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~ Abstract—This paper explores the use of networked electronic systems. Such an approach is model independent because the
circuits, which have symmetrical properties, for generating pat- results are dictated exclusively by the symmetry of the system
terns with multiple frequencies. Using a simple bistable sub- \o4qrqless of the nature of the oscillators. In this work, we

circuit, connected in a network with a specific topology, the | - ¢ i to identi tai
principal operating frequencies of the network are divided in also use symmetry in a systematic way to identify certain

to two groups, with one group oscillating at twice the frequency Multifrequency patterns that, otherwise, would be difficult
of the other group. Specifically, group-theoretic arguments are to find through the standard theory of synchronization or
used to dictate the particular coupling topology between the frequency entrainment [7].

unit bi-stable cell. These concepts are demonstrated in a simple
and compact CMOS circuit. The circuit is minimalistic, and
demonstrates how simple and robust circuits can be used to

generate useful patterns [I. MULTIFREQUENCY PATTERN WITH Zy x S!

SYMMETRY
Index Terms— multifrequency, symmetry, group, pattern.
To study the collective behavior of the network, we use
I. INTRODUCTION X(t) = (Xi(t),...,Xn(t)) to represent the state of one
. array andY (t) = (Yi(¢),...,Yn(t)) to denote the state of
Recently multifrequency patterns have been observed b second array. Thus, at any given tir spatio-temporal

electronic circuits [1]. These systems have also been explore . _
in great theoretical detail [2]. As a body of work, thes attern generated by the network can be describe? {3y =

examoles. which demonstrate the use of svmmetr basX(t),Y(t)). Let us assume that this pattern is a periodic
xampies, - Whi u y y soqutio of periodl” with the following characteristics. On one

arguments for the construction of pattern generation systensw%e of the network, for instance, thé-array, the oscillators

represent a significant move towards creating high-level %’rm atraveling wave(TW), i.e., same wave fornk, shifted
ologically inspired systems. Already these concepts have aeelayed) by a constant ti;n.e |aég: T/N: Xp(t) = Xo(t+

used to create centralized pattern generators, which mi 1)6), k—1,..., N. On the opposite side, the oscillators

those supposed to be found in biological systems [3]. As {?e_assumed to kia-phase(IP) with identical wave form,
unifying concept throughout these works, symmetry is used ?8 a synchronous stat¥(f) = Yo(t), k = 1 N Novx,/

create robust networks of nonlinear cells in order to generagg" : .
; ume thaf’(t) has spatio-temporal symmetry described b
a single or set of needed patterns. The networks are rob, s% (*) P P y y y

in the sense that even though they must meet the nee %%CyC“C groupZ v, i-e, the group of cyclic permutations of

: o L jects generated by, 2,...,N) — (N,1,...,N — 1), and
symmetry requirements, the specification for the |nd|V|du%I the groupS' of temporal shifts. TogetheZy x S' acts on
umt cell is less spec!ﬁc. In faqt, t.h? actual sy_stgm IS robu#(t) as follows. First,Zy cyclically permutes the oscillators
with regard to the choice of the individual cell. Similar to thos§ both arrays:
results presented in [1], this paper presents a simple CM E |
circuit that demonstrates multifrequency pattern generation. z .. x,...(t) = {Xpn(t+ (N —1)¢), X1(t),.
These experiments deviate from the previous work, not just by
presenting a simple single IC solution, but also by adopting a Xn-1(t+ (N =2)9)},
slightly different mechanism for the bistable nature of the unit - - " — V()Y (¢ Y, "
cell. Additionally, a nonlinear coupling network is employed. N - Yir() I (®), 1), -, Y (1)}

In this work, we show that multifrequency patterns cafnens! shifts time by¢ so that
be realized in a CMOS circuit consisting of two coupled
arrays with three oscillator_s in each array. We de_monstrate Zny xS Xrw(t) = {Xn(@),X1(t+6),...,
a particular pattern where in-phase oscillators are induced to Xn 1t + (N —1)9)}
oscillate atN times the frequency of the opposite array. Central N-1 ’
to this work is the use of symmetry in a systematic way. In 7« S'.y;u(t) = {Yn(t+0),Yi(t+ ), ...
particular we adopt the group theoretical approach developed ’ Y
by Golubitsky and co-workers [4], [5], [6] to study symmetric Yn_1(t+ ¢)}.

“ey
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Since the oscillators are identical, we get forming systems [9]. Qualitatively, for large enough input
Zv xS X (t) = Xrw () signals afV;,,, the circuit will exhibit hysteresis and the output
N WAL AW will switch between two stable states that are determined by

1 . . .
Zny XS -Yip(t) =Yip(t+ ¢). the input signal and the three bias parameters.
It follows that in order forY;p(t) to haveZ y x S' symmetry v v y
. . . . m2l &— m2]1 @— m2] @—
the in-phase oscillators must oscillateMatimes the frequency Vime] e o e o
of the oscillations of the traveling wave. The same conclusion ~ Vrms " el mpe— L
is reached if the roles of th& andY” arrays are interchanged.
L Vxll vxl ; VxlS
B B, V. B, o Vi By, o Vs
lel L lel - lel Lo
m12 & m12 m12 @
§ o wpa e
short m
channel v,
VP
’—| l_ v ’_ szl Vx ; Vx23
" B,, eV, B,, eV, B,, e V.
Vn—{ —
Vh<| Fig. 2. A six-cell mitifrequency generating network. Each bistable circuit is
labeledB with the associated coupling circuit label€d The actual circuits
are given in Figure 1. The system consists of two arrays, each with three uni-

N\ directionally coupled cells arranged in a ring. This coupling topology favors
the traveling wave patterns described above. In addition to the unidirectional

Fig. 1. A simple bistable circuit (labeleB) is constructed of two short _coupling, each cell in each array receives a coupling input from all the cells

channel transistors and an ordinary trasconductance amplifier. The sﬁBﬁhe opposite array. It is the symmetries within this coupling topology that
channel transistors provide the ’linear’ response while the OTA provides”‘?iSUIt in the in-phase and traveling wave multifrequency solutions.
nonlinear response resulting the the circuit’s bistability. A coupling circuit

(labelledC) is also shown.

IV. NETWORK

A six-cell multifrequency generating system is given in
2. Each bistable circuit is labeldsl with the associated

. . . L Fig.
In these experiments a simple bistable circuit is adOpt%ggupling circuit labeledC. The actual circuits are given in

as the unit cell. The bistable circuit is similar to the overFig_ 1. The system consists of two arrays, each with three uni-

damped Duffing_oscill?tor a_doplted ":j,[l]‘ The circuit(,j ShoWRirectionally coupled cells arranged in a ring. The top ring is
n F|.g.. 1, consists of a simpie ordinary tra_nscon uctane@nstructed by connecting the output variabllg ; to the next
amplifier (OTA), an '|mpI|C|t or eXpll'CIt capacitor, and tvyoce” input V;,,1 ++1. The ring is completed by connecting the
_short channe(lj transsto(;s_. In thel figure, the state Va”g%%t outputl; 5 to the first cell inputV;,,; ;. The bottom array

Is represented a3, and Is a voltage.Vi, represents and ;g cqnsirycted identically to the top. This coupling topology
input signal andv’;, is an output to the coupling circutry. IN 5,45 the traveling wave patterns described in section 1. In
this system, the coupling circuits are simply current mirmor§yision to the unidirectional coupling, the two arrays are also
resulting in only one additional transistor per coupling ternE:oupled to each other. Since each cell in one array is coupled

f\n ?xamplel ﬁf three coupling inputs are shown in tTef'lns% the three cells in the opposite array, only three additional
abeledC. Without rigorous derivation we adopt a simple firsty ., istors are required per cell. These coupling transistors
order differential equation for the single uncoupled circuit: .o <hown in the inset labele@ in the inset of Fig. 1

Vi ) B When operating the array, all the cell bias voltages are set the

; Ve Ve —
CVe=To = IZVE + Iptanh ( 2U, same. Designs for six-cell and ten-cell arrays we're fabricated

The equation qualitatively describes the nature of the circuit. 139 the TSMC 0.35um process through the MOSIS foundry

(1) the constant currert and linear respons&% result from system.
the drain-induced barrier loading effect of the short channel
transistors. In (1), is known as the Early voltage [8]. The

OTA provides the nonlineanh response. A simple equation Spice simulations are used to demonstrate multifrequency
for the nonlinear double-well potential governing (1) can bpgatterns using the simple networked circuits presented in Fig. 1
found, as well as conditions on stability as a function of thend Fig. 2. For our simulations, a standard OTA design was
accessible bias parameter§, V;,, V;. In previous work this used and very little effort was made to optimize the design
type of potential function has been referred to as a ’'sofior a particular performance. Transistors were simulated using
potential, and has been explored in the context of other patt¢ne BSIM3 model allong with model parameters provided

Ill. BISTABLE CIRCUIT

V. PATTERNS
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Fig. 3. Simulation results of a six-cell mitifrequency generating networl€ig. 4.  Simulation results of a six-cell mitifrequency generating network.
The top and bottom plots are the time-series results forthe; andV,2;  The top and bottom plots are the time-series results folthe; and Va2 ;
variables respectively. The figure shows the bottom array operating withvariables respectively. The figure shows both the bottom and top arrays
traveling wave solution, with each variable oscillating at a frequency, whilgperating with traveling wave solutions. This pattern is obtained from the
the other array operates with an in-phase solution oscillating at a frequerséyne network with the same parameter settings that produced an alternate
of N. pattern shown in Fig. 3

by MOSIS. Fig. 3 shows simulation results of a six-ceboupled circuits per array was shown to have one array
mitifrequency generating network. The top and bottom plogsscillate in a traveling wave pattern while the other array
are the time-series results for thg,,; and V., , variables oscillates in phase but alv times the frequency of the
respectively. The figure shows the bottom array operating wiffaveling wave state. In principle, the number of elements
a traveling wave solution, with each variable oscillating at ia each array does not have to be identica|; therefore, the
frequencyw, while the top array operates with an in-phasgequency of the in-phase state can be changed based on
solution oscillating at a frequency dfw. These solutions are the number of elements in the other array. Such a system
predicted by the group theoretic approach given in section fhight be used to create oscillations at arbitrary multiples of a
To obtain these results th€, and V), are chosen so that theynit frequence. An experimental example of a simple system
short channel transistors operate just above threshold and 28 constructed CMOS circuits. Spice simulations, using the
OTA is operated below threshold. BSIM3 model for the transistors, confirm the existence of
For these same parameter settings an alternate pattermigtifrequency behavior in the system. We also emphasize
also possible where both arrays oscillate with an out of phaggit the model independent feature of the symmetry methods
solution, as shown in Fig. 4. The significant result here igsed in this work imply that our results are valid for a general
that a single network system is capable of generating differigehss of coupled oscillators regardless of the nature of the
patterns, even with the same parameter settings. In nonlingafinsic dynamics of each unit cell. Two coexisting patterns
systems the coexistence of multiple solutions is not uncofere demonstrated with one network using identical; system

mon. In fact, the group theoretic approach is a convenigfdrameters but differing initial conditions.
method for predicting what patterns are possible solutions

considering a networked system that possess symmetries such

as ours. However, the approach does not predict the stability )
of the solution given a particular parameter set. In these The authors would like to thank the ONR In-house Labo-

experiments, the two patterns shown in Fig. 3 and Fig. 4 appé@fory Independent Research program for funding portions of

to be stable. The patterns themselves are selected by prepalf¥igy Project.
the initial conditions of the system at startup.
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