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a b s t r a c t

We study the azimuthal modulational instability of vortices with different topological charges, in the
focusing two-dimensional nonlinear Schrödinger (NLS) equation. The method of studying the stability
relies on freezing the radial direction in the Lagrangian functional of the NLS in order to form a quasi-
one-dimensional azimuthal equation of motion, and then applying a stability analysis in Fourier space
of the azimuthal modes. We formulate predictions of growth rates of individual modes and find that vor-
tices are unstable below a critical azimuthal wave number. Steady-state vortex solutions are found by
first using a variational approach to obtain an asymptotic analytical ansatz, and then using it as an initial
condition to a numerical optimization routine. The stability analysis predictions are corroborated by
direct numerical simulations of the NLS. We briefly show how to extend the method to encompass non-
local nonlinearities that tend to stabilize such solutions.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Schrödinger (NLS) equation has been used to de-
scribe a very large variety of physical systems since it is the lowest
order nonlinear (cubic) partial differential equation that describes
the propagation of modulated waves [1]. Two interesting systems
described by the NLS that our study is relevant to are Bose–Einstein
Condensates (BECs) [2,3] and light propagation in amorphous opti-
cal media [4].

A BEC is an ultra-cold (on the order of 10�8 K) gas of, typically,
103–106 atoms which have predominantly condensed into the
same quantum state, and therefore behaves like one large macro-
scopic atom. Its dynamics can be described (through a mean-field
approach) by a variant of the NLS called the Gross–Pitaevskii (GP)
equation that includes an external potential trapping the con-
densed atoms [3]:
ll rights reserved.
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i�hWt ¼ �
�h2

2ma
r2Wþ 4p�h2a0

ma
jWj2Wþ VextðrÞW; ð1Þ

where �h is the reduced Planck constant, ma is the mass of one of the
atoms in the condensate, VextðrÞ is the external potential, r2 is the
three-dimensional Laplacian, and a0 is the s-wave scattering length
(a0 < 0 corresponding to the attractive [focusing] case while a0 > 0
to the repulsive [defocusing] case). The modulus squared of the
wave function, jWj2, represents the density of the atoms in the con-
densate. In BECs, a focusing nonlinearity has the physical meaning
that the particles in the condensate will feature attractive interac-
tions. This can cause the BEC to collapse, which in turn increases
the kinetic energy of the particles, and leads to an ‘explosive’
destruction of the BEC dubbed a ‘Bosenova’ [5–8]. In the defocusing
case, the particles have repulsive interactions, in which case the BEC
tries to expand (this is prevented by the external trap, when the lat-
ter is present). Although BECs are three-dimensional objects, by
increasing the strength of the external trap in one transverse direc-
tion, one can reshape the BEC into a quasi-two-dimensional disk (or
even a quasi-one-dimensional cigar-shaped condensate in the case
of two strong transverse directions) [9]. Each of these situations can
be described using appropriate forms of the two-dimensional (2D)
and one-dimensional GP equations [10,11,1–3].
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On the other hand, amorphous optical media such as silica
exhibiting a Kerr effect can be modeled using the NLS, where the
modulus squared of the wave function represents the intensity of
the light being propagated through the media. In such a case, a
ð2þ 1Þ-dimensional NLS is used, where the two dimensions of
the wave function represent a spatial cross-section, while the third
dimension z (which represented time in the case of BECs) repre-
sents the direction of propagation:

2ib0Wz þr2Wþ b2
0

n2

n0

� �
jWj2W ¼ 0; ð2Þ

where r2 is the 2D Laplacian, and b0 is the propagation constant.
The parameters n0 and n2 form the index of refraction in the med-
ium as n ¼ n0 þ n2jWj2, where n0 is the index of refraction in the ab-
sence of light, and n2 is the change in the index of refraction due to
the intensity of the incident light [12].

The 2D NLS equation supports vortices [13]. Vortices are ring-
shaped structures which have a rotational periodic angular phase
associated to them. A key property of the vortex is its topological
charge, denoted as m, which indicates how many periods there
are in the angular phase around the vortex core [3]. For jmj > 0,
the wave function at the center of the vortex becomes identically
zero, causing the ring-like shape. As we will describe below, vortex
solutions of the NLS in the focusing case are modulationally unsta-
ble in the azimuthal direction. Our purpose in the present manu-
script is to formulate and test a method for studying the
azimuthal modulational instability [14] of vortex solutions to the
NLS. The goal is to predict the growth rates of the unstable modes,
and predict the critical mode, below which all modes are unstable.
Wherever relevant, we will make comparisons of the semi-analyt-
ical methods presented herein to recent developments in the study
of ring vortices of the NLS equation, such as Refs. [15,16].

The manuscript is organized as follows: in Section 2, using the
Lagrangian representation of the NLS, we formulate a quasi-one-
dimensional equation of motion for the dynamics of separable stea-
dy-state vortex solutions to the NLS. Then, in Section 3 we describe
the azimuthal modulational stability analysis yielding predictions
of the growth rates of unstable modes, as well as the critical mode,
below which all modes are unstable. In Section 4 a variational ap-
proach (VA) is used to obtain a reliable ansatz for the radial profile
of steady-state vortices. In Section 5 the ansatz is refined into a
numerically ‘exact’ radial profile using optimization methods and
then numerically integrated to extract azimuthal growth rates
and critical modes that are found to match well to our analytical
predictions. In Section 6 we sketch an extension of the technique
to the NLS with nonlocal nonlinearity [17]. Finally, in Section 7 we
summarize our results and give some concluding remarks.

2. Azimuthal equation of motion

Both physical scenarios described above (BECs and amorphous
optical media) can be modeled, under appropriate conditions, by
the 2D NLS. Let us then use the non-dimensionalized NLS

iWt þr2Wþ sjWj2W ¼ 0; ð3Þ

where r2W is the 2D Laplacian of the wave function W and s ¼ þ1
(s ¼ �1) denotes the focusing (defocusing) case. The action func-
tional of Eq. (3) is:

S ¼
Z 1

0
Ldt; ð4Þ

where the Lagrangian reads

L ¼
Z 2p

0

Z 1

0
Lrdrdh; ð5Þ
and its Lagrangian density, in polar coordinates, corresponds to [18]

L ¼ i
2
ðWW�t �W�WtÞ þ jWr j2 þ

1
r2 jWhj2 �

s
2
jWj4: ð6Þ

In order to find the azimuthal equation of motion, we assume a
separable solution with a steady-state ‘‘frozen” in time radial
profile:

Wðr; h; tÞ ¼ f ðrÞAðh; tÞ; ð7Þ

where all of the phase components of the solution are contained in
A, and therefore f ðrÞ 2 R. It is worth mentioning that vortex solu-
tions to Eq. (3) are not necessarily completely separable as per Eq.
(7) and thus this property needs to be checked (see Section 5.2
for more details).

When Eq. (7) is inserted into Eq. (5), since f ðrÞ is ‘‘frozen”, all ra-
dial integrals of Eq. (5) become constants. This allows us to trans-
form the 2D Lagrangian into a quasi-one dimensional (in h)
Lagrangian which can be used to find the equation of motion for
Aðh; tÞ. We use the term ‘quasi-one-dimensional’ because although
it becomes a one-dimensional problem, the radial direction is not
ignored, but shows implicitly in the values of the radial integral
constants.

First, we insert Eq. (7) into the Lagrangian density and evaluate
the radial integrals of the Lagrangian to obtain our quasi-one-
dimensional Lagrangian density:

L1D ¼
i
2

C1ðAA�t � A�AtÞ þ C2jAj2 þ C3jAhj2 �
s
2

C4jAj4; ð8Þ

where

C1 ¼
Z 1

0
jf ðrÞj2rdr; C2 ¼

Z 1

0

df
dr

����
����

2

rdr;

C3 ¼
Z 1

0

1
r2 jf ðrÞj

2rdr; C4 ¼
Z 1

0
jf ðrÞj4rdr:

ð9Þ

We evaluate the variational derivative of the action functional
as shown in Ref. [18], which in this case takes the form:

dS
dA�
¼ @

@t
@L1D

@½A�t �
þ @

@h
@L1D

@½A�h�
� @L1D

@A�
¼ 0: ð10Þ

Inserting Eq. (8) into Eq. (10) yields the evolution equation for
Aðh; tÞ:

iC1At ¼ C2A� C3Ahh � sC4jAj2A: ð11Þ

Applying the rescalings

A! A exp �i
C2

C1
t

� �
ð12Þ

and

t ! C3

C1
t ð13Þ

yields the azimuthal NLS

iAt ¼ �Ahh � s
C4

C3
jAj2A ð14Þ

that we next study for its modulational instability (MI).

3. Stability analysis

For the stability analysis, we assume a vortex solution of Eq.
(14):

Aðh; tÞ ¼ eiðmhþX0tÞ; ð15Þ

where m is the topological charge of the vortex, and X0 is the fre-
quency of rotation of the complex phase. Notice that in this context,
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the vortex waveform becomes an ‘‘azimuthal plane wave”, and as
such its stability analysis becomes the standard modulational sta-
bility analysis of this plane wave (which we briefly review for com-
pleteness purposes here) [19]. The amplitude of the plane wave
does not appear as an explicit term because it is absorbed into
the radial profile f ðrÞ of Eq. (7). Inserting Eq. (15) into Eq. (14), we
get the following dispersion relation:

X0 ¼ �m2 þ s
C4

C3
: ð16Þ

Let us now derive equations of motion for a complex perturba-
tion. Specifically, we wish to derive the amplitude equations for
each perturbed Fourier mode. We start by perturbing Eq. (15) with
a complex, time-dependent perturbation of the form:

Aðh; tÞ ¼ ð1þ uðh; tÞ þ ivðh; tÞÞeiðmhþX0tÞ; ð17Þ

where juj; jv j � 1.
If we rescale time according to the rotating vorticity frame as:

s ¼ t þ 1
2m

h;

this yields

ut ¼ �vhh � s
C4

C3
ð2uv þ u2v þ v3Þ

� �
;

v t ¼ uhh þ 2s
C4

C3
uþ s

C4

C3
ðv2 þ 3u2 þ v2uþ u3Þ

� �
:

ð18Þ

As in Refs. [19,20], in order to study modulational instability
(MI), we seek amplitude equations for the azimuthal modes by
expanding u and v in a discrete Fourier series:

uðh; tÞ ¼ 1
2p

X1
K¼�1

ûðK; tÞe�iKh;

vðh; tÞ ¼ 1
2p

X1
K¼�1

v̂ðK; tÞe�iKh;

ð19Þ

where K is the mode number and its respective amplitude is given
by:
Fig. 1. A typical numerical simulation of a vortex solution to the NLS showing MI. T
perturbation amplitude of � ¼ 0:001: (a) t ¼ 0, (b) t ¼ 8, (c) t ¼ 10, and (d) t ¼ 12.
ûðK; tÞ ¼
Z 2p

0
uðh; tÞeiKhdh;

v̂ðK; tÞ ¼
Z 2p

0
vðh; tÞeiKhdh:

ð20Þ

Applying these to Eq. (18) yields two coupled nonlinear ordin-
ary differential equations describing the dynamics for the ampli-
tudes of u and v for each mode. Since we are not interested in
the long-term dynamics of the system, but only in the MI of small
perturbations, we drop the nonlinear terms and write the resulting
linearized system in matrix form as:

d
dt

û

v̂

� �
¼

0 K2

2s C4
C3
� K2

� �
0

" #
û

v̂

� �
: ð21Þ

The eigenvalues for this linear system are:

k� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2s

C4

C3
� K2

� �s
:

We notice that for the defocusing nonlinearity (s ¼ �1) dark
vortices are supported by a non-zero background, and thus the Ci

integrals do not converge, and therefore the method employed
above would need to be adjusted by appropriately subtracting
the background field in the Lagrangian integrals. Nonetheless, it
is worth mentioning that higher (m > 1) charge dark vortices are
unstable since they tend to split into unitary charge vortices as
shown in Ref. [21] (see also Refs. [22–25], and references therein,
for recent work on this topic). However, this instability is not of
the modulational type and thus we do not study it here, and there-
fore we concentrate on the focusing case of s ¼ þ1 (‘bright’ vorti-
ces) below. It is also interesting to note that the presence of a
confining potential might stabilize higher order dark vortices in
certain parameter windows [22,26,27,16].

Returning to the case of interest, namely the focusing case
(s ¼ þ1), there is a bifurcation at a critical value of K:

Kcrit �

ffiffiffiffiffiffiffiffiffiffiffi
2s

C4

C3

s
; ð22Þ

where K < Kcrit indicates a modulational instability. An example of
such MI is shown in Fig. 1.
he vortex shown is of charge m ¼ 2 perturbed with mode K ¼ 5 starting with a
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To predict the actual exponential growth rates for the perturba-
tion of each mode from the eigenvalues, the time rescaling of Eq.
(13) needs to be taken into account, in which case the growth rates
(in terms of Kcrit) are:

k� ¼ �
C3

C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðK2

crit � K2Þ
q

: ð23Þ
0 5 10 15 20
0

0.1

0.2
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|f(
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Fig. 2. Comparison between VA ansatz (dashed/red lines) and the numerically
‘exact’ solution (solid/blue lines) for charges m ¼ 1; . . . ;7 (curves left to right). We
notice that the VA captures the numerically ‘exact’ solution very well as m
increases.
4. Variational approach

Explicit solutions for two-dimensional steady-state vortices of
the NLS are not available. Therefore, in order to find a tractable,
approximate, solution, we use a variational approach (VA) to get
a reasonable ansatz, and then use that ansatz as an initial condition
to a nonlinear equation optimization routine which finds the
numerically ‘exact’ steady-state profile, f ðrÞ. The VA-inferred seed
may also be of value as an initial guess to other numerical tech-
niques that have been previously used to obtain such vortices,
including shooting methods [15] or Newton-type, fixed point
schemes [16]. The modified Gauss–Newton scheme presented be-
low is intended as an alternative to the former ones.

To perform the VA, we use the technique described in Ref. [18].
We insert a vortex ansatz with variable parameters into the
Lagrangian of the NLS, and use the Euler–Lagrange equations to
find the ‘best’ values for the parameters. We start with a general,
separable, steady-state solution:

Wðr; h; tÞ ¼ f ðrÞeiðmhþXtÞ; ð24Þ

where f ðrÞ is the steady-state radial profile which we want to find.
Inserting this solution into the Lagrangian density of the NLS yields:

L ¼ 2pðXC1 þm2C3 þ C2 �
1
2

C4Þ; ð25Þ

where we have now explicitly set s ¼ þ1 and the C-constants are
the same as in Eq. (9).

We use a one-dimensional soliton sech ansatz similar to that
used in Ref. [28]:

f ðrÞ ¼
ffiffiffi
B
p

sech

ffiffiffi
B
2

r
ðr � rcÞ

 !
; ð26Þ

with parameters B and rc corresponding, respectively, to the ampli-
tude and location of the ring induced by the vortex. Now assuming
rc to be large, we can approximate the C-constants as follows:

C1 ¼
Z 1

0
Bsech2ðFÞrdr ¼ 2 lnð1þ EÞ � rc

ffiffiffiffiffiffi
8B
p

; ð27Þ

C2 ¼
Z 1

0

B2

2
sech2ðFÞ tan h2ðFÞrdr ð28Þ

¼ B½lnð1þ EÞðE2 þ Eþ 1Þ þ 2E�
3ð1þ EÞ2

�
ffiffiffi
2
p

3
rcB3=2:

C4 ¼
Z 1

0
B2sech4ðFÞrdr ¼ 4C2 �

4
ffiffiffi
2
p

3
rcB3=2; ð29Þ

where E � e
ffiffiffiffi
2B
p

rc and F �
ffiffi
B
2

q
ðr � rcÞ. The C3 integral does not con-

verge due to the singularity at r ¼ 0. However, since we assume rc

to be large, the r in the integrand can be viewed as a constant
(which we choose to be the center of the sech, i.e. rc) and so we
have:

C3 ¼
Z 1

0

1
r

Bsech2ðFÞdr � 1
rc

Z 1

0
Bsech2ðFÞdr

¼
ffiffiffiffiffiffi
8B
p

rc

e
ffiffiffiffi
2B
p

rc

ð1þ EÞ �
ffiffiffiffiffiffi
8B
p

rc
:

ð30Þ
Using these approximations, we obtain:

L ¼ 2p
3

ffiffiffiffiffiffi
2B
p

rcð6Xþ 6
m2

r2
c
� BÞ:

The Euler–Lagrange equations:

@L
@B
¼ 0;

@L
@rc
¼ 0

lead us to the solution:

B ¼ 3X; rc ¼
ffiffiffiffiffiffiffiffiffiffi
2m2

X

r
ð31Þ

and so our VA ansatz is:

f ðrÞ ¼
ffiffiffiffiffiffiffi
3X
p

sech

ffiffiffiffiffiffiffi
3X
2

r
r �

ffiffiffiffiffiffiffiffiffiffi
2m2

X

r !" #
: ð32Þ

Despite the obvious problem with this solution at r ¼ 0 (where
f ð0Þ should identically be equal to 0), it captures the shape and po-
sition of the numerically ‘exact’ solution very well (see Fig. 2). Also
for higher m, its value at r ¼ 0 becomes very close to zero.

Using the VA ansatz with the asymptotic approximations of Eqs.
(28)–(30), we can calculate analytical expressions for the exponen-
tial growth rates and critical modes of the MI:

Kva
crit ¼ �2

ffiffiffi
2
p

m;

kva ¼ KX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m2 � K2

p
2m2 :

ð33Þ

The advantage of the above formula is that, although approxi-
mate, they describe in simple terms the MI experienced by the vor-
tex. Also, it should be noted that this analytical prediction becomes
more accurate for higher order vortices as the VA is able to closely
match the actual solution as depicted in Fig. 2. It should also be
noted that the critical mode is independent of X. This fact was ver-
ified by numerical simulations and thus, without loss of generality,
we fix X = 0.25 for all numerical results presented throughout this
work.

5. Numerical results

5.1. Numerical optimization

To refine the ansatz profile into a numerically ‘exact’ solution,
we implement a nonlinear optimization scheme based on a modi-
fied Gauss–Newton scheme [29]. First, we insert the following sep-
arable steady-state solution into Eq. (3):
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Fig. 3. Numerical predictions of growth rates of perturbations of the azimuthal
modes (K) for vortices with X ¼ 0:25 and charges m ¼ 1; . . . ;5 (left to right) using
the numerical routine described in Section 5 to converge the VA ansatz into a
numerically ‘exact’ solution. The predictions are made numerically integrating the
constants of Eq. (9). We see that for each m, after the critical mode, the growth rate
predictions for each K become 0 indicating that the perturbations after the critical
mode are stable.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

K

λ
Theory
Numeric

Fig. 4. Average growth rates from full two-dimensional simulation of vortices of
charge m ¼ 2 perturbed with modes K ¼ 1; . . . ;7 compared to numerical predic-
tions. The predicted growth rates are shown in blue circles, while the green squares
represent the computed growth rates from the full simulation.
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Fig. 5. Same as in Fig. 4 for m ¼ 3.
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Wðr; h; tÞ ¼ f ðrÞeiðmhþXtÞ ð34Þ

which produces an ordinary differential equation for f ðrÞ which can
be discretized as:

FiðfiðriÞÞ ¼ � Xþm2

r2
i

� �
fi þ DðfiÞ þ f 3

i ¼ 0; ð35Þ

where

DðfiÞ ¼
1
ri

1
Dr

riþ1
2

fiþ1 � fi

Dr
� ri�1

2

fi � fi�1

Dr

� �
: ð36Þ

We now want a profile,~f 0, which optimizes ~F towards the spe-
cific value ~0. To do this we iterate the trial profile using:

~f kþ1 ¼~f k þ ak~pk;

where the step length ak, is found by:

min
a>0

Mð~f k þ a~pkÞ ! ak

and where Mð~f kÞ is the merit function defined by:

Mð~f Þ ¼ 1
2

Xn

i¼1

ðFiðf ÞÞ2: ð37Þ

The step direction, ~pk is found using a modified Gauss–Newton
(GN) formulation:

~pk ¼ �ðJT
k Jk þKkIÞ�1JT

k
~FðfkÞ; ð38Þ

where Kk is called the forcing term, which ensures that the step is
always defined, even near non-zero roots of M. The forcing term
is manually set to values which produce desired results for our
problem (Kk ¼ 0:001). Some sample profiles for various charges
are shown in Fig. 2, where we can see the very good agreement be-
tween VA and the numerically ‘exact’ solution, especially for higher
charges.

The apparent convergence of the VA ansatz with the GN refined
profile as jmj increases can be very useful. For very large jmj, the
GN computation using a high enough resolution to avoid numerical
errors can become very computationally expensive. Therefore, the
analytic stability predictions of the VA [see Eq. (33)] can be used
for predictions without the need to run numerical computations
at all. Even for low charges, the VA ansatz accurately describes
the radius and maximum intensity of the vortex.

5.2. Two-dimensional simulations

We now compare our predictions for the MI growth rates for
vortex charges m ¼ 1; . . . ;5 using Eq. (23) to numerical results,
see Fig. 3. To verify our predictions we use a polar-grid finite-dif-
ference scheme where we treat the time derivative separately from
the spatial derivatives. For the time derivatives, we use the fourth
order Runge–Kutta method. For the spatial derivatives we use a
second-order central difference scheme:

r2Wi;j ¼ DðWiÞ þ
1
r2

i

Wi;jþ1 � 2Wi;j þWi;j�1

Dh2 :

For our simulations we use X ¼ 0:25, Dr ¼ 0:35, Dh ¼ 2p=80,
Dt ¼ 0:0005, with a length of the simulation tmax ¼ 15, and a per-
turbation amplitude � ¼ 0:00001.

Using this scheme, along with the Dirichlet boundary condi-
tions, yields the results in Figs. 4 and 5 for m = 2 and 3, respec-
tively. The m = 1 vortex displays similar instability behavior to
the higher charge vortices but since it contains only three unstable
modes we concentrate here in the most interesting higher charged
cases with m = 2 and m = 3. The growth rates are calculated by
recording the maximum and minimum of the modulus squared
of the crest of the vortex, and computing the average growth rate
of the perturbation growth.



Fig. 6. Depiction of the modulus squared of numerically derived unstable eigen-
modes of vortices in the 2D focusing NLS of charges m ¼ 1;2;3; and 6 for modes
K ¼ 1; . . . ;5 (the vortex of charge m ¼ 1 does not have unstable modes past K ¼ 3).
It is obvious from the panels that the eigenmodes are not completely separable into
radial and azimuthal parts as assumed in Eq. (7), but can be reasonably
approximated by such a separable solution. We also see that for higher charges
and higher mode numbers, the eigenmodes appear to become more separable, and
thus the approximation of a separable solution becomes more accurate.
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Overall, we see that our numerical simulations yield growth
rates that are close to those predicted, but typically slightly higher,
with an error on the order of 10% for modes far from Kcrit. For
modes close to Kcrit, we observe higher error. Also, for m = 2 and
3, the predicted Kcrit is one mode off.

Through one-dimensional simulations, as well as numerical er-
ror analysis, we have accounted for much of this error. It is ob-
served that for modes closer to Kcrit, the simulations are very
sensitive to resolution. By increasing the resolution to very high
levels, the discrepancy in the one-dimensional runs were virtually
eliminated. Such high resolutions were not used for the 2D simula-
tions because the simulations become very computationally
expensive. Additionally, due to the singularities in the C-constant
integrals, the numerical predictions derived from them also induce
slight errors.

Another source of the discrepancy between our predictions and
the simulations (especially the fact that our critical mode predic-
tion is off by one) is that the assumption of separability used in
Eq. (7) is not exact, but rather a good approximation. This can be
seen by plotting the 2D eigenvectors of the steady-state vortices
as seen in Fig. 6. We see that for low vortex charges, and small
mode perturbations, the eigenvectors are clearly non-separable
into radial and the azimuthal parts. As one increases the charge
and/or the mode being perturbed, the eigenvector becomes more
separable. Since our simulations were done on vortices of low
charge, some discrepancy due to the assumption of Eq. (7) is to
be expected [30].

Finally, we note in passing that our approach is somewhat
complementary to the theoretical approach of Ref. [15], while
the combination of both is in some sense tantamount to the the-
oretical analog of what is found numerically in Refs. [15,16]. In
Ref. [15], the so-called Vakhitov–Kolokolov criterion was consid-
ered which is implicitly connected to the K ¼ 0 perturbation
mode and the instability along that eigendirection leads to col-
lapse. On the other hand, here we examine the modulational-type
instability of higher K modes which initiates the unstable dynam-
ics by breakup of the azimuthal symmetry (and may, however,
eventually lead to collapse in conjunction with the K ¼ 0 mode,
as shown in Fig. 1).
6. Nonlocal nonlinearity

Here we briefly describe one of the possible extensions to the
theory, that of incorporating nonlocal interactions. Such interac-
tions correspond to various physical systems, such as dipole–di-
pole interactions in a BEC of degenerate dipolar atoms [31], and
nonlinear crystals whose nonlinear refractive index changes due
to the intensity of the light present (determined by a transport pro-
cess such as heat conduction) [32]. As we will show, the nonlocal-
ity of the nonlinearity will induce a stabilizing effect on the
modulational stability of vortices. Other interesting effects of the
nonlocality of the nonlinearity include: changing, under appropri-
ate circumstances, the character of interaction of dark solitons
from repulsive to attractive [33]; changing the interaction strength
between solitons [34]; and stabilization of dipole solitons [35] or
2D ring vortices such as the ones considered herein [36]. We note
that prior work has demonstrated that for the case of nonlocal vð3Þ
nonlinearity, all three-dimensional spatiotemporal solitons with
vorticity are unstable [37].

For nonlocal interactions, the NLS can be altered to have a non-
local nonlinearity [32]

iWt þr2Wþ sNðjWj2ÞW ¼ 0; ð39Þ

where the nonlocal nonlinearity takes the form of a convolution
integral:

N ¼
Z 2p

0

Z 1

0
Vðr0 � r; h0 � hÞjWðr0; h0; tÞj2r0dr0dh0

and where V, the nonlocal response function, is taken to be a Gauss-
ian (which appears in relation to the nonlinear crystal heat diffusion
nonlocality [32]):

Vðr0 � r; h0 � hÞ ¼ 1
pr2 exp � j r

!0 � r!j2

r2

 !
;

where r!¼ ðr cos h; r sin hÞ and r!0 ¼ ðr0cosh0; r0 sin h0Þ.
Formulating the Lagrangian density of Eq. (39) yields:

L ¼ i
2
ðWW�t �W�WtÞ þ jWr j2 þ

1
r2 jWhj2 �

s
2
jWj2NðjWj2Þ

which, by the same method as in Section 2, yields the following azi-
muthal equation of motion:

iC1At ¼ C2A� C3Ahh � sCðh; tÞA; ð40Þ

where C is defined as:

Cðh; tÞ ¼
Z 2p

0

Z 1

0

Z 1

0
Vðr0 � r; h0 � hÞ

	 f ðrÞ2f ðr0Þ2jAðh0; tÞj2rr0drdr0dh0: ð41Þ

Note that the new, nonlocal, azimuthal NLS (40) is the same as
in the local case [see Eq. (11)] where the (local) C4 integral has
been replaced by the (nonlocal) convolution C integral (41).

We use the same stability analysis technique as in Section 2,
with a slight alteration. We notice that if we define:

Rðh0 � hÞ ¼
Z 1

0

Z 1

0
Vðr0 � r; h0 � hÞf ðrÞ2f ðr0Þ2rr0drdr0

then C is now a convolution term as follows:

Cðh; tÞ ¼
Z 2p

0
Rðh0 � hÞjAðh0; tÞj2dh0 ¼ R � jAj2:

Inserting this into Eq. (40), and using the same rescalings as in
Eqs. (12) and (13), yields

iAt ¼ �Ahh �
s

C3
AðR � jAj2Þ:
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Now, we perform a stability analysis identical to that of Section
3, but along with the transforms of û and v̂ , we also add:

R̂ðKÞ ¼
Z 2p

0
RðhÞeiKh

in which case the convolution term becomes a product (AR̂), and we
get:

k� ¼ �
C3

C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2s

R̂ðKÞ
C3
� K2

 !vuut

and, therefore, the critical mode is:

Kcrit ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s

R̂ðKÞ
C3

s

which has the same form as the local nonlinearity case after replac-
ing C4 with R̂ðKÞ. We see that depending on the nonlocal response
function, Kcrit can be damped, and if R̂ðKÞ < j C3

2s j then Kcrit < 1 and
all modes become stable. Therefore, we see that one could have a
vortex in the focusing NLS with a nonlocal nonlinearity which
would be modulationally stable. In fact, this modulational stability
(as well as the stability against collapse) of the focusing ring vorti-
ces of the nonlocal NLS equation has been confirmed in the work of
Ref. [36] and is a feature that could have practical applications, such
as data storage and communications using light vortices in the Kerr
optical media [38].

7. Conclusions

We have formulated a methodology for studying azimuthal
modulational instability of vortices in the two-dimensional nonlin-
ear Schrödinger (NLS) equation which can be extended to incorpo-
rate any additional terms in the NLS as long as they have a
Lagrangian representation (this expandability of the method adds
greatly to its usefulness and broad relevance). The method relies
on approximating a vortex solution as being separable into its ra-
dial and azimuthal parts, and using the Lagrangian functional of
the NLS to obtain a quasi-one-dimensional equation of motion
for the azimuthal direction. A stability analysis on modulational
perturbations of the equation, leads to predictions of growth rates
for each perturbed mode, and of the critical mode. After obtaining a
steady-state vortex solution using a variational ansatz along with a
nonlinear optimization routine, we ran numerical simulations of
the NLS, perturbing individual modes and recording their growth
rates to confirm the predictions.

One key result that should not be overlooked is that of the use-
fulness of the variational ansatz of the vortex profiles that we de-
rived. Since this profile seems to converge to the numerically exact
solution as the vortex charge becomes large, experimenters can
use it to make simple yet accurate predictions of the vortex radius
and intensity given experimental parameters. Furthermore, it can
be used as in Ref. [15], in both local and nonlocal settings to yield
an approximate threshold for collapse dynamics.

We have also shown theoretical predictions of modulational
instability of vortices which exhibit a nonlocal response by extend-
ing the NLS to incorporate a nonlocal nonlinearity. The results
illustrate that nonlocality can damp, or completely eliminate, the
modulational instability, potentially leading to the complete
stabilization of the nonlocal vortices, as shown numerically, e.g.,
in Ref. [36].
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