next up previous
Next: Discretization: Fixed Domain with Up: Adaptive Moving Mesh Solution Previous: Adaptive Moving Mesh Solution

Introduction

We consider the Nagumo reaction-diffusion equation
\begin{align*}\text{PDE} & \quad & \frac{\partial u}{\partial t} & =
\frac{\part...
...arepsilon \sech (\beta x), & \quad &-\infty < x < \infty, \nonumber
\end{align*}
The initial condition parameter $\varepsilon=0.01$ is chosen to give a small globalized perturbation to the unstable steady state solution u=0.For any $\beta \le \beta_0 = 2/3$, the initial condition will evolve into a monostable travelling wave solution, i.e., we have

\begin{displaymath}\lim_{t \rightarrow \infty} \lvert u(x,t) - \overline{u}(x-ct-\phi) \vert = 0,
\end{displaymath}

with

\begin{displaymath}c = \beta + \frac{4}{9}\frac{1}{\beta}
\end{displaymath}

the monostable wavespeed relationship between the constant travelling wave velocity c and the initial condition parameter $\beta$.

If we set $\beta = \beta_0$ then we will observe evolution to a wave of minimum wavespeed

\begin{displaymath}c_0 = \min_{\beta} \biggl\{ \beta + \frac{4}{9}\frac{1}{\beta}\biggr\} = \frac{4}{3}
\end{displaymath}

Any travelling wave solution takes the form $\overline{u}(z)=\overline{u}(x-ct).$For the Nagumo PDE it follows that $\overline{u}(z)$ must satisfy the ordinary differential equation

\begin{displaymath}\frac{d\overline{u}}{dz^2} + c \frac{d\overline{u}}{dz} +
\frac{4}{9} \overline{u}(1-\overline{u})(1+2\overline{u}) =0
\end{displaymath}

is satisfied. For $c=c_0 = \frac{4}{3}$ we have the exact travelling wave solution

\begin{displaymath}\overline{u}(z) = \frac{1}{1+e^{\beta_0 z}} = \frac{1}{1+e^{\frac{2}{3} z}}.
\end{displaymath}

Now the initial condition and this minimum speed travelling wave have the same asymptotic behaviour as $x \rightarrow \infty$, i.e.,

\begin{displaymath}u(x,0) \sim e^{-\beta x} \qquad \text{and}
\qquad
\overline{u}(x) \sim e^{-\beta x} \qquad
\text{as } x \rightarrow \infty,
\end{displaymath}

This is sufficient to ensure that the IC will evolve to the exact travelling wave solution under time integration. That is,

\begin{displaymath}\lim_{t \rightarrow \infty}
\biggl\lvert u(x,t) - \frac{1}{1+Ke^{\frac{2}{3}(x-4/3t)}}
\biggr \vert = 0,
\end{displaymath}

when $\beta=2/3$.


next up previous
Next: Discretization: Fixed Domain with Up: Adaptive Moving Mesh Solution Previous: Adaptive Moving Mesh Solution
Michael Lunney
2000-08-04