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a b s t r a c t

Wedescribe and test an easy-to-implement two-step high-order compact (2SHOC) scheme
for the Laplacian operator and its implementation into an explicit finite-difference scheme
for simulating the nonlinear Schrödinger equation (NLSE). Our method relies on a compact
‘double-differencing’ which is shown to be computationally equivalent to standard fourth-
order non-compact schemes. Through numerical simulations of the NLSE using fourth-
order Runge–Kutta, we confirm that our scheme shows the desired fourth-order accuracy.
A computation and storage requirement comparison is made between the 2SHOC scheme
and the non-compact equivalent scheme for both the Laplacian operator alone, as well
as when implemented in the NLSE simulations. Stability bounds are also shown in order
to get maximum efficiency out of the method. We conclude that the modest increase in
storage and computation of the 2SHOC schemes is well worth the advantages of having
the schemes compact, and their ease of implementation makes their use very useful for
practical implementations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation (NLSE) is a universal model describing the evolution and propagation of complex
field envelopes in nonlinear dispersive media. As such, it is used to describe many physical systems including the evolution
of water waves, nonlinear optics, thermodynamic pulses, nonlinear waves in fluid dynamics, and waves in semiconductors
[1–3]. The general form of the NLSE can be written as

i
∂Ψ

∂t
+ a∇2Ψ − V (r)Ψ + s|Ψ |

2Ψ = 0, (1)

where Ψ (r, t) ∈ C is the value of the wavefunction, ∇2 is the Laplacian operator, and a > 0 and s are parameters defined
by the system being modeled. V (r) is an external potential term, which when included, makes Eq. (1) known as the Gross–
Pitaevskii equation [4].
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The nonlinearity in the NLSE allows the prediction and description of important, and experimentally relevant, nonlinear
effects and nonlinear waves, such as solitons and vortices [4]. In the context of nonlinear optics, this nonlinearity emerges
from the nonlinear response of the optical medium. The cubic-type nonlinearity in this context is the so-called Kerr
nonlinearity of the medium [5,6]. Another context where the NLSE serves as a prototypical model is in the realm of
Bose–Einstein condensates (BECs) [4]. In this context, the nonlinearity takes into account the mean-field interaction of the
atoms in the condensate. The sign of the nonlinearity in the NLSE (i.e., the sign of s) defines the type of interactions. For
example, in the nonlinear optics application a self-focusing (self-defocusing) medium corresponds to s > 0 (s < 0), while
in the BEC context, attractive (repulsive) interatomic interactions correspond to s > 0 (s < 0). In the case of self-focusing or
attracting nonlinearity the prototypical (nonlinear) solutions of the NLSE are in the form of bright solitons in one dimension,
while in two or three dimensions bright vortices and vortex rings do exist but are typically unstable. On the other hand, the
case of self-defocusing or repulsive nonlinearity bears dark (nonlinear) solutions that in one dimension take the shape of dark
or gray solitons which in two and three dimensions correspond to, typically stable, (dark) vortices and rings, respectively.

For almost every nonlinear partial differential equation (PDE) (including the NLSE), the interesting solutions require
simulations using numerical methods. A standard methodology includes discretizing the solution in space by using finite-
difference approximation schemes for the required derivatives. A high-order scheme is one which exhibits greater than
second-order (O(h2), where h is the grid spacing) accuracy. While there are a large number of scenarios where higher-order
schemes are a necessity due to the desired accuracy of the simulations, often the higher accuracy of high-order schemes is
unnecessary, and second-order accuracy is sufficient for the problem. However, in such a case, using high-order schemes
is still desirable because they allow one to simulate a solution with many fewer grid points, while maintaining the same
accuracy as a second-order scheme. In those situations, the desired grid point size is based on the ability to resolve the
structure of the solution, and not on the accuracy of computation.

Higher-order finite-difference schemes are typically achieved by computing derivatives with a wider scheme stencil.
This adds a difficulty near the boundary, as one must be able to calculate the inner point near the boundary with the
same accuracy as the internal scheme which can be complicated to implement. If this is not done, the entire simulation can
eventually become lower-order. Another disadvantage of wide-stencils is that they cause many parallel implementations
to bemore difficult to realize, as different compute nodes must share or transfer more boundary values to their neighboring
nodes. Besides the added complexity of the codes, the extra communication/global-memory-access (in the case of graphical
processing units) reduces the overall parallel performance [7].

For the aforementioned reasons, there is great interest in high-order compact (HOC) schemes. These are finite-difference
schemes which exhibit higher-order accuracy but still only rely on the closest neighboring points for computations.
HOC schemes have been developed for various multidimensional steady-state PDEs including the convection–diffusion
equation [8], Poisson’s equation [9], the stream-function vorticity form of the Navier–Stokes equations [10], as well as
generalized linear elliptical PDEs with variable coefficients [11] to name a few. Many HOC implementations of time-
dependent PDEshave also been formulated includingBurger’s equation [12], thewave equation [13], the Euler equations [14]
and the time-dependent convection–diffusion equation [15,16] as well as others. Time-dependent HOC schemes have also
been developed for the one- and two-dimensional linear [17,18] and one-dimensional nonlinear Schrödinger equations
[19,20]. One drawback of HOC schemes are that their formulations are typically specific for the model equation
being used, and requires re-deriving the schemes for each different PDE to be simulated (see Ref. [11], where the
authors developed a Maple program to symbolically generate a HOC scheme for three-dimensional linear elliptical
models).

The time-dependent HOC schemes developed so far are all implicit (even if the time-stepping is done with an otherwise
explicit scheme), requiring solving a linear system in each time-step, as well as iterative processes when simulating
nonlinear PDEs such as the NLSE (see however Ref. [19] where the author’s second implicit scheme implementation was
able to be formulated to get around this requirement). The computational and storage requirements for implicit schemes
can be prohibitive in large multidimensional settings. They are also, in general, difficult to optimally parallelize, especially
in higher dimensions.

For these reasons, we wish to develop HOC formulations that are fully explicit time-dependent schemes (in our case,
for the NLSE). To do this, we formulate a two-step procedure in computing the spatial derivatives, where each individual
step is a compact computation. The first step of the 2SHOC scheme computes the standard second-order finite-difference
approximation to the derivatives of the Laplacian, while the second step uses these computed derivative values to compactly
approximate the Laplacian to fourth-order accuracy. Since the 2SHOC scheme computes the Laplacian independent of the
governing PDE, it can be used in a multitude of time-dependent and time-independent PDEs which contain the Laplacian
operator, increasing its generality. An explicit 2SHOC scheme for the NLSE can be formed by utilizing standard explicit
ordinary differential equation (ODE) solvers. For the scheme described in this paper, we use the classic fourth-order
Runge–Kutta (RK4) [21].

The paper is organized as follows. In Section 2 we show the formulation of the 2SHOC scheme for the Laplacian operator
in one, two and three dimensions. Then, in Section 3, we use the scheme to form an explicit method for simulating the NLSE.
In Section 4,we shownumerical tests of each scheme fromSection 3 and confirm their accuracy. In Section 5we compare the
storage and computation requirements for the 2SHOC schemes versus the standard fourth-order non-compact equivalent
schemes. We conclude in Section 6.
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2. Formulation of 2SHOC schemes for the Laplacian operator

It is well known that one can derive a fourth-order accurate finite-difference scheme for the second spatial derivative of
a function by applying a ‘double-differencing’ approach. This works by noting that the first truncation term in the standard
central-difference scheme contains the fourth spatial derivative. A second-order approximation to the fourth derivative can
be obtained by applying a central-difference operator to the result of applying a central-difference operator to the function.
Whenmultiplied by the h2 (where h is the spatial step-size of the computational grid) in the truncation term, the error in the
truncation term becomes O(h4), and therefore, the resulting scheme becomes a fourth-order accurate approximation to the
second derivative. When these two steps are algebraically combined and simplified, one yields the standard non-compact
fourth-order stencil. Due to the increase in the number of computations and storage, the ‘double-differencing’ procedure is
not actually implemented, rather, the resulting non-compact stencil is used directly.

However, when the advantages of using a compact scheme are considered, the numerical implementation of the ‘double-
differencing’ procedure becomes an overlooked, viable alternative to other more complicated HOC schemes. In time-
dependent systems, the sequential nature of the ‘double-differencing’ procedure makes it best suited for use with explicit
time-stepping schemes. This may be a reason why this simple compact solution has been overlooked, as many high-order
numerical schemes for time-dependent PDEs are typically implicit.

2.1. One-dimensional formulation

Although the methodology for the 2SHOC scheme is to use the ‘double-differencing’ approach, it is nevertheless
worthwhile to show that the scheme can also be formed as a result of attempting to make other time-dependent HOC
scheme formulations explicit. In Ref. [15], the authors formulate an implicit time-dependent HOC scheme for the transient
convection–diffusion equation based on their method from Ref. [9]. We can obtain a compact high-order scheme for the
time-dependent NLSE following the same methodology, and with a modification, can transform it into an explicit scheme
which is equivalent to using the 2SHOC scheme for the Laplacian operator in the NLSE.

In one dimension, we discretize the wavefunction of the NLSE as Ψ (xi, tn) ≡ Ψ n
i with a grid spacing of size h (xi =

xmin + hi) and a time-step of size k (tn = kn). The Laplacian operator applied to Ψ in one dimension can be represented as

∇
2Ψi =

∂2Ψ

∂x2


i
= δ2

xΨi −
h2

12


∂4Ψ

∂x4


i


+ O(h4), (2)

where the central-difference operator δ2
x is defined as

δ2
x Ψi =

1
h2

(Ψi+1 − 2Ψi + Ψi−1). (3)

As per the technique of Ref. [15], to formulate a high-order compact scheme, the NLSE of Eq. (1) is differentiated in space
twice in order to form an expression for the fourth derivative in Eq. (2) which yields

∂4Ψ

∂x4


i
= −

1
a
δ2
x


i
∂Ψ

∂t


i
+

s|Ψi|

2
− V (xi)


Ψi


+ O(h2). (4)

Due to the h2 in the truncation term of Eq. (2), when Eq. (4) is inserted into Eq. (2), the resulting approximation of the
Laplacian becomes O(h4). Inserting Eqs. (2) and (4) into Eq. (1) yields the fourth-order in space semi-discrete HOC scheme

∂Ψ

∂t


i
= i


a


δ2
x Ψi +

h2

a 12
δ2
x


i
∂Ψ

∂t


i
+

s |Ψi|

2
− V (xi)


Ψi


i


+

s |Ψi|

2
− V (xi)


Ψi


. (5)

Due to the central-difference operator operating on the temporal derivative ∂Ψ /∂t , the resulting scheme of Eq. (5) will be
implicit even if the time-stepping is chosen to be otherwise explicit (for example, forward differencing).

In order to retain a fully explicit scheme, a two-step approach is used. First, an approximation of ∂Ψi/∂t is made and then
is inserted into Eq. (5). The approximation of ∂Ψi/∂t must be O(h2) for the scheme to retain its fourth-order accuracy. The
most straight-forward way to make such an approximation is to apply a standard second-order central differencing to the
NLSE yielding

Ti =
∂Ψ

∂t


i
+ O(h2) = i


aδ2

x Ψi +

s |Ψi|

2
− V (xi)


Ψi

. (6)

Once computed, Ti is inserted into Eq. (5), and the central difference operator can then be applied to Ti as

δ2
x Ti =

Ti+1 − 2 Ti + Ti−1

h2
.



36 R.M. Caplan, R. Carretero-González / Journal of Computational and Applied Mathematics 251 (2013) 33–46

It is important that the boundary conditions for Eq. (6) be computed to at least O(h2) accuracy since the boundary points
will be used for interior calculations of the spatial derivative of Eq. (5) (see Section 3.2 for details on boundary conditions
for the 2SHOC schemes). Inserting Eq. (6) into Eq. (5) yields the semi-discrete equation

∂Ψ

∂t


i
= i


a


δ2
x Ψi +

h2

a 12
δ2
x


i Ti +


s |Ψi|

2
− V (xi)


Ψi

i


+

s |Ψi|

2
− V (xi)


Ψi


+ O(h4). (7)

Any desired explicit ODE solver (that is stable for the problem with its parameters) can then be used to integrate Eq. (7).
Algebraically combining the two stages of Eqs. (6) and (7) together yields

∂Ψ

∂t


i
= i


a


δ2
x Ψi −

h2

12
δ2
x (δ

2
xΨi)


+

s |Ψi|

2
− V (xi)


Ψi


+ O(h4), (8)

and therefore the two-stage HOC scheme described in Eqs. (6) and (7) is computationally equivalent to simply taking the
central-difference of the central-difference to approximate the fourth derivative truncation term in the Laplacian. Therefore,
we have recovered the 2SHOC scheme approach for approximating the Laplacian which does not depend on the other terms
of the governing equation. Therefore the 2SHOC is a stand-alone scheme for the Laplacian operator which can be used in
multiple governing equations.

After collecting terms and simplifying the 2SHOC ‘double-differencing’, the resulting two-step scheme for the one-
dimensional Laplacian is given by

(1) Di =
1
h2 (Ψi+1 − 2Ψi + Ψi−1) , (9)

(2) ∇
2Ψi ≈

7
6
Di −

1
12

(Di+1 + Di−1) . (10)

When the two steps of Eqs. (9) and (10) are combined algebraically and simplified, the standard five-point non-compact
fourth-order finite-difference approximation is recovered:

∇
2Ψi =

∂2Ψ

∂x2


i
=

−Ψi+2 + 16Ψi+1 − 30Ψi + 16Ψi−1 − Ψi−2

12h2
+ O(h4).

A potential drawback in using the 2SHOC scheme is that it requires extra storage space (the D array) and more
computations thanusing the standard fourth-order five-point stencil. However, aswill be discussed in Section 5, the compact
scheme’s advantages can outweigh this deficiency.

2.2. Two-dimensional formulation

In two dimensions, the Laplacian operator applied to Ψ at grid location (i, j) can be represented as

∇
2Ψi,j =

1
h2

1
1 -4 1

1
Ψi,j −

h2

12


∂4Ψ

∂x4


i,j

+
∂4Ψ

∂y4


i,j


+ O(h4). (11)

Unlike the one-dimensional case, there are additional compact grid points which are not being used in Eq. (11) (the four
corner points). It is known that these points can be added to make a more accurate nine-point Laplacian operator given
as [22]

∇
2Ψi,j =

1
6 h2

1 4 1
4 -20 4
1 4 1

Ψi,j + O(h2). (12)

However, the nine-point Laplacian of Eq. (12), while more accurate, is still second-order. In fact, it can easily be shown
that there cannot exist a fourth-order nine-point Laplacian operator [23] (this fact should not be confused with the well-
known fourth-order nine-point scheme for the Laplace and Poisson equations [24]). Even though the nine-point Laplacian
of Eq. (12) is a more accurate second-order approximation, in order to minimize the amount of computation needed for the
2SHOC scheme, we will only utilize the standard five-point Laplacian of Eq. (11) for the required second-order derivatives.
Once again, ‘double-differencing’ is used to obtain a second-order accurate approximation for the truncation term’s fourth
derivatives. However, in this case, the result yields two variations of the 2SHOC scheme.

The first is a direct parallel to the one-dimensional 2SHOC scheme inwhich the second derivative in the x and y directions
are approximated with second-order central-differencing. These are then used to form second-order approximations to the
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fourth derivatives in the truncation terms in Eq. (11). After simplification, this results in the 2SHOC scheme

(1) Dx
i,j = δ2

xΨi,j =
Ψi+1,j − 2Ψi,j + Ψi−1,j

h2
, (13)

Dy
i,j = δ2

yΨi,j =
Ψi,j+1 − 2Ψi,j + Ψi,j−1

h2
,

(2) ∇
2Ψi,j ≈

7
6


Dx
i,j + Dy

i,j


−

1
12


Dx
i+1,j + Dx

i−1,j + Dy
i,j+1 + Dy

i,j−1


. (14)

The 2SHOC scheme as described in Eqs. (13) and (14) require two storage arrays (Dx and Dy) in addition to that for Ψ . In
large-scale computations, memory use can be a major bottleneck and so it is useful to limit the amount of extra storage
required as much as possible. We find that the two-dimensional 2SHOC scheme can be re-formulated to only require one
extra storage matrix, at the cost of requiring more computations (a trade-off that is evaluated in Section 5).

To formulate the lower-storage version of the two-dimensional 2SHOC, the standard five-point second-order finite-
difference approximation to the two-dimensional Laplacian is used for the first stage (stored in D), and then the result
is combined with a second-order cross-derivative stencil to yield the second-order approximations to the fourth derivative
truncation terms in Eq. (11). First, we note that

∇
2 

∇
2Ψ


=
∂2

∂x2
∇

2Ψ +
∂2

∂y2
∇

2Ψ =
∂4Ψ

∂x4
+

∂4Ψ

∂y4
+ 2

∂4Ψ

∂x2 ∂y2
,

in which case the fourth derivative truncation terms in Eq. (11) can be written as

∂4Ψ

∂x4
+

∂4Ψ

∂y4
=

∂2

∂x2
∇

2Ψ +
∂2

∂y2
∇

2Ψ − 2
∂4Ψ

∂x2 ∂y2
. (15)

The cross-derivative in Eq. (15) is known to have the nine-point second-order compact stencil [25]

∂4Ψ

∂x2 ∂y2


i,j

=
1
h4

1 -2 1
-2 4 -2
1 -2 1

Ψi,j + O(h2). (16)

Part of the stencil of Eq. (16) can be written in terms of the five-point second-order approximation to the Laplacian stored
in D, in which case the single-storage 2SHOC scheme (after simplification) is given as

1) Di,j = δ2
xΨi,j + δ2

yΨi,j =
1
h2

1
1 -4 1

1
Ψi,j (17)

2) ∇
2Ψi,j ≈ −

1
12

1
1 -12 1

1
Di,j +

1
6 h2

1 1
-4

1 1
Ψi,j. (18)

As in the one-dimensional case, both formulations of the 2SHOC schemes in two dimensions are computationally
equivalent to the non-compact fourth-order stencil

∇
2Ψi,j = −

1
12 h2

1
-16

1 -16 60 -16 1
-16
1

Ψi,j + O(h4). (19)

2.3. Three-dimensional formulation

In three dimensions, the Laplacian operator applied to Ψ can be represented as

∇
2Ψi,j,k =

∂2Ψ

∂x2


i,j,k

+
∂2Ψ

∂y2


i,j,k

+
∂2Ψ

∂z2


i,j,k

= δ2
xΨi,j,k + δ2

yΨi,j,k + δ2
z Ψi,j,k −

h2

12


∂4Ψ

∂x4


i,j,k

+
∂4Ψ

∂y4


i,j,k

+
∂4Ψ

∂y4


i,j,k


+ O(h4). (20)
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There are again two formulations of the 2SHOC schemewhich trade off storage requirement versus number of computations.
The first formulation takes three storage matrices (Dx,Dy,Dz), while, as in the two-dimensional case, the other formulation
takes only one (D). The three-storage 2SHOC directly follows from the two-dimensional version and is defined as

(1) Dx
i,j,k = δ2

xΨi,j,k =
Ψi+1,j,k − 2Ψi,j,k + Ψi−1,j,k

h2
(21)

Dy
i,j,k = δ2

yΨi,j,k =
Ψi,j+1,k − 2Ψi,j,k + Ψi,j−1,k

h2

Dz
i,j,k = δ2

z Ψi,j,k =
Ψi,j,k+1 − 2Ψi,j,k + Ψi,j,k−1

h2

(2) ∇
2Ψi,j,k ≈

7
6


Dx
i,j,k + Dy

i,j,k + Dz
i,j,k


−

1
12


Dx
i+1,j,k + Dx

i−1,j,k + Dy
i,j+1,k + Dy

i,j−1,k + Dz
i,j,k+1 + Dz

i,j,k−1


. (22)

The single storage formulation requires the use of the cross-derivatives of ∇
2(∇2Ψ ) as before. We write the fourth

derivative truncation terms of Eq. (20) as

∂4Ψ

∂x4
+

∂4Ψ

∂y4
+

∂4Ψ

∂z4
= ∇

2 
∇

2Ψ

− 2


∂4Ψ

∂x2 ∂y2
+

∂4Ψ

∂x2 ∂z2
+

∂4Ψ

∂y2 ∂z2


, (23)

therefore the cross-derivatives in Eq. (23) can be approximated to second-order accuracy using nine-point compact stencils
in each direction which contain the same coefficients as the two-dimensional stencil of Eq. (16).

After extracting D terms out of the cross derivatives and simplifying, the single-storage 2SHOC scheme in three
dimensions becomes

(1) Di,j,k =
1
h2

 1 Ψi,j+1,k +

1
1 -6 1

1
Ψi,j,k + 1 Ψi,j−1,k

 , (24)

(2) ∇
2Ψi,j,k ≈ −

1
12

 1 Di,j+1,k +

1
1 -10 1

1
Di,j,k + 1 Di,j−1,k

 (25)

+
1

6 h2

 1
1 1

1
Ψi,j+1,k +

1 1
-12

1 1
Ψi,j,k +

1
1 1

1
Ψi,j−1,k

 .

Again, both formulations of the 2SHOC scheme in three dimensions are computationally equivalent to the standard non-
compact fourth-order stencil.

3. Implementation of the 2SHOC schemes for solving the NLSE

In this section, we show the implementation of the 2SHOC schemes into explicit methods for simulating the NLSE. The
NLSE is a goodmodel for usewith the 2SHOC schemes, as it is very relevant in current research, and asmentioned in Section 1,
its nonlinear terms make the use of explicit time-stepping desirable. We emphasize however, that the NLSE is being used
as one example of implementing the 2SHOC scheme for the Laplacian, and that the 2SHOC scheme is independent of any
additional terms in the governing PDE, and can therefore be used with a multitude of models.

There exists many numerical methods for integrating the NLSE (see reviews of Refs. [26,27]) including the widely-
used split-step Fourier (SSF) method [28]. Although the SSF method can be very accurate and efficient, it is not used in
all cases since it is typically formulated to be only second-order accurate in time, can be computationally expensive in
three-dimensional settings, is somewhat difficult to parallelize (see Ref. [29]), and its required use of periodic boundary
conditions can make in unsuitable for certain problems (such as homogeneous background density solutions such as the
dark soliton example shown in Section 4). Other split-step methods which use finite-difference for the linear part of the
solve are also used (see for example, the HOC split-step method of Ref. [20]) but those scheme typically require the use
of tri-diagonal solvers for each dimension to be stable which can complicate their parallelization. Although for simplicity
and time-accuracy we use a standard finite-difference approach for time-stepping the NLSE with the 2SHOC scheme, we
note that since the 2SHOC scheme for the Laplacian is independent of the time-stepping methodology, it could also be
implemented into a split-step method for the NLSE.

3.1. Explicit time integration using Runge–Kutta

To formulate a fully explicit scheme for simulating the NLSE, a method of lines approach is utilized, where the 2SHOC
is used for the spatial Laplacian and the resulting semi-discrete system of ODEs is integrated using an explicit time-
stepping scheme. As shown in Refs. [30,31], the first-order (O(k) where k is the time-step) forward difference and the
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second-order (O(k2)) Runge–Kutta scheme (Heun’s method) for simulating the NLSE are unconditional unstable (unless,
as shown in Ref. [32], the real and imaginary parts of the NLSE are computed in staggered time steps). Therefore, for our
implementation, a higher-order Runge–Kuttamethod is required and is chosen to be the standard fourth-order Runge–Kutta
(RK4) scheme [21]. To facilitate our computational cost comparisons in Section 5, we write the RK4 scheme applied to the
NLSE algorithmically as

(1) Ktot = F(Ψ n) (6) Ktmp = F(Ψtmp) (26)

(2) Ψtmp = Ψ n
+

k
2
Ktot (7) Ktot = Ktot + 2 Ktmp

(3) Ktmp = F(Ψtmp) (8) Ψtmp = Ψ n
+ k Ktmp

(4) Ktot = Ktot + 2 Ktmp (9) Ktmp = F(Ψtmp)

(5) Ψtmp = Ψ n
+

k
2
Ktmp (10) Ψ n+1

= Ψ n
+

k
6

(Ktot + Ktmp),

where

F(Ψ ) =
∂Ψ

∂t
= i


a∇2Ψ +


s |Ψ |

2
− V (r)


Ψ

,

and ∇
2Ψ inside F(Ψ ) is computed with either a standard central differencing (CD) or the 2SHOC scheme. We denote the

combined time–space schemes as RK4+CD and RK4+2SHOC respectively.
The RK4 time-stepping requires three storagematrices (Ktmp, Ktot, Ψtmp) in addition to the storage for the solutionΨ and

external potential V (r) (if V (r) is chosen to be stored rather than computed at each evaluation). Lower-storage fourth-order
Runge–Kutta schemes with comparable accuracy have been developed (a 3N in Ref. [33], and a five-stage 2N in Ref. [34]
which requires an additional function evaluation, andwhose coefficients are numerically derived), but for simplicity we use
the classic RK4 of Eq. (26). Using the 2SHOC scheme inside F(Ψ ) requires additional storage, which we discuss in Section 5.

The RK4+2SHOC scheme is conditionally stable, in that the size of the time-step is limited by a bound based on the spatial
step h (see Section 3.3 for the stability bounds of the RK4+2SHOC scheme applied to the NLSE). Conditional stability is one
of the only drawbacks of using explicit schemes. However, even though implicit schemes are usually unconditionally stable,
error requirements and algorithm complexity often make the explicit schemes more efficient even taking the time-step
limitations into account.

3.2. Boundary conditions

The use of proper boundary conditions is very important when performing numerical simulations. The 2SHOC scheme
requires two boundary conditions, one for each step. The first step is a boundary condition on the Laplacian of the
wavefunction (or on the separate spatial derivatives if the high-storage 2SHOC is being used). The second step either requires
a boundary condition for the fourth spatial derivatives, or in many cases, the scheme for the overall model equations dictate
the boundary condition (for example, in our RK4 scheme for the NLSE, the boundary condition of the second step of the
2SHOC is not required, as the boundary condition of the time derivative of the wavefunction (Ψt ) overwrites any condition
that would be in the 2SHOC scheme).

Asmentioned in Ref. [15], it appears that in general, compact boundary conditions are not possible to realize for one-stage
HOC schemes. However, even when the use of one-sided differencing (or any other non-compact technique) is necessary,
it does not negate the boundary advantage of using HOC schemes (since the advantage is not having to alter the scheme
near the boundaries). There are some boundary condition techniques that can be seen as compact, and hence fit very well
into the framework of HOC schemes. These conditions are a Dirichlet (Ψ = const) and modulus-squared Dirichlet (MSD)
(|Ψ |

2
= const) [35] boundary conditions.

In many scenarios, one would ideally want a transparent boundary condition. However, such conditions can be
complicated to implement (see Ref. [36] for a review of different approaches). For many problems, an easy alternative is
to make the computational grid large enough so that one can reasonably use Dirichlet conditions at the boundaries. When
s > 0 (attractive or focusing nonlinearity) in the NLSE,most dynamics are of areas of densitywhich decay into a surrounding
background area of zero-density, in which case a Dirichlet boundary condition of zero is useful. In order to use the Dirichlet
boundary condition with the 2SHOC scheme, the boundary condition on the Laplacian must be computed in the first step.
This is easily found by setting Ψt = 0 in Eq. (1) yielding

∇
2Ψb = −

(s|Ψb|
2
− Vb)Ψb

a
, (27)

where b represents a boundary grid point. In the second stage of the 2SHOC, the boundary condition of Eq. (27) would also
be used for the overall Laplacian boundary. In the RK4+2SHOC method for the NLSE, the second stage boundary condition
would simply apply the Dirichlet condition directly as

∂Ψ

∂t


b
= 0. (28)
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In the case where s < 0 (repulsive or defocusing nonlinearity) and V (r) = 0 in the NLSE, most interesting dynamics are
within areas of low densities which increase towards an area with a constant background density. In such a case, one cannot
use standard Dirichlet boundary conditions since the constant boundary is in themodulus-squared of thewavefunction, not
at a single real and imaginary value. To solve this problem, we recently have developed a new modulus-squared Dirichlet
boundary condition that accurately simulates a constant density at the boundaries [35]. This boundary condition is described
as

Ψt,b ≈ i Im


Ψt,b−1

Ψb−1


Ψb, (29)

where Ψt is the temporal derivative of Ψ and b − 1 represents the closest internal point relative to a boundary grid point
in the normal direction. The standard form of the MSD boundary condition requires to first compute all interior points and
then compute the boundaries, making the general form of the MSD not compatible with implicit schemes (see Ref. [35] for
details on possible implicit scheme implementation strategies of the MSD).

The MSD boundary condition can be used for any time-dependent complex PDE and in multiple dimensions. For our
application to the NLSE, we require boundary conditions for each step of the 2SHOC scheme. For the first step, one can
substitute the NLSE in the MSD boundary condition and get an MSD condition for the Laplacian given by

∇
2Ψb ≈


Im

i
∇

2Ψb−1

Ψb−1


+

1
a

(Nb−1 − Nb)


Ψb, (30)

where

Nb = s |Ψb|
2
− Vb, Nb−1 = s |Ψb−1|

2
− Vb−1, (31)

while for the second step, the boundary condition of Eq. (29) can (in the RK4+2SHOC scheme) be used directly.
It should be noted that theMSD boundary condition cannot be directly applied to themulti-storage version of the 2SHOC

schemes because the MSD computes the boundary value of ∇
2Ψ , not the individual second spatial derivatives needed for

Eq. (13) or Eq. (21). This can be overcome by rearranging the boundary condition taking advantage of the cross derivative
stencils. However, since we will be only using the single-storage 2SHOC schemes in our examples, we do not show this
alteration to the MSD boundary condition here.

There are numerous other boundary conditions one might use for the NLSE including other compact-friendly ones such
as Laplacian-zero (∇2Ψ = 0) and periodic. However, in this paper we have limited ourselves to Dirichlet and MSD, as they
will be used in the numerical tests of Section 4.

3.3. Stability

Since the most important drawback in using explicit schemes is that they are conditionally stable, it is very important to
limit this deficiency as much as possible by computing the stability bound to determine the largest time-step that is usable.

Since the 2SHOC schemes are algebraically equivalent to the standard non-compact fourth-order schemes, the stability
bounds on the time-step should not adversely be affected by the use of the compact schemes. However, the form of the
boundary condition implementation in the 2SHOC schemes will change the way the near-boundary points are computed.
In Ref. [30] we used an extension to the methodology employed in Ref. [31] to conduct an analysis of the stability bounds
for simulating the multidimensional NLSE with RK4 for various boundary conditions including those in Section 3.2. The
analysis was done for both the standard second-order central differencing, as well as fourth-order differencing using the
2SHOC formulation. The results utilizing the two boundary conditions discussed in Section 3.2 are summarized as follows:

In the linear case where s = 0 and with no external potential (V (r) = 0), utilizing Dirichlet boundary conditions, the
stability bound on the time-step k using a fourth-order central-difference scheme (with interior points computed in the
2SHOC methodology) in a d-dimensional setting is

klinear <


3
4


h2

d
√
2 a

, (32)

which is just 3/4 of the stability bound in the second-order central differencing case.
In the general NLSE case, one can get a linearized stability bound by treating the nonlinearity |Ψ |

2 (and theMSDboundary
condition terms) as a constant, yielding

k <

√
8

max{∥B⃗∥∞, ∥∀Li, Li − G⃗∥∞}

h2

a
, (33)

where B⃗ are the boundary points as defined by Table 1, L⃗ is defined as

Li =
h2

a


s|Ψi|

2
− V (ri)


,

and G⃗ is a set of values defined in Table 2, determined by the dimension being used.
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Table 1
Values for Bb in Eq. (33).

Dirichlet (Ψb = const) MSD (|Ψb|
2

= const)

Bb 0
h2

i a
1

Ψb−1

∂Ψ

∂t


b−1

Table 2
Values for G⃗ in Eq. (33) for the one-, two-, and three-dimensional NLSEs.

d = 1 d = 2 d = 3

G⃗
1
12

× {64, 63, 46, 12, −3, −4}
1
12

×{128, 127, 126, 110, 109, 92, 24, 9, 8, −6, −7, −8}
1
12

×{192, 191, 190, 189, 174, 173, 172, 156, 155,

138, 36, 21, 20, 6, 5, 4, −9, −10, −11, −12}

As mentioned in Ref. [30], since these stability results are based on a linearized approximation to the full nonlinear
problem, in practice, one must use a time-step that is lower than the bounds given. In our experience, setting the time-step
to be 80% of the given bounds ensures stability in most cases (in one-dimensional simulations, the step size can be up to
90% of the given bounds for most cases).

4. Numerical results

Here we show our numerical results for using the RK4+2SHOC scheme to integrate the NLSE. Since the 2SHOC schemes
are algebraically equivalent to the standard fourth-order non-compact schemes, they should exhibit the same order of
accuracy as well. However, because the order of computation is altered (which could introduce numeric cancellation or
round-off errors), and the implementation of boundary conditions is different than when using wide stencils, numerical
tests of the accuracy of the 2SHOC scheme is justified.

To test the accuracy, we integrate the NLSE using non-trivial initial conditions and record the error versus the exact
solutions for various spatial step-sizes. To compute the error in the simulations, the real and imaginary parts of the
wavefunction Ψ are compared to the true solution at 100 equal-spaced intervals throughout the simulation. The averaged
L2-norm of the wavefunction error (En

= ∥Ψ n
− Ψ n

exact∥2/N, where n is the current time step and N is the total number
of grid points) is computed at each time interval. Using the averaged L2-norm error is necessary since we are using a fixed
domain and therefore the total L2-norm would be greater for smaller h due to the increase in the number of grid points.
When the simulation is completed, we define the error of the real and imaginary parts of the whole simulation as the mean
of the errors at each of the 100 intervals (E = ΣEn/K , where K = 100 is the number of time intervals). To compute the
order of error, we define the error order between two simulations with spatial steps h1 and h2 as O = ln(Eh1) − ln(Eh2). The
overall order of the scheme is determined by taking the mean of the average of the real and imaginary error orders for each
run. For comparison, we run each simulation using the classic second-order central-differencing (CD) in space as well.

We note that since the RK4 scheme is O(k4), and the stability bounds require that k ∝ h2, the errors in the simulations
attributed to the time-stepping are negligible compared to those due to the spatial differencing, and therefore should not
effect the accuracy tests.

Each numerical test utilizes the single-storage formulation of the RK4-2SHOC schemeswhere applicable and is performed
using our freely distributed3 MATLAB-interfaced GPU-accelerated code package NLSEmagic [37]. Specifically, we make use
of the ‘full research scripts’ and the double-precision GPU-accelerated 2SHOC integrators compiled from the version ‘v013’
source packages for one, two, and three dimensions. The precise configuration of the scripts used in computing the results
given in this paper can be obtained from the ‘Reproducible Figure Package’ available on the NLSEmagic website.3

4.1. One-dimensional test

For the one-dimensional test of the RK4+2SHOC scheme, we use a known dynamical solution to the one-dimensional
NLSE (with V (r) = 0 and s < 0) of a co-moving dark soliton given by [4]

Ψ (x, t) =


Ω

s
tanh


|Ω|

2 a
(x − c t)


exp


i


c
2 a

x +


Ω −

c2

4 a


t


, (34)

where Ω is the frequency and c is the velocity of the soliton. We use the modulus-squared Dirichlet boundary condition
(|Ψ |

2
= constant) of Eqs. (29) and (30) and set the size of the computational domain large enough so that thewavefunction’s

3 http://www.nlsemagic.com.

http://www.nlsemagic.com
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Fig. 1. (Color online) Top left: overall order of accuracy (m) computed from simulating the one-dimensional NLSE with the initial condition of Eq. (34) for
the RK4+CD and RK4+2SHOC schemes. Top right: snap-shot of the simulation with h = 1/32. The solid (black) line is the modulus-squared |Ψ |

2 , while
the dot-dashed (blue) and dashed (red) lines are the real and imaginary parts of Ψ respectively. Bottom: table of error values and order of accuracy values
for each spatial step h. The parameters used for the solution are s = −1, a = 1, c = 0.5, and Ω = −1. The solution is integrated to an end-time of t = 10
with a time-step size of k = 0.0005.

density is machine epsilon (ϵ ≈ 10−16) lower than the background density at the boundaries throughout the entire time
of the simulation. We set s = −1, a = 1, c = 0.5, and Ω = −1 in Eq. (34). The grid spatial-step h is varied from 1/2 to
1/32. We run the simulation to an end-time of t = 10 with a time-step size of k = 0.0005 (which is slightly less than the
maximum stability bound for the smallest value of h used) resulting in 20,000 time steps.

The results of the simulations are shown in Fig. 1, where the fourth-order accuracy of the RK4+2SHOC scheme is easily
observed.

4.2. Two-dimensional test

There is no readily available, non-trivial, exact two-dimensional solution to the NLSE to use for order comparisons.
However, since the RK4+2SHOC scheme is explicit (and therefore does not require any special handling of the nonlinearity
such as iterative methods), the accuracy of the scheme can be tested reliably in a linear setting (where s = 0). The chosen
test problem is the Gaussian wavepacket solution

Ψ (x, y, t) = exp


−
x2 + y2

2 a


exp(−i 2 t), (35)

where V (x, y) is the external potential

V (x, y) =
x2 + y2

a
. (36)

We use Dirichlet boundary conditions (Ψ = 0) and set a = 1. We set the size of the computational domain large enough
so that the exact solution has a value of Ψb =

√
ϵ (where ϵ ≈ 10−16) at the boundaries. The simulation time and number

of intervals for error computations are the same as in the one-dimensional test in Section 4.1. We vary h from h = 1 to
h = 1/16 and use a time-step of k = 0.001 resulting in 10,000 time steps. The results are shown in Fig. 2. Like in the
one-dimensional case, the fourth-order accuracy of the RK4+2SHOC scheme is observed.
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Fig. 2. (Color online) Top left: overall order of accuracy (m) computed from simulating the two-dimensional linear Schrödinger equation with the initial
condition of Eq. (35) for the RK4+CD and RK4+2SHOC schemes. Top right: depiction of the modulus-squared |Ψ |

2 of the wavefunction with h = 1/16 at
t = 0. Bottom: table of error values and order of accuracy values for each spatial step h. The parameters used for the solution are s = 0, and a = 1. The
solution is integrated to an end time of t = 10 with a time-step size of k = 0.001.

4.3. Three-dimensional test

As in the two-dimensional case, there is no readily available non-trivial exact solution to test the three-dimensional NLSE.
Therefore, we again use a linear example choosing the three-dimensional analog of Eq. (35) defined as

Ψ (x, y, t) = exp


−
x2 + y2 + z2

2 a


exp(−i 3 t), (37)

with external potential

V (x, y) =
x2 + y2 + z2

a
. (38)

As before, Dirichlet boundary conditions (Ψ = 0) are used and a is set to 1. The size of the computational domain is once
again set to be large enough so that the exact solution has a value of Ψb =

√
ϵ at the boundaries. The simulation time and

number of intervals for error computations are the same as in the one-dimensional test in Section 4.1. The step-size is varied
from h = 1 to h = 1/16 and a time-step of k = 0.0005 is used resulting in 20,000 time steps. The results are shown in
Fig. 3, where once again the fourth-order accuracy of the scheme is clearly seen. The average order of accuracy given in Fig. 3
is 3.91 which is slightly smaller than expected for the fourth-order scheme. However as seen in the corresponding table,
the order of accuracy starts at around 3.8 for the first spatial step-size reduction, while in the smaller reductions, the order
increases to around 3.98. This means that the slightly lower-order values are most likely due to the inability of the coarse
grid to adequately resolve the solution, and not on the scheme itself. Lower values of hwere not used due to computational
memory constraints.

From the table in Fig. 3, it is easy to illustrate the advantage of using high-order schemes for large three-dimensional
problems mentioned in the beginning of this chapter—that of being able to use a much smaller grid while maintaining
the desired accuracy. For example, in Fig. 3, using the second-order scheme for h = 1/8 (making the grid resolution
97 × 97 × 97 = 912, 673 grid points) yielded an error of around 0.0005. Roughly the same error (0.0006) was found
using the fourth-order scheme with a spatial-step size of h = 1/2, requiring the grid size of only 25 × 25 × 25 = 15, 625
grid points. This is a 98.3% reduction in the number of grid points required!When combined with the ease of parallelization
that the 2SHOC compact scheme provides, its usefulness for large three-dimensional problems is apparent.
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Fig. 3. (Color online) Top left: overall order of accuracy (m) computed from simulating the three-dimensional linear Schrödinger equation with the initial
condition of Eq. (37) for the RK4+CD and RK4+2SHOC schemes. Top right: volumetric rendering of the modulus-squared |Ψ |

2 of the wavefunction with
h = 1/16 at t = 0 (displayed on a smaller grid than used in the simulations). Bottom: table of error values and order of accuracy values for each spatial
step h. The parameters used for the solution are s = 0, and a = 1. The solution is integrated to an end time of t = 10 with a time-step size of k = 0.0005.

Table 3
One-dimensional storage and computational cost analysis for the 2SHOC scheme compared to the
equivalent non-compact scheme. The storage is given in terms of N , the total number of grid points.

Method Operations Storage Op ratio Storage ratio
Laplacian:

Non-compact 7 N – –
2SHOC 8 2N 1.14 2
NLSE RK4 step:

Non-compact 4 (7 + 7) + 13 = 69 5N – –
2SHOC 4 (8 + 7) + 13 = 73 6N 1.06 1.2

5. Computation and storage comparisons

In this sectionwe compare the storage and computational requirements of the 2SHOC schemes compared to the standard
fourth-order non-compact equivalent schemes for one, two and three dimensions. We count the number of operations (in
terms of the number of elements in the domain, N) needed for eachmethod ignoring the boundaries. For simplicity, we also
ignore the added operations needed due to Ψ being complex, and treat all operations as acting on real variables. Also, since
floating-point division operations are far more computationally expensive than additions and multiplications, we record
the operations required in an optimized form of the schemes, in which all divisions are only computed once (and hence
ignored) by pre-computing the constant terms. We record the number of computations and storage space required for the
Laplacian operator alone using the 2SHOC, as well as when implemented into the NLSE simulations using the RK4+2SHOC
schemes.

The one-dimensional analysis is shown in Table 3. We see that for the RK4+2SHOC NLSE implementation, the scheme
only requires about 6% more computations and 20% more storage than the equivalent non-compact scheme. This small
increase in storage and computations is minor compared to the advantages of having a compact scheme.

The two-dimensional analysis is given in Table 4. Both the double-storage version of the 2SHOC of Eqs. (13) and (14) and
the single-storage version of Eqs. (17) and (18) are analyzed. Here, using the 2SHOC scheme is a greater increase in additional
computations, taking 50% more (for the 1X storage version) than the non-compact scheme in the RK4 step of the NLSE. The
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Table 4
Two-dimensional storage and computational cost analysis for 2SHOC schemes compared to equivalent
non-compact schemes. The storage is given in terms of N , the total number of grid points.

Method Operations Storage Op ratio Storage ratio
Laplacian:

Non-compact 9 N – –
2SHOC (2X storage) 15 3N 1.66 3
2SHOC (1X storage) 19 2N 2.11 2
NLSE RK4 step:

Non-compact 4 (9 + 7) + 13 = 77 5N – –
2SHOC (2X storage) 4 (15 + 7) + 13 = 101 7N 1.31 1.4
2SHOC (1X storage) 4 (19 + 7) + 13 = 117 6N 1.52 1.2

Table 5
Three-dimensional storage and computational cost analysis for 2SHOC schemes compared to
equivalent non-compact schemes. The storage is given in terms of N , the total number of grid points.

Method Operations Storage Op ratio Storage ratio
Laplacian:

Non-compact 14 N – –
2SHOC (3X storage) 22 4N 1.57 4
2SHOC (1X storage) 31 2N 2.21 2
NLSE RK4 step:

Non-compact 4 (14 + 7) + 13 = 97 5N – –
2SHOC (3X storage) 4 (22 + 7) + 13 = 129 8N 1.33 1.6
2SHOC (1X storage) 4 (31 + 7) + 13 = 165 6N 1.70 1.2

two-storage version of 2SHOC reduces this to about 30%, but with a 20% increase in the storage required when compared to
the single-storage 2SHOC (which like the one-dimensional case is only 20% more than the non-compact scheme).

The three-dimensional analysis is given in Table 5. Here we see that the single-storage 2SHOC scheme in the RK4 step for
the NLSE takes 70% more computations than the non-compact scheme, and for the Laplacian operator alone, takes a little
more than twice the computations required for the non-compact scheme. The 1X-storage 2SHOC scheme for the Laplacian
only takes 57%more computations but also uses four times the storage. Since themain advantage of using a compact scheme
is that it is easy to implement in a parallel environment and to realize near the boundaries, the increase in computation
is easily offset by the parallelism (as most parallel implementations have speed-ups of well over two). In addition, often
times, the number of computations an algorithm takes is not nearly as important as thememory bandwidth used. Therefore,
using less memory but more computations may actually perform better than using less computations and more memory.
Also, since memory capacity can be limited in certain computational environments such as GPUs, using the single-storage
2SHOC schemes allow for larger problem sizes (it is for this reason that the single-storage 2SHOC schemes were chosen for
implementation in the NLSEmagic GPU code package [37] mentioned in the beginning of the previous section).

6. Conclusion

We have formulated two-step high-order compact (2SHOC) finite-difference schemes for the Laplacian operator in one,
two, and three dimensions. Two forms of themultidimensional 2SHOC schemeswere formulated, one requiring less storage
andmore computation than the other.When implementing the schemes in partial differential equationmodels, the schemes
do not rely on other parts of the governing equation, and are therefore more general than other HOC schemes.

The schemes are well-suited for use in explicit finite-difference schemes for time-dependent problems. As an example,
we have shown the implementation of the 2SHOC schemes into explicit schemes for solving the nonlinear Schrödinger
equation and, through numerical simulations, have shown that the schemes display the desired accuracy.

A computation and storage analysis revealed that the 2SHOC schemes take more storage and computations (never
more than roughly double) than their non-compact equivalent schemes, but that these increases are well offset due to
the advantages of using a compact scheme, most notably, the easing of parallel implementations.
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