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We use the dynamic mode decomposition (DMD) methodology to study weakly turbulent flows in two-
dimensional Bose-Einstein condensates modeled by a Gross-Pitaevskii equation subject to band-limited stochas-
tic forcing. The forcing is balanced by the removal of energy at both ends of the energy spectrum through
phenomenological hypoviscosity and hyperviscosity terms. Using different combinations of these parameters,
we simulate three different regimes corresponding to weak-wave turbulence, and high- and low-frequency
saturation. By extracting and ranking the primary DMD modes carrying the bulk of the energy, we are able
to characterize the different regimes. In particular, the proposed DMD mode projection is able to seamlessly
extract the vortices present in the condensate. This is achieved despite the fact that we do not use any phase
information of the condensate as it is usually not directly available in realistic atomic BEC scenarios. Being
model independent, this DMD methodology should be portable to other models and experiments involving
complex flows. The DMD implementation could be used to elucidate different types of turbulent regimes as
well as identifying and pinpointing the existence of delicate and hidden coherent structures within complex
flows.
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I. INTRODUCTION

Building on existing experiments [1–6] and the recent
observation of turbulent cascades in a Bose-Einstein con-
densate (BEC) [7], it is important to better understand and
characterize, in as quantitative a means as possible, the
complex dynamics associated with turbulence in dispersive,
nonlinear-wave systems. While small-amplitude states whose
statistics remain nearly Gaussian permit a relatively complete
analytic characterization of turbulent cascades—embodied in
the weak-wave turbulence (WWT) theory initiated in Ref. [8]
and collected in Ref. [9] as noted in Refs. [10,11]—the
assumptions which one makes to derive results in WWT nec-
essarily must generically break down over long-enough time
scales.

This breakdown is best characterized by the formation of
long-wavelength, larger-amplitude coherent structures (CSs).
In classic, one-dimensional systems, characterizing such
structures in terms of solitons is relatively straightforward;
see, for example, Ref. [11]. However, in two dimensions (2D),
and for systems like the Gross-Pitaevskii equation (GPE)
or defocusing nonlinear Schrödinger equation (NLSE), de-
scribing coherent structures in quantitative terms is far more
challenging. In the context of BECs, existing methodologies
for characterizing CSs are based on heuristic statistical met-
rics [12]. In the broader context of two-dimensional WWT,
along with classic approaches built around studying qualita-
tive features in Fourier transforms, methods based on tracking
spikes in Gaussian curvature of the solution were described in
Ref. [13]. However, CSs in BECs are not readily characterized
as high curvature structures. Instead, the formation of CSs

corresponds to the elimination of vortices and the emission of
sound waves on the rising-amplitude-background-condensed
state [12]. Thus long-time, highly evolved BEC flows can
be composed of relatively few vortices hidden behind a wide
range of propagating acoustic waves. Moreover, vortices have
been shown to play an important role is the manifestation of
BEC turbulence [2,14,15]. However, identification of vortices
is particularly problematic in standard, atomic, BEC experi-
ments where only the density is readily accessible [16–19].
Easily identifiable features of the flow are then both scarce
and difficult to reliably identify, making characterization of
the transition away from the WWT state difficult. In this
paper, to address this shortcoming, we study the use of the
dynamic-mode decomposition (DMD) [20–23], which is a
modal decomposition generated by discrete snapshots of the
spatiotemporal evolution of the system under consideration.
The advantage of the DMD is in its great flexibility due to it
being a model-free means of analyzing flows.

By developing an adaptive mode selection strategy, we are
able to algorithmically decompose 2D BEC flows into a mean
and a series of ranked fluctuations. This is done for purely
WWT flows in which long-wavelength damping suppresses
the appearance of CSs and for flows in which energy is
allowed to accumulate at long wavelengths, thereby allowing
the nucleation of CSs. As we see from numerical simulations,
the temporal mean of the DMD dynamics provides a relatively
smooth, in effect denoised, visualization of CSs. This allows
for the ready visualization of those few vortices which remain
after the long-time transition from the low-amplitude four-
wave mixing state to a nearly constant background, three-
wave mixing state mediated by sound waves traveling along
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the background; see Refs. [9,12,24] for more details on these
transitions and states.

Our adaptive mode identification scheme extracts and
ranks the number of modes needed to represent 90% of the
relative energy of the flow. For all the flows studied, over
longer time scales, at most on the order of 10% of the total
number of modes is needed to meet this selection threshold.
Thus we show for these BEC complex flows that relatively
small subspaces can be used to accurately describe the dy-
namics. Moreover, we see that the complexity of a flow is
well encoded by the size of the subspace needed to capture
the 90% relative-energy threshold, with fully turbulent flows
devoid of CSs requiring the greatest number of modes and
flows allowing for long-wavelength CSs requiring the least.
Therefore, the DMD may also provide a quantitative means
of identifying the degree of complexity in flows and thus
puts forward an interesting future avenue for identifying novel
and useful statistical quantities facilitating flow classification.
While we have performed this study in the context of BECs,
our approach to identifying the most significant DMD modes
should prove useful in other contexts where complex flows
prevent ready classification of significant features.

The structure of the paper is as follows. In Sec. II we
introduce the BEC model that will be the subject of our study
and some generic aspect of WWT. Section III is devoted to
describe the DMD methodology. In Sec. IV we apply this
DMD methodology to characterize BEC flows in different
regimes, namely, the WWT, the low-frequency saturation, and
the high-frequency saturation regimes. Finally, in Sec. V we
summarize our results and bring forward a few interesting
avenues for further investigation.

II. MODELING AND WEAK-WAVE TURBULENCE

In nondimensional coordinates (see Appendix A for details
on the 3D to 2D reduction and the nondimensionalization), we
model the BEC through a stochastically forced GPE [9,12]

iψt = −�ψ + |ψ |2ψ + γ f − i(νh�
p + νl�̃

−p)ψ. (1)

The GPE without the phenomenologically added damping and
forcing terms is known to be a rigorous accurate approxima-
tion to the behavior of large ensembles of low-temperature
bosons [25]. Our choice of forcing and damping are made
in order to explore more complex dynamics of the GPE.
Here ψ (x, t ) is the wave function in 2D space [x = (x, y)],
which we restrict to satisfying periodic-boundary conditions
in both directions with common period 2L. Thus we have the
equivalent Fourier representation for ψ :

ψ (x, t ) =
∑

m

am(t )eikm·x, (2)

[1.0ex]m = (m, n), km = π

L
m. (3)

Likewise, � denotes the 2D Laplacian, γ f (x, t ) is the stochas-
tic forcing (see below), and the terms with coefficients νh and
νl correspond to hyperviscosity and hypoviscosity introduced
with the high-order Laplacian �p. The regularized Laplacian

�̃ is defined through the Fourier transform of its symbol:

̂̃� = −
{|km|2, m �= 0,(

π
L

)2
, m = 0.

(4)

We thus set the zero mode to one to avoid spurious diver-
gences when numerically integrating the system. Note that
we always remain in the defocusing, or “dark,” case [26] and
that we initialize our system with zero initial conditions, i.e.,
ψ (x, t = 0) = 0. The forcing γ f is chosen so as to be the
spectrally band limited function

γ f (x, t ) = γ0 e2π iϕ(t )
∑

kl�||km||2�kh

eikm·x, (5)

where ||km||2 = π
L

√
m2 + n2, γ0 is the strength of the forcing,

and the phase ϕ(t ) is chosen as a random variable uniformly
distributed between zero and 1. Thus our forcing is character-
ized by an injection range of wave numbers via the choices of
a “low” wave number threshold kl and a “high” wave number
threshold kh. We likewise see that the forcing is unbiased
in any particular spatial direction so that, by starting with
zero-initial conditions, the solution ψ (x, t ) largely mimics the
forcing until it has reached a large enough amplitude that
nonlinearity, through four-wave mixing, is able to transfer
energy across Fourier modes. The injection of energy through
the forcing γ f (x, t ) is ultimately balanced against the strength
of the hyperviscosity characterized by the magnitude of νh and
the hypoviscosity characterized by the magnitude of νl .

We take the period 2L � 1 so as to allow for long-
wavelength phenomena and space for large numbers of vor-
tices to form and interact. We note that the question of
what constitutes a “large” domain is somewhat ambiguous in
this problem due to the forcing. Typically, when modeling
a BEC, a length scale is set via the “healing length” [24],
which ultimately determines the width of vortices in the GPE.
However, to do this one must have a fixed particle num-
ber N = ∫ |ψ |2dx, but due to the forcing and viscosity we
have that

1

2

dN
dt

= Im

{∫
γ f (x, t )ψ∗dx

}
−

∫
ψ∗(νh�

p + νl�̃
−p)ψ dx, (6)

so that the particle number, and thus the chosen length scale,
necessarily change with time. Ultimately though, for long
times, a quasiequilibrium is achieved through the balance
of injection due to the forcing γ f and the particle removal
or energy dissipation due to the hyperviscosity removing
high-frequency modes and the hypoviscosity removing low-
frequency modes.

By stochastically forcing the system starting from a zero-
amplitude configuration, we are able to generate a WWT state
at some point in the temporal evolution of the flow. This is
characterized as complex flows driven by nontrivial fluxes of
energy and particle count across ranges of wave numbers. To
quantify this concept with respect to the energy, we define the
associated isotropic energy density Ed (k, t ) as

Ed (k, t ) = 2πk ω(k) n(k, t ), (7)
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where ω(k) is the dispersion relationship of the GPE, and
n(k, t ) is given by

n(k, t ) = 〈|am(t )|2〉, ||m||2 = k, (8)

where 〈·〉 denotes averaging over modes with constant wave
number k. Associated with the energy density is an affiliated
energy flux ε so that

∂t Ed + ∂kε ∼ 0. (9)

It is one of the major achievements in the WWT theory that
one can derive Boltzmann-like kinetic equations describing
the evolution of n(k, t ) [9]. Thus, by looking for flows in
which the energy density is in quasiequilibrium so that ∂t Ed ∼
0, which therefore implies that ∂t n(k, t ) ∼ 0, we can then
distinguish quasiequilibrium profiles of Ed (k, t ) by whether
ε ∼ 0 or ε ∼ c, where c is some constant. The zero case
corresponds to no energy flux, thereby describing a thermo-
dynamically steady state associated with the equipartition of
energy. It is the nonzero energy flux states which distinguish
WWT states, and those that we are most interested in study-
ing. As noted in Ref. [9], the cascade associated with energy
is from long to short length scales, or from small to large
values of k. In contrast, while there is a cascade attributable
to the other naturally conserved quantity of the GPE, i.e., the
total particle count, the cascade in that case is described as
“warm,” meaning that it is made up of nontrivial and trivial
flux contributions; see Ref. [9] for further details.

III. DYNAMIC-MODE DECOMPOSITION

For completeness, we review some details of the DMD
methodology. In what follows, we choose the measurable
quantity g(l )(t ) = |ψ (xl , t )| or

g(l )(t ) =
∣∣∣∣∣∣

∑
0�||m||∞�K

am(t )eikm·xl

∣∣∣∣∣∣, (10)

where we sample at the l = 1, . . . , (2K + 1)2 points xl in the
affiliated numerical mesh. This choice corresponds to sam-
pling the magnitude of the wave function ψ at the mesh points
of our numerical simulations. In typical BEC experiments, the
direct observable is the density that is proportional to |�|2 and
thus the magnitude |�| is readily available (using |�|2 instead
of |�| does not alter the results presented herein). The DMD
method in the context of this paper consists of first generating
a sequence of N + 1 samples of g(l ), say g(l )

n = g(l )(tn), at
times tn = nδt , n = 0, . . . , N . Connecting the two time states
corresponds to a linear operator, called the Koopman Operator
[23], which we denote by eLδt , so that

gn+1 = eLδt gn, gn = {
g(l )

n

}(2K+1)2

l=1 , (11)

where the superscripts are used to denote space while the
subscripts denote time. In Appendix B, we explain some of
the original physical motivation introduced in Ref. [27], used
elsewhere for data reduction and analysis in Ref. [28], to help
provide insight as to why the DMD method is effective.

Defining the (2K + 1)2 × N matrices V1 and V2, where

V1 =

⎧⎪⎨⎪⎩
⎛⎜⎝ g(1)

0
...

g(2K+1)2

0

⎞⎟⎠ · · ·

⎛⎜⎝ g(1)
N−1
...

g(2K+1)2

N−1

⎞⎟⎠
⎫⎪⎬⎪⎭,

V2 =

⎧⎪⎨⎪⎩
⎛⎜⎝ g(1)

1
...

g(2K+1)2

1

⎞⎟⎠ · · ·

⎛⎜⎝ g(1)
N
...

g(2K+1)2

N

⎞⎟⎠
⎫⎪⎬⎪⎭, (12)

the DMD approximates eLδt (see Appendix B) via a finite-
dimensional matrix A given by

S = U †AU = U †V2W −1, (13)

where we have used a singular value decomposition (SVD)
of V1 so that V1 = UW †, where U and W are matrices of
sizes (2K + 1)2 × N and N × N , respectively, whose columns
form orthonormal sets of vectors, and  is an N × N diagonal
matrix containing the singular values of V1, which are the
non-negative square roots of the non-negative eigenvalues of
V †

1 V1. This in effect makes A the least-squares solution to the
nonsquare matrix problem

V2 = AV1, (14)

corresponding to the one-step time map between V1 and
V2. Therefore, by computing the associated eigenvalues and
eigenvectors of S, say μ j and φ̃ j , respectively, then, for N
large enough with sufficiently controlled spacing in the time
series, these eigenvalues and eigenvectors will approximate
those of eLδt . Likewise, this allows us to write each vector gn

in our time series as

gn =
N∑

j=1

b jμ
n
jφ j + rn, φ j = U φ̃ j, (15)

where rn denotes the residual at the nth sampling time and the
coefficients b j are found from the initial condition

g0 =
N∑

j=1

b jφ j . (16)

See Ref. [29] for a recent exposition which studies the conver-
gence of DMD generated spectral information to the spectral
information of the affiliated Koopman operator.

IV. CHARACTERIZING COHERENT STATES

A. Methodology for implementing and analyzing the DMD

In order to realize the WWT regimes of the GPE, following
Ref. [12], using a Fourier based pseudospectral decomposition
in space, we run the simulations over a domain of size L =
128 with a total of KT = 512 modes in each spatial direction.
Using a two stage Runge-Kutta scheme with a time step of
δt = 0.1 for the low-frequency forcing and δt = 0.075 for the
high-frequency forcing, by simulating up to t f = 1.5 × 104,
we are able to capture the complex dynamics that we are
interested in. These choices for numerical time steps kept the
simulations stable and accurate without sacrificing too much
computational speed and efficiency as well. Conforming to the
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FIG. 1. Low-frequency forcing case with kl = 4, kh = 6, and
γ0 = 2.1 × 10−3 under the presence of hyperviscosity and hypovis-
cosity with respective strengths νh = 2 × 10−6 and νl = 1 × 10−18

and power p = 8 with t f = 1.5 × 104. Panel (a) depicts the wave-
action spectrum distribution n(k, t ) [see Eqs. (8) and (7)] for times
t = t f /2 (dotted green curve), t = 0.98t f (dashed red curve), and
t = t f (black solid curve). The curves for t = 0.98t f and t = t f

are almost indistinguishable from each other, suggesting that the
system has reached equilibrium. Panels (b) and (c) depict the field’s
amplitude |ψ (x, y, t )| for, respectively, t = t f /2 and t = 0.98t f .

choices in Ref. [12], we typically choose νh = 2 × 10−6, νl =
1 × 10−18, and p = 8. These choices also reflect the minimal
values necessary to generate reliable long time dynamics
that produce complex or turbulent dynamics on reasonable
simulation time scales.

Throughout each simulation, we sample every five numer-
ical time steps in the low-frequency forcing cases and every
seven numerical time steps in the high-frequency case, so that
the sampling rate is δts = 0.5 and δts = 0.525, respectively.
Different choices of sampling rates were explored with these
choices appearing to give the most robust and readily under-
standable results.

We begin sampling at time ti corresponding to the last
two percent of the total time steps, so that we sample the
last 300 units of time, thereby ensuring we are in fact per-
forming DMD on a fully turbulent or mixed flow. To justify
this decision, letting t f = 1.5 × 104, in panels (b) and (c)
of Fig. 1 we compare the plot of |ψ (x, y, t )| at t = t f /2 to
that of |ψ (x, y, t )| at t = 0.98t f ; see Fig. 2(a) for the plot
of |ψ (x, y, t )| at t = t f . Likewise, in Fig. 1(a) we compare
n(k, t ), from Eq. (8), at times t = t f /2, 0.98t f , and t = t f .
As can be seen, while relatively small-scale features have
emerged in the flow by t = t f /2, the underlying spatial sym-
metry of the forcing is still plainly present. This symmetry
has clearly been removed at t = 0.98t f . Furthermore, we see
that the spectra n(k, t ) are essentially identical for t = 0.98t f

and t f , while there is markedly less energy in the higher-
frequency components at t = t f /2. Based on these results we
are confident that the last two percent of the flows examined

FIG. 2. DMD decomposition for the weak wave turbulence case.
This case corresponds to a low-frequency forcing with kl = 4, kh =
6, and γ0 = 2.1 × 10−3 under the presence of hyperviscosity and
hypoviscosity with respective strengths νh = 2 × 10−6 and νl = 1 ×
10−18 and power p = 8. Depicted are (a) the amplitude |ψ (x, y, t f )|,
(b) the λ = 0 DMD mean mode, and (c)–(e) the next three most
significant weakly transient modes, i.e., bf ( j;n)φ f ( j;n) for j = 2, 3, 4.
The corresponding eigenvalue for each mode is indicated. In con-
trast with the next two figures, we do not depict the phase of the
wave function here as it does not contain any prominent features
because, for this low-frequency forcing case, no vortex structures are
nucleated.

throughout the remainder of the paper represent “equilibrated
turbulent” flows, at least in the same sense that is meant in
Ref. [12].

Proceeding, we have the approximation

gn ≈ A
(
t (s)
n

) =
N∑

j=1

b je
λ j (t (s)

n −ti )φ j, (17)

where

λ j = log μ j

δts
, t (s)

n = ti + nδts, n � 0. (18)

As we see in the simulations, typically each generated DMD
mode has a corresponding temporal eigenvalue λ j such that
−0.02 � Re(λ j ) � 0, suggesting that all modes (with some
rare exceptions, see below) are either stationary or transitory.
This is in accord with the fact that we are looking at a

062215-4



CHARACTERIZING COHERENT STRUCTURES IN … PHYSICAL REVIEW E 99, 062215 (2019)

driven Hamiltonian system in which we are mainly examining
dynamics within the inertial range, so that the dynamics is
largely represented via a measure preserving flow, thereby
insuring nearly imaginary spectra of the associated Koopman
operator. See Appendix B for more details.

To perform mode selection, we implement the following
strategy. At each discrete sampling time t (s)

n , we sort the
sequence {∣∣b je

λ j (t (s)
n −ti )

∣∣}N

j=1 (19)

according to magnitude from largest to smallest, inducing a
mapping between indices, say j = f (l; n). It is important to
note, by emphasizing the sampling step n, we are drawing
attention to the fact that the sorting map between indices
can change at every discrete sampling step. We then select
from this sorted list the minimal number of modes, say Nr (n),
such that ∣∣∣∣ANr (n)

(
t (s)
n

) − ∣∣ψ(·, ·, t (s)
n

)∣∣ ∣∣∣∣
2∣∣∣∣∣∣ψ(·, ·, t (s)

n
)∣∣∣∣∣∣

2

� 0.1, (20)

where

ANr (n)
(
t (s)
n

) =
Nr (n)∑
l=1

b f (l;n)e
λ f (l;n) (t (s)

n −ti )φ f (l;n). (21)

Thus Nr (n) represents the minimal number of maximally
sorted modes which represent 90% of the total energy of the
GPE at t (s)

n . Similarly, we define the time dependent com-
pression ratio Cr (n) = Nr (n)/N measuring the proportion of
modes needed to describe the bulk of the dynamics (i.e., 90%
of the energy). We note that throughout each simulation pre-
sented in what follows, if we use all of the available modes, the
relative error measured above is at most on the order of 10−11

over the course of the DMD sampling process, or the norms of
the residuals rn are only at worst 10−11||ψ (·, ·, t (s)

n )||2. In other
words, taken in its entirety, the DMD provides an extremely
accurate reconstruction of the flow over the time which it is
applied.

While in some sense an arbitrary choice, we have found the
90% threshold to provide an efficient way to determine the
most relevant modes while still providing significant reduc-
tions in the compression ratio, thus reflecting the way in which
the DMD method is able to capture many of the features of
complex flows via relatively low-dimensional representations.
As noted above, the modes of interest can change from
sampling step to sampling step. To quantify the effect of this
change, we measure the Jaccard index [30]

J (n) = |In ∩ In−1|
|In| + |In−1| − |In ∩ In−1| ,

I j = { f (1; j), f (2; j), . . . , f (Nr ( j); j)}, (22)

with | · | denoting the number of elements in a given set of
indices. As suggested from our results below, in practice it is
clear that the DMD method converges onto a stable subset of
modes over longer time scales. However, our mode selection
scheme also allows us to better understand the dominant
processes happening over the length of time of the DMD

sampling, thereby allowing for observations of transitory and
multiple-scales behavior.

Focusing then on those modes which will ultimately dom-
inate towards the end of the DMD process, given that the
total time scale over which we perform the DMD is 300 units
of nondimensional time, we define those modes such that
−0.02 � Re(λ j ) � 5 × 10−3 to be weakly transitory. This
choice reflects results from the simulations where it is typical
to see the magnitude of the coefficients bj to be on the order
of 102 for Re(λ j ) ∼ −0.02 and 10−2 for Re(λ j ) ∼ 0.005. Our
definition of a weakly transitory mode ensures then that an
initial amplitude of 102 is scaled to 0.5, or just a little over ten
percent by the end of the DMD sampling process. Likewise,
an initial amplitude of 10−2 becomes at most 0.02. Thus, by
focusing on these weakly transitory modes, we can focus on
those modes which characterize our 90% energy criterion over
longer time scales.

B. Modal descriptions

We first examine the results of the DMD by probing the
most significant modes which represent the amplitude of the
flow at the final time t f = 1.5 × 104.

1. Weak-wave turbulence case

In this case, we take a low frequency band for the forcing
with kl = 4, kh = 6 and strength γ0 = 2.1 × 10−3. To recreate
the WWT results of Ref. [12], we keep both hypoviscosity
and hyperviscosity in place; see Fig. 2. In particular, we see
in panel (a) the fully evolved amplitude of the GPE at t f ,
i.e., |ψ (x, y, t f )|, compared against the DMD computed mean,
i.e., λ = 0 mode, depicted in panel (b). As seen, we can
characterize the WWT regime in part by noting the lack of
clear structure in the mean mode. Note, however, that there is
a weak circular symmetry present in the mean mode due to
the spatially symmetric forcing being centered at the origin.
The finer details seen in panel (a) can in part be recovered by
looking beyond the mean mode to higher oscillatory or weakly
transitory modes as depicted in panels (c)–(e). It is relevant
to mention that, by a plot of a weighted DMD mode, we
mean that we plot |b jU φ̃ j |, thereby allowing us to visualize
the spatial structure associated with the mode as well as its
relative contribution controlled by the magnitude of bj , since
each mode U φ̃ j is scaled to have unit vector norm.

2. Low-frequency saturation case

Through the remaining simulations, we remove the hypo-
viscosity (νl = 0) while keeping the hyperviscosity (νh = 2 ×
10−6) with γ0 = 2.1 × 10−3, thereby allowing for saturation
at longer wavelengths to occur. In this case, we expect the for-
mation of long-wavelength coherent structures characterized
by the presence of relatively few vortices on an elevated den-
sity background with acoustic waves scattering throughout.
This is indicative of the “Kibble-Zurek” mechanism discussed
in Refs. [12,31] used to explain analogies between coherent
structure formation in BECs and cosmology. After removing
the hypoviscosity, by looking at the relatively low frequency
forcing explored above, it is at this point that we can plainly
see the advantage of using the DMD by comparing the fully

062215-5



CURTIS, CARRETERO-GONZÁLEZ, AND POLIMENO PHYSICAL REVIEW E 99, 062215 (2019)

FIG. 3. DMD decomposition for the low-frequency saturation
case. Same parameter values as in Fig. 2 after removing the hy-
poviscosity (νl = 0). Depicted are (a) the amplitude |ψ (x, y, t f )|,
(b) the phase of the wave function (assumed not to be observable in
our methodology), (c) the λ = 0 DMD mean mode, and (d)–(f) the
next three most significant weakly transient modes, i.e., bf ( j;n)φ f ( j;n)

for j = 2, 3, 4. The corresponding eigenvalue for each mode is
indicated. In the phase plot we indicate with (red) arrows the location
of two vortex-dipole pairs.

evolved solution to the GPE in Fig. 3(a) to the mean DMD
mode depicted in Fig. 3(c). The mean mode clearly identifies a
finite number of vortices interacting through a finite amplitude
background. We can establish that these dips in |ψ | are in fact
vortices by examining the phase of ψ , which we have from our
numerics. The dips we see in Fig. 3(c) correspond to windings
in the phase plotted in Fig. 3(b). Specifically, the phase plot
indicates the presence of two vortex-dipole pairs (location
indicated with the arrows in the panel). It is interesting to
note that these two vortex-dipole pairs are visible in the DMD
modes despite the fact that no phase information was used to
obtain these modes. It is also evident that tight vortex dipoles
move relatively fast in the flow and thus are “smeared out”
by the DMD decomposition. Therefore, as can be noticed in
Fig. 3 the vortex dipole with the largest separation (top left) is
more visible in the DMD modes than the vortex dipole with
the tighter separation (bottom center).

It is crucial to stress that we are able to clearly capture
the presence of vortices via the DMD without the assistance
of any phase information (as we are only measuring the
magnitude of the wave function). If one had direct access to
the wave functions’ phase, then it would be straightforward to

FIG. 4. DMD decomposition for the high-frequency case. Same
parameters and layout as in Fig. 3 but this time for a high-frequency
forcing with kl = 60 and kh = 63. In the phase plot we indicate with
red and white arrows the respective locations of two vortex-dipole
pairs and two independent vortices.

extract the location (and sign) of vortices by computing the
vorticity of the fluid velocity associated with the BEC flow
(see, for instance, Ref. [32] and references therein). However,
most experiments lack the possibility of directly measuring
the phase of the wave function [33], in which case the DMD
proposed here could serve as a valuable tool to extract the lo-
cation of any vortex present in the condensate—albeit the fact
that the DMD cannot directly indicate the sign of said vortices.
One of the main advantages of the DMD method in detecting
vortices (or other long-lived coherent structures) hinges on the
fact that they are clearly visible in the lowest DMD modes
(see Figs. 3 and 4). Thus these distinctive structures in the
DMD modes cannot be confounded with transient density
dips that could provide false positives for the presence of a
vortex.

It is interesting to note the relative similarity in the finer,
higher-frequency features seen in Figs. 3(d)–3(f) to those in
Figs. 2(c)–2(e). This suggests that it is possible to characterize
the low-frequency saturation case as a long-wave condensed
mean containing CSs with a weakly turbulent background
fluctuating about this mean.

3. High-frequency saturation case

We now look at higher-frequency forcing where we let
kl = 60 and kh = 63; see Fig. 4. As in the low-frequency,
long-wavelength saturated case above, we see that the
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mean DMD mode depicted in panel (c) clearly isolates the
dynamics of the vortices present in the configuration, which
are obscured through the higher-frequency spatial features in
the solution to the GPE depicted in panel (a). This again is
confirmed by looking at the phase in Fig. 4(b). Specifically,
the phase profile indicates the presence of two independent
vortices (see white arrows) and two vortex-dipole pairs (see
red arrows). As the independent vortices drift slowly through
the flow, they have a high contrast in the DMD modes. On the
other hand, as before, tight (i.e., fast moving) vortex-dipole
pairs have a relatively weaker contrast in the DMD modes.
However, in contrast with the low-frequency forcing case
above though, we see in the higher-order modes in panels
(d)–(f) far sharper, or higher-frequency, spatial features, thus
clearly reflecting the different forcing mechanism in play in
this situation. This is particularly true for the fast moving
vortex-dipole pairs which remain clearly visible in the DMD
modes for the high-frequency case when compared to the
low-frequency one. Finally, it is worth mentioning that the
DMD analysis not only provides evidence of the presence of
coherent structures such as vortices, but it also gives a sense of
their dynamics. For instance, it is clear from the higher-order
DMD modes depicted in Fig. 4 what is the trajectory of
the vortex-dipole pairs. Namely, the center top pair moves
up vertically relatively fast, while the top-right pair moves
slowly in a north-west diagonal trajectory. Interestingly, the
contrast of the trace left by the coherent structure’s trajectory
could be used as a measure for their corresponding speed
through their trajectory: the fainter the trace, the faster the
speed.

C. Comparison across flows via spectral characteristics

We now compare the spectral characteristics and compres-
sion ratios for the WWT, the low-frequency saturation (LFS),
and high-frequency saturation (HFS) cases studied above.
Here, we focus less on isolating some relatively small number
of modes and opt to examine the characteristic responses of
each measured quantity across the different flows, thereby
allowing for the identification of classifying features that may
not be as readily apparent given the overall complexity of each
flow. As observed in the left panels of Fig. 5, all the modes,
with the exception of the ones highlighted using triangular
and circular points, have eigenvalues with negative real parts.
This indicates that all these modes are weakly damped and
thus weakly transitory. Among the modes which are weakly
transitory, the mean (see triangular points) always begins
as the dominant mode with respect to its magnitude of |bj |.
Note that in the WWT regime, see panel (a) in Fig. 5, there is a
mode (see circular point) with an eigenvalue with a small, but
positive, real part [Re(λi ) ≈ 5 × 10−3]. This mode, although
identified as a growing one, has a relatively small magnitude
(b j ≈ 0.009) and thus very weakly participates in the DMD.
In fact, using the 90% energy mode selection criterion, this
mode is not even part of the selected basis. On the other
hand, we see from the right set of panels in Fig. 5 that
the higher temporal frequencies of oscillation correspond to
smaller magnitudes of |b j |, reflecting a kind of energy decay
in time akin to what one usually sees via Fourier transforms
in time or space. However, focusing on the regime of weakly
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FIG. 5. Spectra of the DMD modes. The left (right) panels
depict log10 |bj | vs the real (imaginary) part of λ j . The top, middle,
and bottom set of panels correspond, respectively, to the WWT,
low-frequency saturated, and high-frequency saturated regimes. The
triangular points in the left panels correspond to the eigenvalues
of the weighted mean. The mode depicted by the circle in panel
(a) corresponds to a weakly growing mode with a relatively small
weight (bj ≈ 0.009) such that it does not have a sizable contribution
to the DMD dynamics.

transitory modes, we see marked differences in the spread
of the magnitudes of |b j | with respect to the real part of
the eigenvalues λ j . Thus the way in which weakly transitory
effects manifest themselves are distinguished in the different
classes of flows.

The impact of the spectra described above manifests itself
in the different dynamics and long time behavior of the com-
pression ratio Cr (n) and the Jaccard indices J (n) as depicted
in Fig. 6. As can be observed, the greater complexity of the
WWT flow necessitates larger and, at times, more erratic
numbers of modes in order to maintain the 90% threshold used
for modal selection. This likewise manifests as significant
fluctuations in J (n) before it ultimately settles into a state
in which the selected modes overlap by about 95%. We also
see the greater complexity in the HFS case in comparison to
the LFS case by way of the overall larger compression ratio
needed in the HFS case throughout most of the simulation;
see in particular the detail plots in panels (g) and (h) of Fig. 6.
Moreover, we see that the Jaccard index is more volatile
in the HFS case, with strong deviations in the choice of

062215-7



CURTIS, CARRETERO-GONZÁLEZ, AND POLIMENO PHYSICAL REVIEW E 99, 062215 (2019)

1.47 1.48 1.49 1.5

10 4

0

0.2

0.4

0.6

1.47 1.48 1.49 1.5

10 4

0.7

0.8

0.9

1

1.47 1.48 1.49 1.5

10 4

0

0.2

0.4

0.6

1.47 1.48 1.49 1.5

10 4

0.7

0.8

0.9

1

1.47 1.48 1.49 1.5

10 4

0

0.2

0.4

0.6

1.47 1.48 1.49 1.5

10 4

0.7

0.8

0.9

1

1.49 1.5

10 4

0

0.1

0.2

1.49 1.5

10 4

0

0.1

0.2

FIG. 6. (a)–(f) Evolution of the compression ratio Cr (n) (left)
and Jaccard index J (n) (right) corresponding, from top to bottom,
to the WWT, low-frequency saturated, and high-frequency satu-
rated regimes. Panels (g) and (h) depict details of the compression
ratio for the high-frequency and low-frequency saturated regimes,
respectively.

finite-dimensional subspace even close to the end of the
simulation. We note that the comparison of the Jaccard index
in the LFS and HFS cases must be made with the compression
ratio in mind. By this we mean that, while there is volatility in
J (n) for both cases, this volatility is over a far larger subspace
in the HFS case than in the LFS case as seen by comparing
the details of the compression ratio plots in panels (g) and
(h). A partial explanation for this is that in the HFS case, in
order for energy to transfer to the longer wavelengths, one
must first form the higher frequency contributions and spindle
CSs structures as seen in Figs. 4(c)–4(e). Lastly, we note the
presence of jumps in the compression ratio which clearly
correspond, predominantly, to the more transitory modes,
determined from examining the most leftward eigenvalues
depicted in the left panels of Fig. 6.

V. CONCLUSIONS

In the present work, we simulated different turbulent flows
in a 2D BEC modeled by the Gross-Pitaevskii equation with
stochastic, band-limited, forcing. The injection of energy
through the forcing was balanced by energy removal at both
ends of the energy spectrum by adding hypoviscosity and
hyperviscosity phenomenological terms in the model equa-
tion. We borrowed the dynamic-mode decomposition (DMD)
methodology in order to characterize the nature of the ob-
tained complex flows corresponding to weak-wave turbu-
lence, low-frequency saturation, and high-frequency satura-
tion regimes. In view of deploying the DMD methodology
to more general complex flows, including ones coming from
experimental realizations, we extracted and ranked the DMD
modes so to only keep a small, manageable, percentage of
them. The modal selection ranking was defined by keeping
all modes necessary to reconstruct 90% of the energy of the
system. This dynamic reduction resulted in keeping just 10%
of the total number of modes. Within this reduced modal set,
we used the spectral information of the modes to characterize
the different turbulent regimes. This information was used in
tandem with (a) the compression ratio that gives a measure of
the proportion of modes necessary to capture the desired level
of energy with the DMD subset and (b) the Jaccard index of
the modal set which provides a measure of the stationarity of
the chosen modal set.

Our results tend to suggest that the DMD decomposition
is successful in differentiating the distinct types of complex
flows and, in particular, it seems to be very useful in extracting
coherent structures that might otherwise be hidden in the
complexity of the flow. For instance, we were able to extract
the location (and some of the dynamics) of vortices despite
the fact that we did not use any phase information of the
BEC flow to build the DMD modal set. This feature of the
DMD to be able to detect hidden coherent structures seems
particularly appealing in the realm of atomic BEC where
vortices cannot be readily pinpointed without the use of the
wave function’s phase, which is typically not available in
most atomic BEC experiments. For instance, it would be
interesting to use the DMD methodology for BEC flows that,
by construction, promote the nucleation of coherent structures
(such as vortices; cf. Refs. [34,35]) in order to separate the
dynamics associated with these coherent structures and the
complex background flow.

The DMD methodology is, by construction, model agnos-
tic and it is well suited for experimental situations where
a large amount of data is usually extracted. Therefore, it is
a good candidate to provide useful information about the
main characteristics of complex flows and the potential hidden
coherent structures that they might host. It would be interest-
ing to test whether the results presented here are relevant to
other complex flow scenarios like classical flows and whether
the DMD is useful to indeed characterize and differentiate
different turbulent states.
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APPENDIX A: DIMENSIONAL REDUCTION
AND NONDIMENSIONALIZATION OF THE GPE

In physical units, an unforced 3D BEC, trapped in a
harmonic potential V (x, y, z) = 1

2 (ω2
x x2 + ω2

y y2 + ω2
z z2), can

be modeled, for temperatures close to zero, by the Gross-
Pitaevskii equation [26]:

ih̄
∂

∂t
ψ3D =

[
− h̄2

2m
� + g3D|ψ3D|2 + V (x, y, z)

]
ψ3D, (A1)

where ψ3D(x, y, z, t ) is the 3D wave function, ωi are the
trapping frequencies (strengths) of the confining trap along
the three cardinal directions, and the nonlinearity g3D =
4π h̄2as/m is given in terms of the s-wave scattering length
as and the mass of the atoms m. In this 3D setting,
|ψ3D|2dx dy dz describes probabilities in the sense that

N =
∫∫∫

|ψ3D|2dx dy dz (A2)

recovers the total number of particles under consideration. A
2D reduction of the BEC can then be achieved by assuming
that one of the trapping strengths is much larger than the other
two, i.e., ωx, ωy � ωz. In that case, one can separate the full
2D wave function as

ψ3D(x, y, z, t ) = ψ2D(x, y, t ) × ψ0(z) × e−iμzt/h̄, (A3)

where ψ2D(x, y, t ) is the effective 2D wave function and ψ0(z)
is the z-ground state with chemical potential μz. The above
separation is based on the assumption that, when dealing with
moderate energies, the ωz is large enough so that excitations
along the z direction cannot be promoted and thus the wave
function always remains in its ground state along this trans-
verse direction. Then, by normalizing ψ0(z), applying the
separation of variables (A3), and averaging (i.e., integrating)
along the z direction, one obtains the effective 2D GPE

ih̄
∂

∂t
ψ =

[
− h̄2

2m
� + g2D|ψ |2

]
ψ, (A4)

where we have assumed very weak trapping strengths in the
x and y directions (ωx, ωy  0). In this 2D reduction, the new
effective 2D nonlinearity is given by

g2D = g3D√
2πaz

(A5)

and az = h̄/(mωz ) is the transverse oscillator length. It is
remarkable that, in this setting, one can use the transverse
trapping strength ωz to control the effective nonlinearity of
the 2D reduced model. As the transverse wave function ψ0(z)
is normalized, |ψ (x, y, t )|2 now describes the (probability)
density in 2D and thus

N =
∫∫

|ψ2D|2dx dy (A6)

now recovers the total number of particles under consid-
eration. Finally, introducing the scalings (oscillator length

units)

x̃ = x√
2 ξ

, ỹ = y√
2 ξ

, t̃ = ωzt, ψ̃ =
√

h̄ωz

g2D
ψ,

(A7)
where

ξ 2 = h̄

mωz
(A8)

is the so-called healing length, yields (after dropping the tildes
for ease of notation) the nondimensional 2D GPE

iψt = −�ψ + σ |ψ |2ψ, (A9)

where σ = sgn(as) defines the sign of the nonlinearity corre-
sponding to an attractive, or self-focusing, BEC for σ = −1
and to a repulsive, or defocusing, BEC for σ = 1.

APPENDIX B: OBSERVABLES FOR
THE HAMILTONIAN FLOW

Throughout this section, we ignore the effects of forcing
and damping so as to make deriving motivating results rel-
atively straightforward. Thus, starting from the well-known
Hamiltonian of the GPE/NLSE

H =
∫

|∇ψ |2dx + 1

2

∫
|ψ |4dx, (B1)

the GPE may be rewritten in variational form as

iψt = δH

δψ∗ . (B2)

Using a Fourier expansion, we get the equivalent Hamiltonian
system

i∂t am(t ) = δH

δa∗
m(t )

, (B3)

where H > 0 becomes

H =
∑

m

ω(km)|am|2

+1

2

∑
m1,m2,m3,m

am1 am2 a∗
m3

a∗
mδm,m3

m1,m2
, (B4)

where

δm,m3
m1,m2

= δ(m1 + m2 − m3 − m), (B5)

with δ(·) being the Kronecker delta function or tensor.
To truncate the system so that it is consistent with the

pseudospectral method that we employ to integrate the GPE,
we introduce the wraparound function τ where, letting KT =
2K + 1, if we define for an integer m̃ the function

τ (m̃) ∈ {−K, . . . , 0, . . . , K}, (B6)

so that

(m̃ + K ) ≡ (τ (m̃) + K )mod KT , (B7)

then if m = (m, n), we define τ (m) so that

τ (m) = (τ (m), τ (n)). (B8)
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This allows us to account for the effect of aliasing due to
nonlinearity in our pseudospectral method. We then require
that

0 � ||m||∞ � K, ||m||∞ = max {|m|, |n|}, (B9)

which yields the affiliated dynamical system

i∂t am = Fm(a), a ∈ C2K+1, 0 � ||m||∞ � K, (B10)

where a ∈ C(2K+1)2
denotes the set of all the am values and

where

Fm(a) = ω(km)am +
∑

am1 am2 a∗
τ (m1+m2−m), (B11)

where the sum is carried out for 0 � ||m1||∞, ||m2||∞ � K .
We define the affiliated flow for initial conditions a0 via the
flow map �(t ; a0). We readily see that the functional

H̃ (a; K ) =
∑

0�||m||∞�K

ω(km)|am|2

+ 1

2

∑
am1 am2 a∗

τ (m3 )a
∗
τ (m)δ

m,m3
m1,m2

, (B12)

where the second sum is carried out for 0 �
||m||∞, ||m1||∞, ||m2||∞, ||m3||∞ � K , provides a
Hamiltonian of the finite-dimensional system.

Fixing the number of modes, K , one can define the density

ρ(a) = 1

Z
e−H̃ (a;K ), (B13)

where the normalization constant is Z = ∫
C(2K+1)2 e−H̃ (a;K )da.

Following Ref. [28], this yields the average, or expectation,

functional E[ f ] for any well-defined observable f to be

E[ f ] =
∫
C(2K+1)2

f (a)ρ(a)da. (B14)

From the density, we can define an invariant measure μ,
which allows us to readily define the affiliated Hilbert space
L2(C(2K+1)2

, μ) with inner product 〈 f , g〉 = E[ f g]. Using the
method of characteristics, we can define for our flow the asso-
ciated Liouville operator L so that the solution to the equation

ut = Lu, u(a0, 0) = g(a0) ∈ L2(C(2K+1)2
, μ) (B15)

has the solution

u(a0, t ) = eLt g(a0) = g(�(t, a0)). (B16)

Using the semigroup property of eLt and �, we see that, by
choosing a fixed time step δt , we have

g(�(t + δt, a0)) = eLδt g(�(t, a0)). (B17)

Thus, for any reasonably defined quantity g, there exists a
linear operator eLδt which transports that quantity forward in
discrete steps of time. The Hamiltonian structure of the under-
lying finite-dimensional system ensures that eLδt is a unitary
operator, which is to say that it preserves the L2(C(2K+1)2

, μ)
norm of a given function. Thus the linear Koopman operator
is given in our Hamiltonian context by eLδt . Generalizations
of this approach are found in Refs. [20,22,23] and elsewhere.
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