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Abstract:  Applying variational methods, we construct analytical approximations for one-peak discrete solitons
supported by a nonlocal discrete nonlinear Schrodinger equation describing laser beams in nematic liquid crystal
waveguides. Two variational ansatz approximations are used: one uses the exact long range decay from the linearized
solution and the other uses the decay as a variational parameter. Comparisons with numerical solutions are presented.
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1 INTRODUCTION

We construct analytical approximations for discrete solitons of a nonlocal discrete nonlinear Schrodinger
equation (DNLS) with a cubic Hartree-type nonlinearity introduced by Fratalocchi and Assanto [5] to study
the propagation of laser beams in waveguide arrays built from a nematic liquid crystal substratum. To obtain
these approximations we extend the variational principles used in Ref. [3] and [4] for 1D discrete solitons
in the cubic-quintic DNLS equation.

Breathers solutions that minimize the Hamiltonian over configurations with fixed /> norm were studied
in Ref. [2]. These solutions are even and decay monotonically away from its maximum. We propose an
ansatz with exponential decay to obtain analytical approximations to the breather solutions. Two types of
approximations are provided, the first one is based on the asymptotic decay of the soliton’s tail, which is
obtained from the exact decay of the linearized problem, and the approximation of the amplitude using a
variational principle. This approximation retains the shape of the exact breather solution.

The second approximation is provided by solving the Euler-Lagrange equations associated with the effec-
tive lagrangian obtained from an ansatz that includes the decay rate as a variational parameter. This reduced
system depends on two parameters: the amplitude and the decay, and provides a better approximation for
the sites close to the peak at the expense of losing the exact asymptotic decay of the soliton.

These analytic approximations are compared with the one-peak numerical solutions with exponential
decay found in Ref. [1]. One goal of the variational method is that it predicts that in the case of the cubic
Hartre-type nonlinearity treated here there are no bifurcation phenomena as it do occurs in the cubic-quintic
DNLS (cf. Ref. [3]).

2 NONLOCAL DNLS EQUATION

Consider the one-dimensional nonlocal DNLS equation

i = 0 (Uns1 + Un—1 — 2up) + 27 tanh gz S ety P, neZ, t >0, (1)
meZ

where d, +y are real and x > 0. ! Equation (1) can be formally written as the Hamiltonian system

'The physically relevant case is 9y > 0. In the examples analysed below we will consider &, v < 0.
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Let as seek a breather solutions of Eq. (1) by substituting the ansatz v,, = A,e~*! (namely: all the sites
oscillate synchronously). Then, the stationary lattice field A,, must solve the recurrence equation

—wA, = 6(Ani1 4+ An 1 — 24,) + 27 tanhg S ermlAL P A, ne )
meZ

This stationary equation can be derived from the lagrangian

K —k|m—
L= wlAnf 63 [Any1— An* + 7 tanh > AP erimrla,2 (5)
neZ nez n,mez
To aproximate breathers solutions to the Eq. (1) we propose the ansatz with exponential decay given
by A, = Ae @ with @ > 0. Replacing this ansatz on the the lagrangian (5) we obtain the effective
lagrangian

Leg (A,a) = A%((w—20)cotha + 26 csch a) + (6)
coth (E + a) sinh 2ac — coth 2a:sinh &

Attanh & 2 . 7

K an 2 cosh 2ac — cosh k @

Analytical approximations to the exact soliton solutions to Eq. (5) can be obtained by solving the Euler-
Lagrange equations associated to this effective lagrangian. We follow two paths to approximate solutions
with exponential decay. In Sec. 2.1 we use a value of « determined by the linearized solution to Eq. (4).
While in Sec. 2.2 we solve the Euler-Lagrange system for both parameters A and « in Eq. (6).

2.1 DECAYING TAIL APPROXIMATION

To obtain the decaying tail of the soliton we can view Eq. (4) as a recurrence relation between consecutive
amplitudes and consider its linearization which corresponds to the linear Schrodinger equation

{ An+1 = (2 - %) Ay — By, (8)
Bn+1 = An
The eigenvalues associated with the matrix of the system (8) are
a a\?2 1
A= (—) 1 Ao = —,
1= 3 + 5 and Ay N )

where a = 2 — w/4. Considering the manifold A,, = AN 1"l = Ae=*I"l ¥n € Z, we obtain

a=1In <%+ (%)2—1>. (10)

We observe from Eq. (9) that a necessary condition for the existence of a soliton solution is wd < 0. The
value of a given in Eq. (10) provides the correct asymptotic decay of the soliton and it will be more accurate
as the nonlinearity is smaller. On the other hand, the amplitude A can be found as a variational parameter
from the Euler-Lagrange equation obtained from Eq. (6), % = 0, which neglecting the trivial solution
A = 0, yields the following quadratic equation:
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(w —20) coth av + 26 csch o + A2~y tanh — = 0. (1D
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Under the above condition wd < 0, it is straightforward to check that the quadratic equation (11) has a
solution if vé > 0, which correspond to the physically relevant cases.

In Fig. 1 the comparison between the numerically exact solutions (black triangles) and the approximation
with the linearization used above (red circles) recovers the shape of the soliton and it is more accurate when
the nonlocality is smaller, i.e. « is larger.

2.2 GLOBAL APPROXIMATION

We now consider A and « as variational parameters and we seek their values from the Euler-Lagrange
system obtained from the effective lagrangian (6)

OLeg 0 OLer

0A 7 da

The first equation is the same computed above in Eq. (11). For the sake of brevity we omit here the explicit

formulation of the second equation. The system can be solved numerically. Comparisons depicted in Fig. 1

between these approximations and numerical exact solutions show that they approximate better the solution
near the peak than the approximation with asymptotic decay.

It can be checked that, under the same conditions of the previous section, i.e. wd < 0 and §v > 0, the
quadratic equation (11) depending on A has a unique positive root for each o > 0. This indicates that we do
not expect bistability phenomena for the soliton solutions of the nonlocal DNLS with a cubic Hartree-type
nonlinearity, as it is the case in the cubic-quintic DNLS (cf. Ref. [3]).
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Figure 1: Soliton solutions of Eq. (4) A, vs. site number (top) and log(A,,) vs. site number (bottom) for x = 0.5,
6 = —0.5,7v = -1, w = 14.6749972 (left) and x = 0.25, § = —0.5, v = —1, w = 6.97912841 (right). Black
triangles correspond to numerically exact solutions, red circles to linearized decay and blue asterics correspond to
Euler-Lagrange system approximation for both paramenters A and «.
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