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Abstract— This paper explores the use of networked electronic
circuits, which have symmetrical properties, for generating pat-
terns with multiple frequencies. Using a simple bistable sub-
circuit, connected in a network with a specific topology, the
principal operating frequencies of the network are divided in
to two groups, with one group oscillating at twice the frequency
of the other group. Specifically, group-theoretic arguments are
used to dictate the particular coupling topology between the
unit bi-stable cell. These concepts are demonstrated in a simple
and compact CMOS circuit. The circuit is minimalistic, and
demonstrates how simple and robust circuits can be used to
generate useful patterns.

Index Terms— multifrequency, symmetry, group, pattern.

I. I NTRODUCTION

Recently multifrequency patterns have been observed in
electronic circuits [1]. These systems have also been explored
in great theoretical detail [2]. As a body of work, these
examples, which demonstrate the use of symmetry based
arguments for the construction of pattern generation systems,
represent a significant move towards creating high-level bi-
ologically inspired systems. Already these concepts have be
used to create centralized pattern generators, which mimic
those supposed to be found in biological systems [3]. As a
unifying concept throughout these works, symmetry is used to
create robust networks of nonlinear cells in order to generate
a single or set of needed patterns. The networks are robust
in the sense that even though they must meet the needed
symmetry requirements, the specification for the individual
unit cell is less specific. In fact, the actual system is robust
with regard to the choice of the individual cell. Similar to those
results presented in [1], this paper presents a simple CMOS
circuit that demonstrates multifrequency pattern generation.
These experiments deviate from the previous work, not just by
presenting a simple single IC solution, but also by adopting a
slightly different mechanism for the bistable nature of the unit
cell. Additionally, a nonlinear coupling network is employed.

In this work, we show that multifrequency patterns can
be realized in a CMOS circuit consisting of two coupled
arrays with three oscillators in each array. We demonstrate
a particular pattern where in-phase oscillators are induced to
oscillate atN times the frequency of the opposite array. Central
to this work is the use of symmetry in a systematic way. In
particular we adopt the group theoretical approach developed
by Golubitsky and co-workers [4], [5], [6] to study symmetric

systems. Such an approach is model independent because the
results are dictated exclusively by the symmetry of the system
regardless of the nature of the oscillators. In this work, we
also use symmetry in a systematic way to identify certain
multifrequency patterns that, otherwise, would be difficult
to find through the standard theory of synchronization or
frequency entrainment [7].

II. M ULTIFREQUENCY PATTERN WITH ZN × S1

SYMMETRY

To study the collective behavior of the network, we use
X(t) = (X1(t), . . . , XN (t)) to represent the state of one
array andY (t) = (Y1(t), . . . , YN (t)) to denote the state of
the second array. Thus, at any given timet, a spatio-temporal
pattern generated by the network can be described byP (t) =
(X(t), Y (t)). Let us assume that this pattern is a periodic
solution of periodT with the following characteristics. On one
side of the network, for instance, theX-array, the oscillators
form a traveling wave(TW), i.e., same wave formX0 shifted
(delayed) by a constant time lagφ = T/N : Xk(t) = X0(t +
(k−1)φ), k = 1, . . . , N . On the opposite side, the oscillators
are assumed to bein-phase(IP) with identical wave formY0,
i.e., a synchronous state:Yk(t) = Y0(t), k = 1, . . . , N . Now
assume thatP (t) has spatio-temporal symmetry described by
the cyclic groupZN , i.e, the group of cyclic permutations ofN
objects generated by(1, 2, . . . , N) 7→ (N, 1, . . . , N − 1), and
by the groupS1 of temporal shifts. Together,ZN ×S1 acts on
P (t) as follows. First,ZN cyclically permutes the oscillators
of both arrays:

ZN ·XTW (t) = {XN (t + (N − 1)φ), X1(t), . . . ,

XN−1(t + (N − 2)φ)},

ZN · YIP (t) = {YN (t), Y1(t), . . . , YN−1(t)}.

ThenS1 shifts time byφ so that

ZN × S1 ·XTW (t) = {XN (t), X1(t + φ), . . . ,

XN−1(t + (N − 1)φ)},

ZN × S1 · YIP (t) = {YN (t + φ), Y1(t + φ), . . . ,

YN−1(t + φ)}.
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Since the oscillators are identical, we get

ZN × S1 ·XTW (t) = XTW (t),

ZN × S1 · YIP (t) = YIP (t + φ).

It follows that in order forYIP (t) to haveZN ×S1 symmetry
the in-phase oscillators must oscillate atN times the frequency
of the oscillations of the traveling wave. The same conclusion
is reached if the roles of theX andY arrays are interchanged.

Fig. 1. A simple bistable circuit (labeledB) is constructed of two short
channel transistors and an ordinary trasconductance amplifier. The short
channel transistors provide the ’linear’ response while the OTA provides a
nonlinear response resulting the the circuit’s bistability. A coupling circuit
(labelledC) is also shown.

III. B ISTABLE CIRCUIT

In these experiments a simple bistable circuit is adopted
as the unit cell. The bistable circuit is similar to the over-
damped Duffing oscillator adopted in [1]. The circuit, shown
in Fig. 1, consists of a simple ordinary transconductance
amplifier (OTA), an implicit or explicit capacitor, and two
short channel transistors. In the figure, the state variable
is represented asVx and is a voltage.Vin represents and
input signal andVm is an output to the coupling circutry. In
this system, the coupling circuits are simply current mirrors,
resulting in only one additional transistor per coupling term.
An example of three coupling inputs are shown in the inset
labeledC. Without rigorous derivation we adopt a simple first-
order differential equation for the single uncoupled circuit:

CV̇x = I0 − Il
Vx

Ve
+ Ibtanh

(
Vx − Vin

2Ut

)
(1)

The equation qualitatively describes the nature of the circuit. In
(1) the constant currentI0 and linear responseIl

Vx

Ve
result from

the drain-induced barrier loading effect of the short channel
transistors. In (1)Ve is known as the Early voltage [8]. The
OTA provides the nonlineartanh response. A simple equation
for the nonlinear double-well potential governing (1) can be
found, as well as conditions on stability as a function of the
accessible bias parametersVp, Vn, Vb. In previous work this
type of potential function has been referred to as a ’soft’
potential, and has been explored in the context of other pattern

forming systems [9]. Qualitatively, for large enough input
signals atVin, the circuit will exhibit hysteresis and the output
will switch between two stable states that are determined by
the input signal and the three bias parameters.

Fig. 2. A six-cell mltifrequency generating network. Each bistable circuit is
labeledB with the associated coupling circuit labeledC. The actual circuits
are given in Figure 1. The system consists of two arrays, each with three uni-
directionally coupled cells arranged in a ring. This coupling topology favors
the traveling wave patterns described above. In addition to the unidirectional
coupling, each cell in each array receives a coupling input from all the cells
in the opposite array. It is the symmetries within this coupling topology that
result in the in-phase and traveling wave multifrequency solutions.

IV. N ETWORK

A six-cell multifrequency generating system is given in
Fig. 2. Each bistable circuit is labeledB with the associated
coupling circuit labeledC. The actual circuits are given in
Fig. 1. The system consists of two arrays, each with three uni-
directionally coupled cells arranged in a ring. The top ring is
constructed by connecting the output variableVx1,i to the next
cell input Vin1,i+1. The ring is completed by connecting the
last outputVx1,3 to the first cell inputVin1,1. The bottom array
is constructed identically to the top. This coupling topology
favors the traveling wave patterns described in section II. In
addition to the unidirectional coupling, the two arrays are also
coupled to each other. Since each cell in one array is coupled
to the three cells in the opposite array, only three additional
transistors are required per cell. These coupling transistors
are shown in the inset labeledC in the inset of Fig. 1.
When operating the array, all the cell bias voltages are set the
same. Designs for six-cell and ten-cell arrays we’re fabricated
using the TSMC 0.35um process through the MOSIS foundry
system.

V. PATTERNS

Spice simulations are used to demonstrate multifrequency
patterns using the simple networked circuits presented in Fig. 1
and Fig. 2. For our simulations, a standard OTA design was
used and very little effort was made to optimize the design
for a particular performance. Transistors were simulated using
the BSIM3 model allong with model parameters provided
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Fig. 3. Simulation results of a six-cell mltifrequency generating network.
The top and bottom plots are the time-series results for theVx1,i andVx2,i

variables respectively. The figure shows the bottom array operating with a
traveling wave solution, with each variable oscillating at a frequency, while
the other array operates with an in-phase solution oscillating at a frequency
of N.

by MOSIS. Fig. 3 shows simulation results of a six-cell
mltifrequency generating network. The top and bottom plots
are the time-series results for theVx1,i and Vx2,i variables
respectively. The figure shows the bottom array operating with
a traveling wave solution, with each variable oscillating at a
frequencyω, while the top array operates with an in-phase
solution oscillating at a frequency ofNω. These solutions are
predicted by the group theoretic approach given in section II.
To obtain these results theVn and Vp are chosen so that the
short channel transistors operate just above threshold and the
OTA is operated below threshold.

For these same parameter settings an alternate pattern is
also possible where both arrays oscillate with an out of phase
solution, as shown in Fig. 4. The significant result here is
that a single network system is capable of generating differing
patterns, even with the same parameter settings. In nonlinear
systems the coexistence of multiple solutions is not uncom-
mon. In fact, the group theoretic approach is a convenient
method for predicting what patterns are possible solutions
considering a networked system that possess symmetries such
as ours. However, the approach does not predict the stability
of the solution given a particular parameter set. In these
experiments, the two patterns shown in Fig. 3 and Fig. 4 appear
to be stable. The patterns themselves are selected by preparing
the initial conditions of the system at startup.

VI. SUMMARY

To summarize, using symmetry-based arguments, we have
shown that multifrequency patterns occur in a simple CMOS
circuit. In particular, a two-array network withN identically

Fig. 4. Simulation results of a six-cell mltifrequency generating network.
The top and bottom plots are the time-series results for theVx1,i andVx2,i

variables respectively. The figure shows both the bottom and top arrays
operating with traveling wave solutions. This pattern is obtained from the
same network with the same parameter settings that produced an alternate
pattern shown in Fig. 3

coupled circuits per array was shown to have one array
oscillate in a traveling wave pattern while the other array
oscillates in phase but atN times the frequency of the
traveling wave state. In principle, the number of elements
in each array does not have to be identical; therefore, the
frequency of the in-phase state can be changed based on
the number of elements in the other array. Such a system
might be used to create oscillations at arbitrary multiples of a
unit frequence. An experimental example of a simple system
was constructed CMOS circuits. Spice simulations, using the
BSIM3 model for the transistors, confirm the existence of
multifrequency behavior in the system. We also emphasize
that the model independent feature of the symmetry methods
used in this work imply that our results are valid for a general
class of coupled oscillators regardless of the nature of the
intrinsic dynamics of each unit cell. Two coexisting patterns
were demonstrated with one network using identical; system
parameters but differing initial conditions.
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