the principal

mode-locking ratios given by Farey series of low order. On the other hand, if we think of the

mode-locking mechanism as a spurious effect one could try, on top of changing the local map

and increasing the range of the coupling, to take values of the coupling parameter such that

the resulting travelling velocity is near an irrational. In doing so we are choosing a velocity

whose approximation by a rational gives a large denominator and thus it corresponds to a

microscopic plateau.

We expect this kind of velocity mode-locking to occur in a widespread range of nonlinear

coupled systems. Coupling together different subsystems could give rise to an information

propagation through the whole system. From the work presented here one could expect

mode-locking of the mean information velocity propagation to happen with respect to some

of the coupling parameters. This could be helpful in trying to understand existing mode-

locking behaviour of coupled systems as well as to design new coupled systems with structural

stability of the information propagation velocity under the influence of external noise.
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