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A MODULUS-SQUARED DIRICHLET BOUNDARY CONDITION
FOR TIME-DEPENDENT COMPLEX PARTIAL DIFFERENTIAL
EQUATIONS AND ITS APPLICATION TO THE NONLINEAR

SCHRÖDINGER EQUATION∗

R. M. CAPLAN† AND R. CARRETERO-GONZÁLEZ‡

Abstract. An easy to implement modulus-squared Dirichlet (MSD) boundary condition is
formulated for numerical simulations of time-dependent complex partial differential equations in
multidimensional settings. The MSD boundary condition approximates a constant modulus-squared
value of the solution at the boundaries and is defined as ∂Ψ

∂t
|b ≈ i Im[ 1

Ψb−1

∂Ψ
∂t

|b−1] Ψb, where Ψ is the

complex field and the subscripts b and b− 1 refer to a boundary point and the closest interior point
to the boundary, respectively. Application of the MSD boundary condition to simulations of the
nonlinear Schrödinger equation is shown, and numerical simulations are performed to demonstrate
its usefulness and advantages over other simple boundary conditions.
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1. Introduction. When utilizing numerical methods to approximate the so-
lutions to time-dependent partial differential equations (PDEs), proper handling of
boundary conditions can be quite challenging. Sometimes, an otherwise stable nu-
merical scheme will become unstable depending on how the boundary conditions are
computed [42]. In addition, high-order schemes can degrade in accuracy to lower order
when using boundary conditions which are not compatible with the high-order accu-
racy [26]. Proper handling of boundary conditions in higher-order schemes, especially
in high-order compact schemes, can be even more of a challenge [19, 20].

Often, researchers will forgo a complicated boundary condition implementation
and instead use tried-and-true boundary condition techniques which are very simple
yet provide acceptable results. One of the most common is the use of Dirichlet bound-
ary conditions when simulating solutions which decay towards zero at infinity, and
where most of the dynamics (or “action”) is expected to remain in the central regions
of the computational grid. Another simple method in such cases is to use periodic
boundary conditions.

Infinite-domain problems involving PDEs whose function values are complex can-
not, in general, make use of numerical Dirichlet or periodic boundary conditions
because of the oscillation of the real and imaginary parts of the function due to the
intrinsic frequency of the system. (In cases when both the real and imaginary parts
of the solution converge to a constant at infinity, such boundary conditions can be
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used.) In many solutions (for examples, see section 4), the real and imaginary parts
of the solution do not converge, but rather, the modulus squared of the solution con-
verges to a constant value at infinity. In such a case, Dirichlet boundary conditions
fail and it may not be possible to use periodic boundary conditions since the solution
will instantaneously “feel” its periodic counterpart through its phase which can cause
dynamical effects which would not happen in a true infinite background. Addition-
ally, for some solutions, a large phase jump can exist between one boundary of the
domain and the opposite boundary in which case using periodic boundary conditions
artificially connects the phase jump resulting in an incorrect solution. It is therefore
desirable in such cases to find a simple alternative boundary condition.

In this paper, we present a simple way to simulate a modulus-squared Dirichlet
(MSD) boundary condition in time-dependent complex-valued PDEs which keeps the
modulus squared of the solution at the boundaries constant. The MSD boundary
condition is very easy to implement and eliminates the need for overly large grids or
expensive and complicated boundary conditions for many problems.

A very common time-dependent complex-valued PDE used in a wide range of
applications is the nonlinear Schrödinger equation (NLSE). The NLSE is a universal
model describing the evolution and propagation of complex field envelopes in nonlinear
dispersive media. As such, it is used to describe many physical systems including the
evolution of water waves, nonlinear optics, thermodynamic pulses, nonlinear waves
in fluid dynamics, waves in semiconductors, and the mean-field dynamics of Bose–
Einstein condensates (BECs) [23, 34, 37, 43]. In systems such as optics and BECs,
the modulus squared of the solution (referred to as the “wavefunction”) represents the
observable (intensity of light and atomic density, respectively). In this situation, often
the dynamics of “dark” structures (dark solitons, vortices, vortex lines, vortex rings,
etc.) which reside inside the medium are studied. They are coherent structures of
very low (or zero) central density which exist inside the bulk of the medium. The most
basic form of the structures can be examined by assuming an infinite-extent domain,
in which case the solutions exist within an infinite constant-density background. Such
a situation is very well-suited for the use of an MSD boundary condition. As such,
in section 4, we use simulations of dark coherent structures in the NLSE to test the
MSD boundary condition.

In the specific case of the linear and nonlinear Schrödinger equations, many so-
phisticated boundary conditions have been developed which simulate transparent or
artificial boundaries. For an extensive review on this topic we refer the interested
reader to the reviews [2, 3]. For the linear Schrödinger equation, such boundary con-
ditions include continuous, pole condition, temporally discrete, spatially discrete, fully
discrete, as well as others in one dimension, while in two dimensions, continuous trans-
parent boundary conditions have been formulated which make use of the Sommerfeld
radiation condition [39]. Work has also been done in formulating similar conditions
for the one-dimensional NLSE (see [2, 3, 10] and references therein for a complete
review). Most of the aforementioned boundary conditions focus on eliminating reflec-
tions off the boundaries when studying dynamics of solutions which tend to zero at
infinity. For example, the method of perfectly matched layers [12, 38, 46] has been
used to artificially damp traveling waves in the domain without modifying their dy-
namics. Another popular method to deal with boundary conditions is to implement
absorbing boundary conditions [4, 5, 6, 7, 8, 9]. While these boundary conditions
would be valid for the study of bright structures (a localized solution on a zero back-
ground) in the NLSE, they are not necessarily appropriate for dark structures (hole
or “bubble”) which exist in a constant-density, nonzero, background. Furthermore,
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transparent or artificial boundary conditions can be very complicated to implement.
A relevant exception to this is the Sommerfeld radiation condition described in [39],
which is relatively easy to implement and has been previously successful in simulating
a constant-density background in the NLSE [13]. However, since it requires additional
computations at the boundaries, and there has been some discussion debating its use-
fulness in some cases (see [25]), the MSD boundary condition formulated in this paper
remains a useful alternative approach to approximate a constant-density background
in the NLSE.

The paper is organized as follows. In section 2 we formulate the MSD bound-
ary condition for general time-dependent complex-valued PDEs. Then, in section 3,
we apply the MSD boundary condition to the NLSE. In section 4 we numerically
demonstrate the usefulness of the MSD boundary condition for simulating the one-,
two-, and three-dimensional NLSE using a Runge–Kutta finite-difference scheme and
comment on the stability of the MSD boundary condition. Finally, we conclude in
section 5.

2. Formulation of the MSD boundary condition.

2.1. Notation. To formulate an MSD boundary condition we first introduce the
notation that Ψb describes the grid points on a boundary and Ψb−1 describes the grid
points one cell in from the boundary in the normal direction to the boundary points.
The real part of Ψ is denoted as ΨR and the imaginary part as ΨI . The shorthand
notation of Ψα is used to denote the first derivative with respect to α (∂Ψ/∂α).

2.2. Derivation of the MSD boundary condition. We start by stating the
condition, that for all times, the modulus squared of the function Ψ at the boundaries
(Ψb) is equal to a constant, positive, real value B:

(2.1) |Ψb|2 = B.

This is equivalent to stating that the solution at the boundary has the form

(2.2) Ψb =
√
B exp

[
−i Ω̂b(�r, t)

]
,

where Ω̂(�r, t) ∈ � is the phase which can be a function of space and time. Taking the
natural logarithm of (2.2) yields

ln(Ψb) = ln
(√

B
)
− i Ω̂b(�r, t),

which, after taking a temporal derivative, yields

(2.3)
∂

∂t
ln(Ψb) = −i

∂

∂t
Ω̂b(�r, t).

We now apply a spatial derivative in the normal direction to the boundary (denoted
here by x) on each side yielding the continuous representation of the MSD boundary
condition,

(2.4)
∂

∂x

(
Ψt,b

Ψb

)
= −i Ω̂xt,b(�r, t).

Discretizing the left-hand side of (2.4) using first-order one-sided differencing and
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multiplying both sides by hx (the grid spacing in the normal direction to the boundary)
yields

(2.5)
Ψt,b

Ψb
− Ψt,b−1

Ψb−1
= −i hx Ω̂xt,b(�r, t) +O(h2

x).

We note that if the phase of the solution at the boundary is a linear combination of
space- and time-dependent functions, namely, Ω̂(�r, t) = α1f(�r) + α2g(t) for any real
α1 and α2, then the Ω̂xt,b term of (2.5) becomes exactly zero, while in the general
case (where there could be a combined spatiotemporal phase at the boundary that
yields a nonzero Ω̂(�r, t) term), the right-hand side of (2.5) remains O(hx).

We approximate the right-hand side of (2.5) as zero, noting that for practical
applications such as the simulation of coherent structures which are sufficiently far
away from the boundaries (see section 4), the phase is expected to be a slowly varying
function—at most a linear function—of time and space at the boundaries. Therefore,
after rearranging (2.5), we arrive at the discrete form of the MSD boundary condition:

(2.6) Ψt,b ≈ Ψt,b−1

Ψb−1
Ψb,

where the value of Ψt,b−1 is computed using the interior numerical scheme being
implemented.

It is interesting to note that the MSD boundary condition of (2.6) is very similar
in form to the Sommerfeld radiation boundary condition mentioned in [39] where the
time derivative at the boundary is computed as

Ψt,b ≈ −Ψt,b−1

Ψx,b−1
Ψx,b,

where x is the direction normal to the boundary.
It is important to note that from (2.3), Ψt,b/Ψb should be purely imaginary, and

therefore, from (2.6), Ψt,b−1/Ψb−1 should be purely imaginary as well. However, due
to numerical errors, computing Ψt,b−1/Ψb−1 may introduce a small real part which
would cause the solution at the boundaries to undergo eventual exponential growth
(which we have observed in simulations not reported here). In order to ensure that
Ψt,b−1/Ψb−1 is purely imaginary, we modify the MSD boundary condition of (2.6) to
be

(2.7) Ψt,b ≈ i Im

[
Ψt,b−1

Ψb−1

]
Ψb.

When using the MSD boundary condition in programming environments that
do not intrinsically handle complex variables, (2.7) must be explicitly split into its
real and imaginary parts. We begin by expanding the unmodified MSD boundary
condition of (2.6) into its real and imaginary parts yielding

ΨR
t,b + iΨI

t,b ≈
ΨR

t,b−1 + iΨI
t,b−1

ΨR
b−1 + iΨI

b−1

(
ΨR

b + iΨI
b

)
,



A MODULUS-SQUARED DIRICHLET BOUNDARY CONDITION A5

which leads to

ΨR
t,b + iΨI

t,b ≈
[
ΨR

t,b−1 Ψ
R
b−1 +ΨI

t,b−1 Ψ
I
b−1(

ΨR
b−1

)2
+
(
ΨI

b−1

)2(2.8)

+ i

(
ΨI

t,b−1 Ψ
R
b−1 −ΨR

t,b−1 Ψ
I
b−1(

ΨR
b−1

)2
+
(
ΨI

b−1

)2
)] (

ΨR
b + iΨI

b

)
.

We note that with the MSD assumption |Ψb|2 = B, we have that

(2.9)
∂

∂t
|Ψb|2 =

∂

∂t

(
ΨR

b

)2
+

∂

∂t

(
ΨI

b

)2
= 0,

which is equivalent to

(2.10) ΨR
b

∂ΨR
b

∂t
= −ΨI

b

∂ΨI
b

∂t
.

Therefore, we see that the first term in the brackets of (2.8) would be equal to zero if
evaluated at the boundary. If it is assumed that the interior point is similar, the term
can be dropped. Dropping the term is equivalent to the numerical fix used in (2.7).
Simplifying (2.8) with this in mind yields the separated MSD boundary condition

ΨR
t,b = −Ω̃ΨI

b ,(2.11)

ΨI
t,b = Ω̃ΨR

b ,

where

(2.12) Ω̃ =
ΨI

t,b−1 Ψ
R
b−1 −ΨR

t,b−1 Ψ
I
b−1(

ΨR
b−1

)2
+
(
ΨI

b−1

)2 .

The MSD boundary condition of (2.7) and (2.11) is given for the temporal deriva-
tive of the boundary point. This is ideally suited for Runge–Kutta-type solvers, as
the right-hand side of the PDE (Ψt) is evaluated and used for the time stepping [14].
For other methodologies, or in situations where the boundary value of the spatial
derivatives is needed, the MSD boundary condition can be inserted into the govern-
ing equation to formulate the required boundary conditions. An example of this is
shown in section 3 for the NLSE.

In situations where the sequential computation of the internal scheme followed
by the boundary condition computations is not appropriate (for example, implicit
finite-difference schemes) one can substitute the internal scheme of Ψt,b−1 into (2.7)
and implement the boundary condition concurrently with the internal scheme (this
would add extra computational steps as Ψt,b−1 would essentially be computed twice).

If it happens that Ψb−1 = 0, the MSD boundary condition of (2.6) has a singu-
larity. However, in most situations, Ψb−1 only takes a zero value when the solution is
tending toward zero at the boundary, in which case, the standard Dirichlet boundary
condition of Ψb = 0 can be used instead of the MSD boundary condition. Alterna-
tively, one can numerically check the values of Ψb−1, and use an alternative boundary
condition in the case that Ψb = 0.
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2.3. Key features of the MSD boundary condition. The following are a
few key features of the MSD boundary condition.

• The MSD boundary condition does not depend on the specific PDE being
simulated, only that it is time dependent and complex valued, nor does it
depend on the numerical scheme used to compute the internal points of the
grid.

• The MSD boundary condition can be used in multidimensional settings with-
out modification since each boundary point only uses one interior point in
the normal direction to the boundary.

• The MSD boundary condition does not depend on the size of the grid spacing,
and therefore does not need to be altered when using nonuniform grid spacing
(for example, in adaptive mesh refinement applications).

• The MSD boundary condition can be considered compact, in that after com-
puting the internal scheme, the boundary values only depend on their nearest
neighboring grid point. This allows the MSD boundary condition to be easily
implemented in parallel environments.

• In general, the MSD boundary condition is extremely easy to implement. This
makes it an attractive alternative to more complicated boundary condition
methodologies.

3. Application of the MSD boundary condition to the NLSE. Here we
show an implementation of the MSD boundary condition for the NLSE. The NLSE
with an external potential can be given in general form as

(3.1) i
∂Ψ

∂t
+ a∇2Ψ− V (r)Ψ + s |Ψ|2 Ψ = 0,

where Ψ is the wavefunction, V (r) is an external potential, and a and s are parameters
determined by the physical system being modeled.

As mentioned in section 2.2, since the MSD boundary condition of (2.7) is given in
terms of the temporal derivative, it is well suited for Runge–Kutta schemes, in which
case it can be applied directly. However, other numerical schemes require boundary
conditions on the Laplacian operator itself. In the case of the NLSE, this can be
worked out by inserting the NLSE of (3.1) into (2.7) yielding

(3.2) ∇2Ψb ≈
[
Im

(
i
∇2Ψb−1

Ψb−1

)
+

1

a
(Nb−1 −Nb)

]
Ψb,

where

(3.3) Nb = s |Ψb|2 − Vb, Nb−1 = s |Ψb−1|2 − Vb−1.

Splitting (3.2) into real and imaginary parts yields

∇2ΨR
b ≈

[
A+

1

a
(Nb−1 −Nb)

]
ΨR

b ,(3.4)

∇2ΨI
b ≈

[
A+

1

a
(Nb−1 −Nb)

]
ΨI

b ,

where

(3.5) A =
∇2ΨR

b−1 Ψ
R
b−1 +∇2ΨI

b−1Ψ
I
b−1(

ΨR
b−1

)2
+
(
ΨI

b−1

)2 ,

and Nb−1 and Nb are as defined in (3.3).
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As discussed in section 2.2, the MSD boundary condition can be expanded out,
expressing the b− 1 Laplacian in terms of the internal scheme in order to be able to
evaluate the MSD boundary condition simultaneously with the interior points (when
using explicit time-stepping schemes, this is usually unnecessary). As an example, us-
ing central differencing in space for the one-dimensional NLSE, (3.2) can be expanded
as

(3.6) ∇2Ψb ≈
[
Im

(
i
Ψb +Ψb−2

Ψb−1

)
− 2 +

1

a
(Nb−1 −Nb)

]
Ψb,

where Nb−1 and Nb are as defined in (3.3).

4. Numerical results. In order to demonstrate the usefulness and advantages
of the MSD boundary condition, we show a few example simulations of the NLSE. The
MSD boundary condition is compared to a Laplacian-zero (L0) boundary condition
(defined as ∇2Ψb = 0) as it is an easy-to-implement boundary condition that may be
used for constant background-density simulations.

Every numerical boundary condition, including the MSD, is only valid under its
governing assumptions. Therefore, if the modulus squared of a solution is changing
at the boundary, the MSD is not expected to work well, just as if the Laplacian of
the wavefunction is far from zero at the boundary, the L0 boundary condition is not
expected to do well. Therefore, comparisons of which boundary condition is best is
very often problem specific. That being said, comparing the MSD to the L0 is still
valuable in that for some problems, both boundary conditions are suitable, allowing
for a fair comparison. In addition, since limiting the size of the required grid is very
important (especially for higher-dimensional simulations), it is useful to see which
boundary condition allows for the use of the smallest (tightest) grid within acceptable
accuracy limits.

While there are numerous numerical methods that can be used to simulate solu-
tions to the NLSE, we perform the simulations using the code package NLSEmagic1

[16] which uses the fourth-order-in-time Runge–Kutta method with either a second-
order central difference (RK4+CD) or a two-step high-order compact fourth-order
central-differencing-in-space (RK4+2SHOC) scheme [18] (all simulations in this pa-
per are performed using the RK4+2SHOC scheme).

4.1. One-dimensional dark solitons in the NLSE. For the numerical one-
dimensional tests we use a comoving dark soliton solution with V (r) = 0 given by [34]

(4.1) Ψ(x, t) =

√
Ω

s
tanh

[√
−Ω

2a
(x− ct)

]
exp

(
i

[
c

2a
x+

(
Ω− c2

4a

)
t

])
,

where c is the velocity of the soliton and Ω is a chosen parameter representing the
frequency of the solution.

The first test is to compare the error for a stationary dark soliton (setting the
comoving velocity c to 0). In such a case, for a large enough domain, the L0 bound-
ary condition can be used since Ψ flattens out as |x| → ∞. In contrast, the MSD
boundary condition should work on any sized domain, since its underlying assump-
tion of constant density is valid anywhere along the steady-state solution. A one-sided

1Available at http://www.nlsemagic.com.
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Fig. 4.1. (Color online) Left: Comparisons of errors for simulating the dark-soliton solution
(with c = 0, Ω = −1, a = 1, and s = −1) of (4.1) using MSD (blue dashed line), L0 (red squares),
1SD (green dots), and exact (black solid line) boundary conditions for r ∈ [5, 5.5, 6, . . . , 25]. The
simulations are run to an end time of t = 50 with a time step of k = 0.005 and a spatial step of
h = 0.1. Right: Depiction of the soliton for the maximum domain (r = 25) simulation at time
t = 50. The thin (blue) and dashed (red) lines are the real and imaginary parts of Ψ, respectively,
while the thick solid (black) line is the modulus-squared, |Ψ|2.

second-order differencing (1SD) boundary condition defined in one dimension as

∂2Ψ

∂x2
≈ 1

h2
(−Ψb−3 + 4Ψb−2 − 5Ψb−1 + 2Ψb) ,

is also used for comparison in this case.
We define a radius, r, which represents the distance from the center of the soliton

to the edge of the computational domain. Simulations are performed for various
lengths of r ranging from r = 5 (approximately equal to the width of the soliton)
to r = 25 (the distance where the boundary value of the modulus of the soliton is
approximately equal to the infinite background density (Ω/s) minus machine epsilon
ε ≈ 10−16). The average of the maximum errors in the real and imaginary parts of Ψ
over the length of the simulations are recorded. The results are shown in Figure 4.1.
Keeping in mind that h4 = 10−4 and that the spatial scheme has an accuracy of O(h4),
it is clear that the MSD boundary condition performs well even when the domain is
small. The L0 and 1SD have less error for large r and converge to the error from
the exact boundary conditions. This is understandable since as the Laplacian tends
towards zero rapidly as r increases, the L0 and 1SD both equate the Laplacian to 0
and have no additional errors associated with them. Even so, the MSD can simulate
the solution to acceptable accuracy at a much smaller grid size than the L0 or the
1SD, demonstrating its usefulness in this case.

For the next test, the soliton is given a comoving velocity of c = 0.5. Since the L0
assumptions are completely invalid at any domain size, it is not used for comparison
(the 1SD is also not used as it fails quickly at any domain size as well). Therefore,
the MSD boundary condition is only compared to the exact boundary condition. In
this case the domain is set to be a distance r to the left of the initial position of the
soliton as before, and a distance r + c T to the right (where T is the simulation end
time) in order to account for its movement. In Figure 4.2, we show the results of the
simulations. We see that the MSD boundary condition performs extremely well as
long as the soliton is far enough from the boundaries (in this case “far enough” is about
equal to where the background density minus |Ψ|2 at the boundary is approximately
h4). Through our review of the literature, it seems that the MSD is the only simple-
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Fig. 4.2. (Color online) Top: Comparisons of errors for simulating the dark-soliton solution
of (4.1) using MSD (blue dashed line), and exact (black solid line) boundary conditions for various
domain sizes. The simulation parameters and figure descriptions are the same as in Figure 4.1
except that here, the velocity is c = 0.5. Bottom: Depiction of the soliton during the simulation with
r = 15 at times t = 20, 30, 40, 50 using the MSD boundary condition.

to-implement boundary condition that can handle such a comoving backflow. We note
that in other tests not presented here using the RK4+CD scheme, it was found that
the MSD can have less error than the exact boundary conditions for large values of
r. This observation can possibly be explained by the fact that using exact boundary
conditions in fourth-order Runge–Kutta schemes can actually introduce errors in the
solution as described in [26].

4.2. Two-dimensional dark vortices in the NLSE. To test the MSD bound-
ary condition in a more complicated setting, we use the known dynamics of dark
vortices in the two-dimensional NLSE. Dark vortices are described as

(4.2) Ψ(r, θ, t) = f(r) exp [i (mθ +Ω t)] ,

where m is the vortex charge (also known as the winding number) and Ω is the
frequency which is directly related to the background density, ρ, as ρ = Ω/s. The
real-valued radial profile f(r) can be obtained numerically by inserting (4.2) into (3.1)
and solving the resulting ODE for f(r) using a nonlinear equation solver (in our case,
a Newton–Krylov GMRES(m) solver in a package called nsoli [32]). As an initial
iterate for the solver, we use the asymptotic profile approximation given by [21]

(4.3) f(r > 0) ≈ Re

[√
Ω

s
+

am2

s r2

]
.

It is important to note that the tails of the dark vortices converge to the background
density much slower than the one-dimensional dark solitons of (4.1). For example,
in the one-dimensional dark soliton, we could extend the domain to a size so that
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the wave function is at a value of
√
Ψ∞ − ε (ε ≈ 10−16), and this would give a ra-

dius of around 25 (for our parameter choices). To get the same boundary value in a
two-dimensional vortex of charge m = 1, we would require a radius of over 1 million!
Therefore, the ability of the chosen boundary condition to not affect the dynamics of
the system on a small grid is vital.

The first test is to simulate a single unitary-charged (m = 1) vortex which is
known to be a stable steady-state solution to the NLSE [34]. Choosing a moderate
domain size (a 120 × 120 grid with a spatial step size of h = 0.25), we integrate
the NLSE for a considerable time (up to T = 50,000) using both the MSD and L0
boundary conditions. The results are shown in Figure 4.3. It is clear that the L0
boundary condition is only useful for shorter simulations, as it quickly suffers from
phase discrepancies which get worse as time progresses, until the point where the
solution is distorted badly enough to be unusable. From successive tests it is found
that this effect occurs for the L0 boundary condition for even very large domains,
but the time of the onset of the distortions is delayed longer as the domain size is
increased. In contrast to this, the MSD boundary condition creates no distortions in
the phase or modulus squared of the solution for very long simulations (in this case
up to t = 50,000).

Given a set end time, it is useful to determine the size of the grid needed to
properly simulate the vortex for a given boundary condition. Using the initial vortex
solution as representing the “exact” steady-state solution, we can track the error in
the modulus squared of the solution over the course of the simulations as the grid size
is increased. A radius r is defined as the distance from the center of the vortex to the
edge of the domain in the x or y direction (whichever is smallest). Figure 4.4 shows
the results of varying r from 5 to 35 for a simulation with an end time of t = 300. It
is clearly seen that a much larger grid is required for the L0 boundary condition to be
close to the effectiveness of the MSD boundary condition in this case. For example,
even at a large 280 × 280 grid, the L0 boundary condition did not have as low an
error as the MSD boundary condition did on a 41 × 41 grid! Once again, this is
understandable considering that the profile of the vortex does not flatten out rapidly
as in the one-dimensional case.

As an additional example to test the MSD boundary condition, we simulate two
equal-charge vortices whose interaction is known to produce a rotating circular motion
of the two vortices orbiting each other [11, 33, 44, 45]. Using a fixed grid size of
171 × 171, the simulations are run for long times using the L0 and MSD boundary
conditions. The results are shown in Figure 4.5. We see that once again, using the L0
boundary condition causes a breakdown in the dynamics, eventually causing the two
vortices to decouple from each other and fling into the boundaries. In contrast, the
MSD boundary condition allows for near-perfect rotational dynamics for indefinite
simulation times, even for small grid sizes. It is also noticeable that the period of
rotation of the vortices is shorter when using the MSD boundary condition when
compared to using the L0 boundary condition. Through further simulations with
larger grid sizes, we have observed that the period of rotation converges to the same
value (between the two values of the period displayed) for both boundary conditions at
approximately the same grid size (around 250× 250). Therefore, the MSD boundary
condition performs as well as the L0 in terms of rotational period, but much better
in terms of long-term dynamics and minimum grid-size requirements.

If the end time of the simulation is fixed to be such that the vortices will rotate at
least one complete rotation (here we use t = 480), we can record the deviation from
perfect circular motion as the grid size (given as the distance, d, from the center of the
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Fig. 4.3. (Color online) Top row: Modulus squared and phase of the initial condition of a
single dark vortex solution. Second (third) row: Snapshots of the density (phase) using the L0
boundary condition at times 600, 1200, 2400, and 3000. Bottom row: Modulus squared and phase
of simulation using the MSD boundary condition at time t = 50,000. All simulations use a spatial
step of h = 0.25 and a time step of k = 0.001 on a grid size of 120× 120.

grid to the edge along the x or y direction) is varied. The vortices are tracked during
the simulations and the maximum variation of radius compared to a constant radius
to the center of the rotating vortices is recorded. The results are shown in Figure 4.6.
We see that the L0 boundary condition requires a very large grid size to capture
the correct dynamics (and completely fails for smaller grids), while the MSD is able
to capture the dynamics to an acceptable degree on a much smaller grid size. The
discrepancies when using the MSD boundary condition at low grid sizes (up to 20%
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Fig. 4.4. (Color online) Maximum error of the modulus squared of a steady-state dark vortex
using the L0 (red dashed line) and the MSD (solid blue line) boundary conditions for various domain
sizes. The initial numerically optimized solution of the vortex is used as the “true solution” for error
comparisons. The simulations were run to an end time of t = 300 with a spatial step of h = 0.25
and time step k = 0.01.

radius variation) is understandable since at those distances the boundaries become
far from steady state due to the perturbations in the background density caused by
the motion of the vortices.

4.3. Three-dimensional dark vortex rings in the NLSE. To further show
the usefulness of the MSD boundary condition in multidimensional settings, we com-
pare the MSD boundary condition to the L0 within simulations of three-dimensional
dark vortex rings in the NLSE. Following the natural progression of complexity, start-
ing from dark solitons in one dimension and vortices in two dimensions, let us now
turn our attention to their three-dimensional analogs: vortex rings. A vortex line is
the three-dimensional extension of a two-dimensional vortex by infinitely extending
the solution into the axis perpendicular to the vortex plane. If a vortex line is bent
enough to close on itself or if two vortex lines are close enough to each other they can
produce a vortex ring [41]. Vortex rings are three-dimensional structures whose core
is a closed loop with vorticity around it [24] (i.e., a vortex that is looped back into
itself).

Numerical studies directly focusing on the structure and stability of dark vortex
rings in trapped BECs have been addressed. These include the generation of steady-
state vortex rings in toroidal [1] and harmonic [27, 30] trapping potentials, multiple
parallel ring structures [22], as well as the study of the bending-wave instability of
vortex rings [28] and their degeneration into quantum turbulence [29]. Some dynam-
ics of vortex rings in trapped BECs have been explored, such as their oscillatory
motion resulting in self-annihilation [31], and collisions of vortex rings with solitons
in cylindrical BECs [35, 36].

From a numerical perspective, a salient feature of vortex rings is that they pos-
sess an intrinsic transverse velocity associated with them [40]. Therefore, in order to
run long simulations of the rings (for instance, to study stability under small pertur-
bations, or interactions between multiple comoving rings), a very large grid size is
required. Often, due to the size of the simulations, a large enough grid is not within
the memory limitations of the computers being used for the simulations. To avoid
this problem, a vortex ring can be made to be a “steady-state” by applying a back-
ground velocity equal and opposite to the vortex ring’s intrinsic velocity. By doing
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Fig. 4.5. (Color online) Top row, left to right: Modulus squared of initial condition of two
single-charge vortices separated by a distance of 7 from the center of the grid, a snapshot of the
simulation using the L0 boundary condition at time t = 1100, and a snapshot using the MSD
boundary condition at time t = 10,000. Second row, left to right: Traced positions of the two vortices
(square and circles, respectively) over the course of a simulation with an end time of t = 1100 using
L0 boundary conditions, x positions of the two vortices (solid and dashed line, respectively) versus
time, and the computed distance between the vortices (solid and dashed line, respectively) and the
center of the grid for an end time of t = 1100. Third row: Same description as the second row, but
using the MSD boundary condition. Bottom row: Same as in the third row, but with an end time
of t = 10,000 (only times 7000 through 10,000 shown in the x versus t plot). In all simulations the
spatial step is h = 0.25 and the time step is k = 0.01 with a grid size of 171 × 171.

this, long-term simulations of the rings can be performed, but with many fewer grid
points.

In Figure 4.7 we show a simulation of a steady-state vortex ring amidst a backflow
at various time intervals using the MSD boundary condition. The vortex ring solution
is found by seeding the numerically exact two-dimensional vortex described in sec-
tion 4.2 (with the correct backflow velocity added to it) into a nonlinear optimization
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Fig. 4.6. (Color online) Top: Percentage of radius variation when compared to the initial
radius of the vortices to the center of the grid as a function of grid size d (defined as the distance
from the center of the grid to its edge along the x or y direction) for a simulation with an end
time of t = 480 using both the L0 (dashed (red) line) and the MSD (solid (blue) line) boundary
conditions. The grid size, d, is varied from 12 (the minimum size required to resolve both vortices
adequately) to 35. Results for the L0 boundary condition below d = 18 are not shown as the vortices
hit the grid wall before the simulation ends. The other simulation parameters are the same as those
in Figure 4.5. Bottom: Modulus squared of the initial condition for grid sizes d = 12 and d = 35.

routine utilizing the two-dimensional axisymmetric version of the three-dimensional
NLSE (for details, see [15]). As was the case with the comoving dark soliton of Fig-
ure 4.2, the assumptions underlying the L0 boundary condition are not valid at any
grid size, and so it is not tested in this specific case. The vortex ring remains station-
ary for very long simulation times (up to t = 1500 in this case), further demonstrating
the MSD boundary condition’s usefulness in studying comoving solutions.

As was the case for two-dimensional vortices, when running dynamical simulations
of vortex rings, it is important to know how large to set the computational grid in
order to minimize the effect of the boundary conditions on the interior dynamics.
Since the vortex rings have a constant transverse velocity, a good test of the effects
of the boundary conditions is to track a vortex ring in a simulation and observe the
velocity for various grid sizes. As the size of the grid is expanded, this velocity should
converge.

In Figure 4.8, we show the results of simulating vortex rings of radii 4, 6, and
8 for 50 time units for grid sizes determined by a maximum distance (denoted rpad)
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Fig. 4.7. (Color online) Two-dimensional cuts of the modulus squared of the initial condition
of a steady-state vortex ring of radius 6 amidst a backflow. Bottom row: Two-dimensional cuts of
the same vortex ring at simulation time t = 1500. The simulation uses a spatial step size of h = 0.5,
and a time step of k = 0.035.

from the core of the vortex ring in each direction (taking the travel distance in the z-
direction into account). The difference between the velocity of the vortex rings when
using the MSD boundary condition is compared to that of using the L0, as well as
how each compares to the predicted value recomputed using the method of [40] (for
details on the generation of the vortex rings and the tracking procedure, see [15]). We
see that both the MSD and L0 boundary conditions converge to a constant velocity
very close to that of the predicted value. It is also noteworthy that the convergence
happens at roughly the same distance from the vortex ring independently of the vortex
ring’s radius.

From Figure 4.8 we notice that the L0 boundary condition converges to a constant
velocity more rapidly than the MSD. However, the L0 boundary condition can suffer
from additional difficulties with smaller grid sizes, namely, the spontaneous creation
of spurious vortex rings due to the L0 boundary condition’s problem in maintaining
a proper phase structure as was shown in Figure 4.3. An example of this is shown in
Figure 4.9. We see that at such a low rpad value, the MSD boundary condition causes
the vortex ring to become more distorted when compared to the L0 boundary condi-
tion (however, this should be weighed considering the fact that the vortex ring was
simulated for a full 20 time units longer than the case of the L0 boundary condition).
More importantly, the L0 boundary condition creates a spurious vortex ring near the
top boundary of the grid. Although one would not use such a low rpad value in either
case, the error induced in the phase by the L0 boundary condition may greatly affect
the dynamics of the vortex rings, especially for long simulations.

Last, let us comment upon the stability of the numerical methods that we used. It
is well known that boundary conditions can adversely affect the stability of numerical
simulations to the point where an otherwise stable scheme can become unstable [42].
Therefore, it is necessary to consider the stability effects of the MSD boundary con-
dition. However, since the MSD boundary condition is general in nature, its effect on
the stability of the simulations will depend on the governing PDE being used, as well
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Fig. 4.8. (Color online) Comparison of the velocity of a dark vortex ring in the NLSE over
various grid sizes using the MSD and L0 boundary conditions. Top-left row: The observed velocity
of the vortex ring versus rpad ∈ [5, 25] (the minimum allowed distance from the vortex core to the
grid boundary allowing for the travel distance) for the MSD (thick solid line), L0 (blue dashed line)
boundary conditions (the predicted value of the velocity (thin red line) is shown for comparison).
Top-middle row: The percent difference between the velocities observed using the MSD and L0
boundary conditions. Top-right row: The percent differences of the velocities observed compared to
the predicted velocity. Top-to-bottom: Results for a vortex ring of radius 4, 6, and 8. Bottom row:
Volumetric rendering of the vortex ring at t = 20 using the MSD boundary condition for rpad = 5
(left) and rpad = 25 (right). The vortex rings are simulated to an end time of t = 50 using a
time-step size of k = 0.04 and a spatial-step size of h = 1/2.

as the form of the overall numerical scheme being implemented. Therefore, no general
statements about the MSD boundary condition’s stability effects can be made. That
being said, in the specific case of the NLSE using the RK4 time-stepping with the
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Fig. 4.9. (Color online) Example of spurious vortex ring generation when using L0 boundary
condition on a small grid. The snapshots of the vortex ring are shown for rpad = 5 at times t = 0,
t = 30, t = 39, and t = 45. The far right image is the same vortex ring at time t = 65 using
the MSD boundary condition (a later time was needed to simulate the vortex ring to the same grid
position due to the slower velocity of the ring when using the MSD boundary condition as seen in
Figure 4.8). The numerical parameters used are the same as described in Figure 4.8.

CD or 2SHOC spatial schemes that we have used for the examples in section 4, the
stability effects of the MSD boundary condition can be addressed. An analysis of the
stability effects of using the MSD (and the L0) boundary conditions has been carried
out as part of our prior study on the stability of RK4 schemes applied to the NLSE
in [17] where it was found that the MSD boundary condition did not have a signif-
icant effect on the stability bounds of the overall scheme. Although those stability
results are in no way general, as they are specific to the NLSE using the RK4+CD
and RK4+2SHOC schemes, they may be indicative of similar results with difference
governing PDEs and methods.

5. Conclusions. We have shown the formulation of a modulus-squared Dirich-
let (MSD) boundary condition for numerical simulations of time-dependent complex
PDEs. The standard form of the MSD boundary condition is given as a boundary
value of the time derivative of the solution as a function of the solution at that point,
as well as the solution and its time derivative at the closest interior point. It is easily
expressed as

∂Ψ

∂t

∣∣∣∣
b

≈ i Im

[
1

Ψb−1

∂Ψ

∂t

∣∣∣∣
b−1

]
Ψb,

where the subscripts b and b − 1 refer to a boundary point and the closest interior
point to the boundary, respectively.

Through multidimensional numerical examples of the MSD boundary condition
applied to the nonlinear Schrödinger equation, we have shown that it is extremely
effective in terms of noninterference with internal dynamics, as well as in requiring
smaller grid sizes when compared to other boundary conditions currently in use (such
as setting the Laplacian to zero at the boundaries). This is especially true in simula-
tions of coherent structures which exhibit vorticity (such as vortices and vortex rings)
and in simulations of solutions which have a comoving background velocity associated
with them. In the latter case, the MSD boundary condition seems to be the only
simple boundary condition which can handle such comoving backflows. We conclude
that the MSD boundary condition applied to complex-valued problems is as effective
as the standard Dirichlet boundary condition for problems with a constant value at
the boundary, and nearly as easy to implement.
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[12] J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J.
Comput. Phys., 114 (1994), pp. 185–200.

[13] N. G. Berloff and P. H. Roberts, Motions in a Bose condensate: VII. Boundary-layer
separation, J. Phys. A, 33 (2000), p. 4025.

[14] J. C. Butcher, A history of Runge-Kutta methods, Appl. Numer. Math., 20 (1996), pp. 247–
260.

[15] R. M. Caplan, Study of Vortex Ring Dynamics in the Nonlinear Schrödinger Equation Utiliz-
ing GPU-Accelerated High-Order Compact Numerical Integrators, Ph.D. thesis, Claremont
Graduate University, Claremont, CA, and San Diego State University, San Diego, 2012.

[16] R. M. Caplan, NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based
GPU-accelerated integrators using compact high-order schemes, Comput. Phys. Comm.,
184 (2013), pp. 1250–1271.
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Phenomena in Bose-Einstein Condensates: Theory and Experiment, Springer Ser. Atom.,
Opt., and Plasma Phys. 45, Springer, Berlin, 2008.

[35] S. Komineas, Vortex rings and solitary waves in trapped Bose–Einstein condensates, Eur.
Phys. J. Spec. Top., 147 (2007), pp. 133–152.

[36] S. Komineas and J. Brand, Collisions of solitons and vortex rings in cylindrical Bose-Einstein
condensates, Phys. Rev. Lett, 95 (2005), 110401.

[37] B. A. Malomed, Variational methods in nonlinear fiber-optics and related fields, Progr. Opt.,
43 (2002), pp. 71–193.

[38] C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolu-
tionary Schrödinger equations involving an unbounded potential, BIT, 49 (2009), pp. 199–
215.

[39] W. H. Raymond and H. L. Kuo, A radiation boundary condition for multi-dimensional flows,
Quart. J. Roy. Meteor. Soc., 110 (1984), pp. 535–551.

[40] P. H. Roberts and J. Grant, Motions in a Bose condensate I. The structure of the large
circular vortex, J. Phys. A, 4 (1971), pp. 55–72.

[41] T. P. Simula, Crow instability in trapped Bose-Einstein condensates, Phys. Rev. A (3), 84
(2011), 021603(R).

[42] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd ed.,
SIAM, Philadelphia, 2004.

[43] C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave
Collapse, Appl. Math. Sci. 139, Springer, New York, 1999.

[44] Y. Zhang, W. Bao, and Q. Du, The dynamics and interaction of quantized vortices in the
Ginzburg–Landau–Schrödinger equation, SIAM J. Appl. Math., 67 (2007), pp. 1740–1775.

[45] Y. Zhang, W. Bao, and Q. Du, Numerical simulation of vortex dynamics in Ginzburg-Landau-
Schrödinger equation, Eur. J. Appl. Math., 18 (2007), pp. 607–630.

[46] C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations,
J. Comput. Phys., 227 (2007), pp. 537–556.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


