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Reduced dynamics for one and two dark soliton stripes in the defocusing nonlinear
Schrödinger equation: A variational approach
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We study the dynamics and pairwise interactions of dark soliton stripes in the two-dimensional defocusing
nonlinear Schrödinger equation. By employing a variational approach we reduce the dynamics for dark soliton
stripes to a set of coupled one-dimensional “filament” equations of motion for the position and velocity of the
stripe. The method yields good qualitative agreement with the numerical results for the transverse instability
of the stripes. We propose a phenomenological amendment that also significantly improves the quantitative
agreement of the method with the computations. Subsequently, the method is extended for a pair of symmetric
dark soliton stripes that include the mutual interactions between the filaments. The reduced equations of motion
are compared with a recently proposed adiabatic invariant method and its corresponding findings and are found
to provide a more adequate representation of the original full dynamics for a wide range of cases encompassing
perturbations with long and short wavelengths, and combinations thereof.

DOI: 10.1103/PhysRevResearch.1.033043

I. INTRODUCTION

In the past two decades, the study of coherent structures
in the form of dark solitons has been a theme pervading
a wide range of areas within physics. Early examples were
more focused on classical physics (including mechanical [1]
and electrical [2] lattices), nonlinear optical [3], as well as
magnetic systems [4]. More recently, however, there has been
a host of additional systems including notably a wide variety
of experiments in atomic Bose-Einstein condensates (BECs)
summarized, e.g., in Refs. [5,6], but also realizations in elec-
tromagnetic [7], hydrodynamic [8], acoustic [9], plasma [10],
and exciton-polariton [11] systems among others.

A major thrust within the subject has been offered by the
extensive experimental accessibility to such nonlinear waves
arising in the context of atomic (but also exciton-polariton)
condensates. Here, there has been a variety of techniques
of formation of the structures, including wave interference
[12,13], phase imprinting [14], and rapid dragging of laser
beams through a trapped BEC [15]. Additionally, the struc-
tures have offered a variety of intriguing insights into the
dynamics through their potential dynamical instabilities (and
their avoidance through suitable manipulation of length scales
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[16]) which may lead to a variety of vortical (in 2D) and vortex
line/ring structures (in 3D), as has also been documented
experimentally [17–20]. More recently, extensions to multi-
component settings have been pursued in the form of dark-
bright and dark-dark solitonic states [21] and even spinorial
realizations of such structures have recently been identified
[22]. At the same time, there has been a growing interest
in applications including possibilities of atomic matter-wave
interferometers [23] and proposals for the use of dark solitons
as qubits in BECs [24]. Finally, it is relevant to mention
that in the context of optics, the control of solitary waves
in dynamical lattices (including its experimental verification)
has also been explored [25].

The study of transverse (“snaking”) dynamical instabilities
of dark solitons in higher dimensional settings has been a topic
of extensive interest since early on [26], with much of the
early work summarized in the review [27]. Recently, there
has been a surge of further interest in the subject [28–30]
fueled by an adiabatic invariant (AI) based insight enabling
the derivation of effective equations for the dark soliton stripes
[in two dimensions (2D)] and planes (in 3D), but also the
ability of this methodology to tackle ring (in 2D, but also in
3D in the form of spherical) solitons [31]. This methodology
was not only seen to have the right long wavelength limit
(a fundamental prerequisite for such a theory). Additionally
in many cases, including those of ring and spherical solitons,
it provided with unprecedented accuracy and simplicity an-
alytical approximations for the frequencies of vibration and
destabilization of the coherent structures that were tested in
both linearization (spectral) computations, as well as in the
fully nonlinear dynamics of the system.
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Nevertheless, there is reason to believe that the theory can
be further improved. On the one hand, while the above AI
methodology captures the correct long wavelength limit, it
does not a priori capture the restabilization of perturbations
of large wave numbers (above a certain kc). Moreover, as it
stands, the theory is developed solely for the evolutionary
dynamics of the center of the dark solitonic stripes (or planes),
but does not arise as a coupled theory for the evolution of the
center and the width (or velocity) of the structure. For these
reasons, but also in order to obtain a theory with a definitive
Lagrangian framework (avoiding the issue of identification
of canonical variables) enabling the systematic derivation of
Euler-Lagrange equations of motion, we develop herein an
alternative variational approach (VA).

At the heart of our analysis lies a two-dimensional gen-
eralization of the classic work of Ref. [32] considering the
variational characterization of the dynamics of a dark soli-
ton in 1D. Here, we endow the dark soliton stripe (DSS)
with a center, a width, and a speed that are transversely
dependent (as in the recent AI work of Refs. [28–30]), yet
we substitute the relevant ansatz of one or two stripes in
the Lagrangian of the model. The subsequent derivation of
the Euler-Lagrange equations of motion for two dynamical
variables (e.g., position and velocity) constitutes the basis
for our further analysis of the theory and its improved, as
we will show, agreement with the full numerical results. We
discuss some of the limitations of the method, such as its
qualitative but not quantitative capture of the restabilization
of large wave numbers and offer relevant amendments that
provide the optimal characterization, to our knowledge, of the
motion of single and multiple dark solitonic stripes available
to date. The manuscript is structured as follows. Section II
describes the VA methodology and puts forward the reduced
equations of motion for a single DSS and for two (symmet-
rically displaced) interacting DSSs. Section IV is devoted
to testing the validity of the VA approach and to compare
its predictions against a previous filament technique based
on adiabatic invariance (AI) [28–30]. Finally, in Sec. V we
summarize our results and give possible avenues for future
research.

II. VARIATIONAL APPROACH FOR ONE STRIPE

Our starting point will be the prototypical 2D nonlinear
Schrödinger (NLS) model [3,6,33]:

iut + 1

2
uxx − α

2
uyy − (|u|2 − u2

0

)
u = 0, (1)

where u0 is the magnitude of the background and α = ∓1
accounts for the elliptic and hyperbolic NLS cases. In our
numerical results we will focus on the elliptic NLS case (i.e.,
α = −1). Nonetheless, for genericity’s sake, we keep α in our
analysis herein. In the 1D case (α = 0), the NLS admits the
following exact traveling dark soliton solution:

u1D(x, t ) = {B tanh [B(x − vt )] + iA}eikx, (2)

where A2 + B2 = u2
0 − k2

2 and A = v − k. We recall that k
accounts for the velocity of the background while v denotes
the velocity of the dark soliton itself. To variationally follow
the dark soliton as a quasi-1D stripe (or filament) in the 2D

NLS (1), we consider the 2D extension u2D = u2D(x, y, t )
by allowing the position X (y, t ) of the dark soliton to be a
function of y and t (in the spirit also of earlier works such
as Refs. [28–30]), while keeping a stationary background
(k = 0), as follows:

u2D = B(y, t ) tanh{D(y, t )[x − X (y, t )]} + iA(y, t ), (3)

where we consider the inverse width of the DSS D to be,
in general, decoupled (in the dark soliton core) from the
background level B. Nonetheless, we enforce A2 + B2 = u2

0 =
constant to keep the DSS from affecting the tails at x = ±∞.
Note that when B = D and v = Xt = A, the DSS ansatz (3)
reduces to the exact dark soliton (2) mounted on a stationary
background (k = 0).

The NLS (1) is derived from the renormalized (in the
x direction) Lagrangian:

L2D =
∫ ∞

−∞
Ly dy, (4)

where the averaged (i.e., integrated) Lagrangian along the
x direction may be written as

Ly =
∫ ∞

−∞

[
i

2
(u∗ut − uu∗

t )

(
1 − u2

0

|u|2
)

− 1

2
|ux|2 + α

2
|uy|2 − 1

2

(|u|2 − u2
0

)2
]

dx. (5)

We note that the term (1 − u2
0/|u|2) is introduced to renor-

malize the momentum while the term |u|2 − u2
0 renormalizes

the power. A discussion of different renormalizations can
be found in Ref. [33]. This renormalization used here is
introduced so that the (1D) averaged Lagrangian Ly converges
when evaluated over the 1D dark soliton (2) [32,34].

Let us now evaluate the 2D Lagrangian (4) over the ansatz
(3) by assuming that the dark soliton moves locally and thus
it does not affect the tails (background) in A and B. Namely,
we will use the following approximation for the y derivative
of the 2D ansatz (3):

uy ≈ B[D(x − X )]y sech2 [D(x − X )]

≈ B[Dy(x − X ) − DXy] sech2 [D(x − X )]. (6)

Alternatively, the above approximation can be thought of as-
suming a generic traveling profile u ≈ f [D(t, y)(x − X (t, y))]
that yields, using the chain rule, uy = ux[ Dy

D (x − X ) − Xy].
Finally, after evaluating the expression (6) we enforce that,
due to the balance outside the dark soliton core region, D =
B and A2 + B2 = u2

0 which leads to the simplified average
Lagrangian:

Ly = 2Xt

(
−AB + u2

0 arctan
B

A

)
− 4

3
B3

+α
π2 − 6

18B
B2

y + 2α

3
B3X 2

y . (7)

As per the Euler-Lagrange prescription, we now take varia-
tions in the variables X and B which yield, respectively,

Bt = −α
A

3B2
(B3Xy)y, (8)
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FIG. 1. Stability spectrum for the DSS. Depicted is the eigen-
frequency ω as a function of the transverse wave number k for
μ = 1. The solid blue line depicts the unstable modes from full
NLS numerics corresponding to the imaginary part of ω. The VA
prediction of Eq. (14) is depicted by the green dashed curves while
the AI prediction (15) is depicted by the thin black line. The different
curves represent different stripe velocities η corresponding, from top
to bottom, to η = 0, 0.4, 0.6, 0.7, 0.8, and 0.9.

and

α

9
(π2 − 6)

(
By

B

)
y

= 4B2

A
Xt − α

π2 − 6

18B2
B2

y − 4B2 + 2αB2X 2
y . (9)

These coupled partial differential equations (PDEs) represent
the equations of motion for the 2D ansatz (3) in terms of the
variables A, B, and X . Using the relation A2 + B2 = u2

0, we
can decouple and rewrite these coupled PDEs in terms of the
variables A and X :

At = α
B2

3
Xyy − αAAyXy, (10)

Xt = A − α
π2 − 6

36B4
A2Ayy − α

2
AX 2

y

−α
π2 − 6

36B6
AA2

y

(
u2

0 + A2

2

)
, (11)

where B2 = u2
0 − A2.

Let us now study the (linear) stability for the reduced
VA PDE system of Eqs. (10) and (11). To this end, we lin-
earize the system around the equilibrium configuration A = η

and X = 0 by considering A = η + a and X = ηt + ξ for
a, ξ � 1 to find

at = α
u2

0 − η2

3
ξyy, (12)

ξt = a − α

36
(π2 − 6)

η2

(u2
0 − η2)2

ayy. (13)

Linear stability of plane waves [a(y, t ), ξ (y, t )] =
[a0ei(ky−ωt ), b0ei(ky−ωt )] the dispersion relation:

ω2 = η2 − u2
0

3
k2

[
1 + α

36
(π2 − 6)

η2(
u2

0 − η2
)2 k2

]
. (14)

As depicted in Fig. 1 (see green dashed curves), Eq. (14)
describes a dispersion relation ω = ω(k) that has qualitatively
the correct shape when compared to the stability of the full

(original) NLS model (1) (see solid curves), obtained numeri-
cally. However, we note that, despite having the correct trend,
the dispersion curves fail to accurately capture quantitatively
the actual growth rates and wave-number cutoffs for stability
[i.e., wave numbers kc such that ω(kc) = 0]. This qualitative
shape improves on the previous reduced description for the
dynamics of DSSs based on the AI assumption [28–30]. The
reduced AI PDE for DSSs yields, for η = 0, the following
(linear) dispersion relation [30]:

ω2 = −u2
0

3
k2, (15)

which simply predicts a linear growth (see thin black line in
Fig. 1) of the instability rates as the wave number increases.

Motivated by the fact that the VA methodology is able
to capture the correct qualitative dynamics for the different
perturbation wave numbers, we now propose a modification
of the VA description as to also quantitatively match more ad-
equately the dispersion curves and consequently the nonlinear
dynamics of the solitonic stripes. In particular, it should be
stressed that the reduced VA described above is successful at
qualitatively describing the dispersion curves which are (a)
unimodal and (b) contain a well-defined critical wave number
above which stability is guaranteed (for η > 0). Therefore, let
us consider an improved version of the VA where the term
responsible for the actual value of the critical wave number (as
a function of η and u0) is modified such that the correct critical
wave number is captured. We thus propose to modify the term
in the Lagrangian that gives rise to the critical wave number.
Namely, we modify the term containing (π2 − 6)/(18B) in
Eq. (7). Specifically we amend our Lagrangian (7) by consid-
ering the phenomenological variant:

Ly = 2Xt

(
−AB + u2

0 arctan
B

A

)
− 4

3
B3

+α
2B3

A2h(B)
B2

y + 2α

3
B3X 2

y , (16)

where we have introduced the function

h(B) = B2 − 2 + 2
√

B4 − B2 + 1 (17)

so as to match the wave-number cutoffs kc obtained from an
asymptotic approximation to the linear stability problem [26].
With this modification, the improved equations of motion (for
the elliptic case α = −1) for a DSS yields

At = −B2

3
Xyy + AAyXy, (18)

Xt = A + A

2
X 2

y + Ayy

h
+ AA2

y

2B2

[
B

h′

h2
− 1

h

]
. (19)

The corresponding linearization for this new reduced PDE
model yields

at = −u2
0 − η2

3
ξyy, (20)

ξt = a + 1

h
(√

u2
0 − η2

)ayy, (21)
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FIG. 2. Stability spectrum for the DSS. Depicted is the eigenfre-
quency ω as a function of the transverse wave number k for μ = 1.
Same notation and layout as in Fig. 1 where now the thick green
dashed line corresponds to the improved VA prediction of Eq. (22).
For completeness we also show the real part of the eigenfrequency
for the full NLS system (thin blue dashed curves) and the improved
VA (green dotted line).

which in turn yields the linear dispersion

ω2 = η2 − u2
0

3
k2

⎡
⎣1 − k2

h
(√

u2
0 − η2

)
⎤
⎦. (22)

By construction, Eq. (22) captures, as expected, the critical

wave numbers k2
c = h(

√
u2

0 − η2) where instability for k < kc

changes to stability for k > kc for all values of the propa-
gation velocity A = η, see Fig. 2. Furthermore, as can be
observed from Fig. 2, not only the critical cutoffs kc match,
but the maximum growth rates are also well approximated
with the improved VA equations. Therefore, we expect that
the modified Lagrangian (16), leading to the VA equations
(18)–(19), is able to give a good description of the DSS
dynamics for all wave numbers. We will return to this point
in Sec. IV, where we will present our numerical comparisons.
This is in contrast with the AI approach [28–30] which, by
construction, is valid for small wave numbers and should
thus be expected to be more adequate there (as will be again
seen in Sec. IV). It should be pointed out at this stage that
an alternative approach to obtain reduced model equations
for the different perturbation wave numbers could be based
on Whitham modulation theory (see for instance Ref. [35]).
Efforts along these lines fall outside the scope of the current
manuscript.

III. VARIATIONAL APPROACH FOR TWO STRIPES

In this section we develop a VA approach to follow the
interaction of two DSSs akin to what was obtained using
the AI approach in Ref. [30]. Consider again the defocusing
(α = −1) 2D NLS equation (1), which, as mentioned before,
may be derived from the renormalized (in the x direction)
Lagrangian (4)–(5), which we now split as follows:

L =
∫ ∞

−∞
Ly dy =

∫ ∞

−∞
(L1 + L2 + L3)dy, (23)

where

L1 = i

2

∫ ∞

−∞
(u∗ut − uu∗

t )

(
1 − u2

0

|u|2
)

dx, (24)

L2 = −1

2

∫ ∞

−∞

[|ux|2 + (|u|2 − u2
0

)2]
dx, (25)

L3 = −1

2

∫ ∞

−∞
|uy|2dx. (26)

In order to variationally follow the 1D two-dark soliton exten-
sion of Eq. (3) as two DSSs in 2D, we consider the following
2D symmetric extension by allowing each dark soliton to have
its own position and keep a stationary background (k = 0):

u(x, y, t ) = B(y, t )T1(y, t )T2(y, t ) + iA(y, t ), (27)

where we use the following short-hand definitions:

T1(y, t ) ≡ tanh z1(y, t ),

T2(y, t ) ≡ tanh z2(y, t ),

z1(y, t ) ≡ B(y, t )[x − X1(y, t )],

z2(y, t ) ≡ B(y, t )[x − X2(y, t )],

S1(y, t ) ≡ sech z1(y, t ),

S2(y, t ) ≡ sech z2(y, t ),

where X1(y, t ) and X2(y, t ) are the spatiotemporal locations of
the two DSSs with X1 < X2. The two-DSS ansatz (27) has an
overall background level B and velocity A (A > 0 representing
the two DSSs moving outward and A < 0 inward) where, as
for the one DSS case, the relation A2 + B2 = u2

0 = constant
remains valid. It is important to mention here that a more
elaborate two DSS ansatz with independent velocities for
each dark soliton does not allow for a tractable VA approach
(i.e., integrals that can be obtained in closed form in the
Lagrangian). Therefore, we restrict our attention to the ansatz
(27), which has the drawback of having a common (symmet-
ric) velocity for both dark solitons so that a solution that is
not symmetric, namely, Ẋ2 	= −Ẋ1 will eventually tend to a
symmetric one (Ẋ2 = −Ẋ1) as time evolves (see Sec. IV for
more details).

Let us now perform the VA approach using the two
DSS ansatz (27). Letting � ≡ X2 − X1 > 0 (i.e., the two
dark solitons do not overlap, nor change relative posi-
tions) and assuming B� 
 1 (i.e., the two dark solitons
are relatively well separated), we have the following useful
approximations:

T1T2 ≈ 1 + T2 − T1 − L(x)e−2B�, (28)

T1S2
2 ≈ S2

2 − F (x)e−2B�, (29)

T2S2
1 ≈ −S2

1 + G(x)e−2B�, (30)

S2
1S2

2 ≈ H (x)e−2B�, (31)

where the precise forms of the functions L, F , G, and H are
not particularly important at this stage as they all contribute to
the same order (e−2B�) and will all be combined appropriately
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in the final, explicit results below [cf. Eq. (38) in what
follows]. Using this information, we compute

|u|2 = u2
0 − B2(S2

1 + S2
2 − S2

1S2
2

)
, (32)

ux = BD(S2
1T2 + T1S2

2 )

i

2
(u∗ut − uu∗

t ) = u2
0

A
Bt T1T2 + AB

(
z2t S

2
2 − z1t S

2
1

)
+ AB(z1t g − z2t f )e−2D�. (33)

Using the above we can simplify the integrand of L1 as

i

2
(u∗ut − uu∗

t )

(
1 − u2

0

|u|2
)

≈ −u2
0

A
B2Bt

(
T1T2S2

1

u2
0 − B2S2

1

+ T1T2S2
2

u2
0 − B2S2

2

)

− AB3

(
z2t

S4
2

u2
0 − B2S2

2

− z1t
S4

1

u2
0 − B2S2

1

)
, (34)

where the approximation

S2
1S2

2 − S2
1 − S2

2
u2

0
B2 − S2

1 − S2
2 + S2

1S2
2

≈ − S2
1

u2
0

B2 − S2
1

− S2
2

u2
0

B2 − S2
2

+ R(x)e−2D�

has been used with z1t = Dt
D z1 − DX1t and z2t = Dt

D z2 − DX2t .
As it was the case for the functions L, F , G, and H above,
the precise form of the function R is not relevant at this stage
because it will be combined in the explicit Lagrangian given
in Eq. (38) below. We thus get, upon integration,

L1 ≈ 2�t f (B), (35)

where

f (B) = −AB + u2
0 arctan

B

A
.

On the other hand for the L2 integral, using exact integrations
yields

L2 = − 8
3 B3 + g(B�)B3 ≈ − 8

3 B3 + 16B3e−2B�, (36)

where

g(z) ≡ −16e2z

(e2z−1)5
[1 + (9 + 12z)e2z−(9 − 12z)e4z−e6z].

Finally, considering the transverse dependence of u, from
Eq. (28), we rewrite (27) as u = B{tanh D[x −
X2(y, t )] − tanh D[x − X1(y, t )] + 1} + iA. As in the single
dark stripe case, assuming that B and A do not depend on y
directly but through the relations D = B and A2 + B2 = u2

0
for D = D(y, t ), yields

uy = B
{
[D(x − X2)]yS2

2 − [D(x − X1)]yS2
1

}
,

|uy|2 = B2
[
z2

2yS4
2 + z2

1yS4
1 − 2z1yz2yS2

1S2
2

]
.

Assuming small and slow displacements, we can safely ne-
glect the cross terms DyX1y and DyX2y from z2

1y, z2
2y, and z1yz2y

and thus we obtain

L3

B2
≈ −B2

y

B3

π2 − 6

9
− 2

3
B
(
X 2

1y + X 2
2y

) + X1yX2yB3K (B�),

(37)
where

K (z) ≡ 4
z coth z − 1

sinh2 z
.

Now, recalling the introduction of the factor h(B) in
Eq. (17) to improve the agreement of the growth rates with
the numerically observed ones, we finally obtain the effective
Lagrangian

Ly = 2�t f (B) − 8

3
B3 + g(B�)B3 − 4B3B2

y

A2h(B)

− 2

3
B3

(
X 2

1y + X 2
2y

) + X1yX2yB3K (B�). (38)

According to the Euler-Lagrange prescription, taking varia-
tions over X1, X2, and B and recalling that � ≡ X2 − X1 and
A2 + B2 = u2

0, yields:

At = −1

4
B3g′ + 1

2
AAy − 1

6
B2�yy + 1

4B
AAyK�y + 1

8
K ′AAy��y − 1

8
K ′B2�2

y − 1

8
BK�yy − 1

4
B3K ′X1yX2y, (39)

X1t = −A − BA

4
X1g′ + 3

8
Ag + AA2

y

2B2h

(
5 − B

h
h′

)
− Ayy

h
− A

4

(
X 2

1y + X 2
2y

) − A

4
X1yX2yX1BK ′ + 3

8
AKX1yX2y, (40)

X2t = +A − BA

4
X2g′ − 3

8
Ag − AA2

y

2B2h

(
5 − B

h
h′

)
+ Ayy

h
+ A

4

(
X 2

1y + X 2
2y

) − A

4
X1yX2yX2BK ′ − 3

8
AKX1yX2y. (41)

Equations (39)–(41) represent one of the main results of
this work where the VA methodology has been employed
to reduce the full dynamics of two interacting DSSs in two
spatial dimensions to these three (1 + 1)D coupled PDEs.
It is interesting to note that if one starts with a symmetric
initial configuration X2(y, t = 0) = −X1(y, t = 0), given the
symmetry of Eqs. (40) and (41), the dynamics preserves this
symmetry at all times [i.e., X2(y, t ) = −X1(y, t ) is an invariant

manifold of the dynamics during the evolution] and hence the
coupled PDEs can be reduced to solely the equations (40) for
X1 and (39) for A.

IV. NUMERICAL RESULTS

In this section we corroborate that the dynamical reduction,
for a single DSS and for two interacting DSSs, obtained
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FIG. 3. Snaking dynamics of the DSS for μ = 1 perturbed by the
first transverse mode of the computational box. The system is initial-
ized with a stationary DSS perturbed with the k = 1 transverse mode
with amplitude 0.01. Namely, the initial location of the dark soliton
at position y is given by X (y, t = 0) = ε sin(kπy/Ly ) with ε = 0.01
and k = 1. The modulus of the field, |u(x, y, t )|, is plotted in the (x, y)
plane at the times indicated. The AI prediction is depicted using
the dark blue (black) dotted line while the corresponding improved
VA prediction is depicted by the green (gray) solid line. The spatial
domain is (x, y) ∈ [−Lx, Lx] × [−Ly, Ly] with Lx = Ly = 20 (only
the region −5 � x � 5 is depicted) under a spatial discretization with
dx = dy = 0.2. See in Supplemental Material, movie-snake-1 for an
animation depicting the corresponding dynamics [39].

through the VA approach is indeed valid under a wide range
of initial conditions. Moreover, we compare the VA results
with the AI methodology put forward in Refs. [28–30] and
showcase where the two display similar results, as well as
where the former represents a significant improvement over
the latter. It is important to stress that from now on, we
use the improved VA model that includes the h(B) term
introduced in Eq. (17). Let us start by considering a single
DSS. The DSS is always unstable (snaking instability) to
transverse wave numbers k such that 0 � k � kc (see previous
section). Therefore, if one considers a spatial domain (x, y) ∈
[−Lx, Lx] × [−Ly, Ly], with a DSS aligned in the y direction
(i.e., using the same notation as in the previous section), there
will always be snaking instability provided that Ly > π/kc.
Conversely, if the domain is too small, unstable transverse
modes do not “fit” inside the domain and thus the DSS is
rendered stable (recall for instance how this property can be
used to arrest the instability of DSSs in trapped BECs in
Ref. [16]).

In order to test the validity of the improved VA approach,
we performed a series of simulations for the dynamical evo-
lution of a single DSS under different perturbations using
second-order finite differencing in space [36] with fourth-
order Runge-Kutta with periodic boundary condition along
the y direction and mod-squared Dirichlet (MSD) bound-
ary conditions [37] along the x direction in order to avoid
any undesired effects from the boundaries. The simulations
depicted in Figs. 3–5 are aimed at controllably testing the
dynamics of perturbations with different wave numbers in
the domain Lx = Ly = 20. In particular, Fig. 3 depicts the
dynamics ensuing from an initially stationary [η = A(y, t =
0) = 0] DSS that has been perturbed with the longest possible
wavelength (satisfying the periodic boundary conditions in the
y direction). In addition to testing the VA reduced equations of

FIG. 4. Snaking dynamics of the DSS for μ = 1 perturbed by
the second transverse mode. Same as in Fig. 3 but for k = 2. See
in Supplemental Material, movie-snake-2 for an animation depicting
the corresponding dynamics [39].

motion, we also implement the AI methodology put forward
in Refs. [28–30]. As it can be seen from the figure, both the
improved VA [see the thick green (gray) curves] and the AI
[see the dark blue (black) dotted curves] methodologies give a
reliable description of the snaking dynamics up to the point
where the DSS loses its transverse dark-soliton-like profile
as it nucleates vortices of alternate signs at the nodes of the
perturbation mode.

A few remarks are in order at this point. First, neither
the VA nor the AI methods were designed, by construction,
to follow the stripe after losing its dark-soliton-like stripe
shape. Thus, as DSSs tend to decay into vortex patterns, there
will always be a point in time where the VA (or AI) basic
assumptions will be violated (most notably the ansatz of a
dark solitonic stripe being an accurate descriptor of the full
2D field) and thus the dynamical reduction will no longer be

FIG. 5. Snaking dynamics of the DSS for μ = 1 perturbed by
a linear combination of the first 10 modes. Same as in Fig. 3 but
for a perturbation of the initial position of the dark soliton given
by X (y, t = 0) = ∑10

j=1 ε j sin[kπ (y + ϕ j )/Ly] with ε j = 0.01, ϕ j =
( j − 1)Lyπ/5, and k = j. See in Supplemental Material, movie-
snake-1-10 for an animation depicting the corresponding dynamics
[39].
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FIG. 6. Snaking dynamics of two DSSs for μ = 1 perturbed by the first transverse mode. The system is initialized with two DSSs at x1 =
−2 = −x2 symmetrically perturbed with the k = 1 transverse mode with amplitude 0.1. Namely, the initial location of each DSSs at position y
is given by −X1(y, t = 0) = X2(y, t = 0) = x0 + ε sin(kπy/Ly ) with x0 = 2, ε = 0.1, and k = 1. The modulus of the field, |u(x, y, t |, is plotted
in the (x, y) plane at the times indicated. The prediction stemming from the improved VA reduced equations (39)–(41) is depicted by the green
solid line. The spatial domain is (x, y) ∈ [−Lx, Lx] × [−Ly, Ly] with Lx = 20 and Ly = 15. See in Supplemental Material, movie-2snakes-1 for
an animation depicting the corresponding dynamics [39].

valid. On the other hand, as it can be noticed from Fig. 2, for
low wave numbers pertaining to the case of Fig. 3, both VA
and AI are able to appropriately predict the correct growth rate
of perturbations. However, as one notices from Fig. 2, both
VA and AI tend to slightly overestimate the growth rates. This
is precisely what it is observed in Fig. 3 where both VA and
AI reductions tend to “run slightly faster” in the dynamical
destabilization. Note, however, that the VA’s overestimation is
slightly smaller than the one obtained through the AI. As we
see next, this issue with the AI overestimation will become
more acute for larger perturbation wave numbers.

Figure 4 depicts a similar case as the one depicted in Fig. 3
but for the mode with the second largest wavelength. Again,
both the improved VA and AI tend to slightly overestimate the
growth rate of the perturbation with the VA approximation be-
ing better than the AI one. In order to test a more complex sce-
nario where the essence of the improvement of the theory pro-
posed in this work is most dramatically evident, we perturbed
the stationary DSS with a combination of the first 10 modes.
The results are depicted in Fig. 5. As it can be observed from
the figure, the VA reduction does an excellent job at following
the dynamical stabilization of the DSS. On the other hand, as
we are now introducing larger wave numbers, the AI is clearly
less accurate (as we expected from its spectral predictions)
and tends to considerably overestimate the growth rates. In

fact, it can be noticed that the VA approximation is even
able to track the full nonlinear dynamics of the DSS up to
the point (and even, arguably, slightly beyond, considering,
e.g., the snapshot at t = 18.5) where it has broken into a
pattern including vortex-antivortex pairs. Furthermore, as the
configuration contains larger wave numbers, the instability
sets in faster and, thus, the slight growth rate overestimation
provided by the VA is now downplayed over the span of time
before the DSS breaks into vortices. This highlights that in a
typical scenario where several unstable modes are present, the
improved VA will be an excellent reduced description of the
full dynamics of single DSSs.

We now proceed to test the improved VA prediction for
the interaction of two DSSs. Similar to the one DSS case, let
us probe both the long wavelength scenario and the multiple,
mixed mode case. Figure 6 depicts the evolution for two sta-
tionary (side-by-side) DSSs symmetrically perturbed by the
longest possible wavelength in the provided domain. As the
picture shows, the VA is able to track extremely well the DSS
dynamics up to the point where the DSSs touch, reconnect,
and split into patterns involving vortical structures. It is im-
portant to note that we have chosen a configuration where the
interactions between the two stripes are quite nontrivial. This
can be noticed by the fact that the top portions of the DSSs (for
y ≈ 8) initially get closer to each other (due to the individual

FIG. 7. Snaking dynamics of two DSSs for μ = 1 perturbed by a linear combination of the first 10 modes. Same as in Fig. 6 but for a
perturbation of the initial position of the dark solitons given by −X1(y, t = 0) = X2(y, t = 0) = x0 + ∑10

j=1 ε j sin[kπ (y + ϕ j )/Ly] with x0 = 2,
ε j = 0.01, ϕ j = ( j − 1)Lyπ/5, and k = j. The spatial domain is (x, y) ∈ [−Lx, Lx] × [−Ly, Ly] with Lx = Ly = 20. See in Supplemental
Material, movie-2snakes-1-10 for an animation depicting the corresponding dynamics.
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FIG. 8. Snaking dynamics of two DSSs for μ = 1 perturbed by a
nonsymmetric perturbation where only the right DSS is perturbed.
Similar as in Fig. 7 but for an unperturbed left DSS given by
X1(y, t = 0) = −x0 and a right DSS perturbed by X2(y, t = 0) =
x0 + ∑10

j=1 ε j sin[kπ (y + ϕ j )/Ly] with x0 = 2, ϕ j = ( j − 1)Lyπ/5,
and k = j (i.e., same as in Fig. 7), where the perturbation strengths
for the right DSS are: ε j = 0.01 (top series of panels) and ε j = 0.001
(bottom series of panels). Note that although the dynamics for both
cases is very similar, the case with the weakest perturbation (see
bottom panels) displays a perturbation growth at a slower timescale
(contrast the difference in times between the two cases). Importantly
also note the deviation induced by the asymmetry between the (by
construction symmetric) VA and the full dynamics. See in Supple-
mental Material, movie-2snakes-0-0-1-10-A and movie-2snakes-0-
0-1-10-B for animations depicting the corresponding dynamics.

growth rates of the snaking instability for each DSS) and then
repel each other (t > 20) once the DSS proximity is such that
the mutual dark soliton repulsion dominates the dynamics. A
more compelling case can be made by testing the VA pre-
diction for the two DSSs by starting with an initial condition
containing a nontrivial combination of the first 10 modes; see
Fig. 7. As for the one DSS case presented in Fig. 5, the two
DSS VA reduction is also able to adequately track the two
DSSs even well after they break up into individual vortices;
see in particular the snapshots between t = 18 and t = 26. It
is relevant to mention that, as in the single DSS case, the two
DSSs case may also be approximated by the AI methodology
[30]. However, one needs to keep in mind that the AI approach
is valid for cases containing long wavelengths. Thus, for cases
containing shorter wavelengths (larger wave numbers), as it is
particularly the case depicted in Fig. 7, the VA is a very good
approximation while the AI will fail in a similar manner akin
to the results presented in Fig. 5 for the single DSS.

Finally, for completeness, we briefly study the case where
the perturbation on each of the two DSSs is not symmetric.
In this case, due to the chosen ansatz (containing a shared
velocity term between the two DSSs), the VA dynamics nec-
essary leads, by construction, to a symmetric configuration.
Therefore, in principle, one would not expect the VA to give
a meaningful prediction for the two DSSs when perturbed
asymmetrically. Nonetheless, we tested that for perturbations
with small asymmetries the VA does indeed reasonably well at
describing the evolution of the two DSSs, despite its obvious
shortcoming in that the evolution of the full dynamics is
no longer symmetric. As an example, we depict in Fig. 8
a couple of cases where the left DSS is left unperturbed
X1(y, t = 0) = −x0 while the right DSS is perturbed as in the
previous numerical examples. In particular, Fig. 8 depicts two
cases where the right soliton position is perturbed by a linear
combination of the first 10 modes with (weak) strengths of
0.01 (top series of panels) and 0.001 (bottom series of panels).
As the figure shows, after some transient, the original NLS (1)
dynamics evolves such that the left DSS develops undulations
(exerted by the right DSS) that are in fact approximately
symmetric with respect to the undulations of the right DSS.
Therefore, it is not completely surprising that this behavior is,
to some extent, followed by the VA as the results in Fig. 8
show.

V. CONCLUSIONS

In the present work we deployed the VA methodology in
order to provide an improved description of the transversely
unstable dynamics of single and multiple (two symmetrically
perturbed) DSSs in the defocusing two-dimensional nonlinear
Schrödinger equation. The method consists of applying the
VA to suitable ansätze that consist of one or two DSSs whose
transverse position and velocity are functions of time and
the transverse spatial variable. In this manner, we are able
to reduce the original (2 + 1)D NLS into two coupled PDEs
in (1 + 1)D for the dark soliton’s position and velocity. It
is also important to highlight here that the standard VA is
qualitatively adequate, yet quantitatively misses the spectral
instability features of the single DSS. In view of that, we
have proposed an amended variant of the VA which captures
the critical wave numbers kc of transverse restabilization (for
different speeds) and consequently performs quantitatively
better over the entire range of wave numbers. Our numerical
results indicate that for short wave numbers the VA does a
slightly better job at predicting the growth rates of perturba-
tions compared to the adiabatic invariant technique developed
in Refs. [28–30]. However, it is for perturbations containing
larger wave numbers (including a nontrivial mix for short and
long wave numbers) that the advantage of the VA method-
ology is more apparent. Specifically, the reduced equations
of motion obtained through the VA are able to closely track
the dynamics for one and two interacting DSSs. In fact, the
reduced VA methodology is not only successful in tracking
the DSSs dynamics up to the point where the DSSs break up
into vortices; surprisingly, it continues to adequately trace the
position of the remnants of the former stripe even for times
slightly beyond its destabilization and breakup into vortical
structures. Our numerical results suggest that the reduced VA
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equations constitute a viable methodology for theoretically
reducing [to a (1 + 1)D setting] and numerically closely track-
ing the dynamics of DSSs over a wide range of dynamical
scenarios (i.e., containing a wide range of perturbations from
short to long wavelength ones).

It is worth mentioning that the VA methodology seems
not to be tractable for a general two dark soliton ansatz.
Therefore, in our presentation we focused on a more specific
ansatz where the two dark solitons share velocities and are
thus pushing to stay symmetric (each one being the mirror
image of the other one). It would be interesting to generalize
the results presented herein by a suitable, and tractable, VA (or
other) methodology that would be able to successfully track
two DSSs for arbitrary positions and velocities. This would
allow us to treat not only the general two DSSs case, but
also the general case of N interacting stripes. Furthermore,
it would be interesting to explore the possibility of employing
methods involving averaged soliton solution quantities (such
as center of mass), with suitably renormalized forms of the
conserved quantities for the case of the defocusing NLS with
nonzero background, in a way analogous to what has been
used in the focusing case in Ref. [38].

Of course, there are other directions that are relevant to
pursue as well, based on the program that has been recently
developed at the level of the adiabatic invariant methodology.
Some of them concern ring dark soliton structures, multicom-
ponent (e.g. dark-bright) solitonic patterns, as well as three-
dimensional states such as planar or spherical solitons. From a
theoretical perspective, understanding better how to justify an
amendment like the one proposed herein from first principles
(that significantly improves the quantitative tracking of the
transversely unstable modes) is also an important challenge
for future studies.
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