Contents

PART I INTRODUCTION AND MOTIVATION OF MODELS

1	Inti	roduction and Motivation	3
	1.1	Few degrees of freedom	3
	1.2	Many degrees of freedom	11
	1.3	A nonlinear variant: the FPUT lattice	13
	Exe	rcises	15
2	Lin	ear Dispersive Wave Equations	17
	2.1	Dispersion relations and relevant notions	17
	2.2	Examples of linear dispersive wave equations	19
	2.3	Wavepackets and group velocity	23
	2.4	Dissipation, instability, and diffusion	25
	Exe	rcises	27
3	Noi	nlinear Dispersive Wave Equations	29
	3.1	Dispersion relations, linear and nonlinear equations	29
	3.2	Unidirectional propagation: KdV, KP, and NLS	29
	3.3	Bidirectional propagation: KG and Boussinesq	36
	Exe	rcises	40

PART II KORTEWEG-DE VRIES (KDV) EQUATION

4	The Korteweg–de Vries (KdV) Equation	45
	4.1 Obtaining KdV as a limit of FPUT	45
	4.2 Obtaining KdV for shallow water waves	48
	4.3 The effects of dispersion and nonlinearity	51
	4.4 Putting it all together: the Zabusky–Kruskal numerical experiments	61
	4.5 A cute twist: conservation laws	63
	Exercises	65
5	From Boussinesq to KdV – Boussinesq Solitons as KdV Solitons	68
	5.1 Boussinesq to a single KdV (right-going waves)	68
	5.2 Boussinesq to a KdV pair (right- and left-going waves)	70
	5.3 Connecting the Boussinesq soliton with the KdV soliton	72
	5.4 A higher dimensional generalization: Boussinesq to KP	74
	Exercises	75

|--|

6	 Traveling Wave Reduction, Elliptic Functions, and Connections to KdV 6.1 Traveling wave reduction: the quadrature problem 6.2 Elliptic function solutions 6.3 Another traveling wave reduction example: the Boussinesq equation Exercises 	77 77 80 84 85
7	 Burgers and KdV–Burgers Equations – Regularized Shock Waves 7.1 Shock waves of the Burgers equation 7.2 The Cole–Hopf transformation 7.3 The KdVB equation – a model for dispersive shocks Exercises 	$90 \\ 91 \\ 94 \\ 100 \\ 105$
8	 A Final Touch From KdV: Invariances and Self-Similar Solutions 8.1 Scale and Galilean invariances 8.2 The KdV self-similar waveforms 8.3 Going beyond the KdV: seeking self-similarity 8.4 A familiar example with a little-known twist: the diffusion equation Exercises 	$107 \\ 107 \\ 110 \\ 113 \\ 114 \\ 115$
9	 Spectral Methods 9.1 Revisiting the Fourier transform and the golden property 9.2 Spectral methods for PDEs Exercises 	117 117 118 125
10	Bäcklund Transformation for the KdV 10.1 The general idea and a simple introductory example: Laplace equation 10.2 Bäcklund transformation for the KdV Exercises	126 126 128 132
11	 Inverse Scattering Transform I – the KdV Equation* 11.1 Introduction and motivation 11.2 Description of the Inverse Scattering Transform method 11.3 The linear problem associated with the KdV equation 11.4 The problem of the evolution of the scattering data 11.5 The inverse problem – Gel'fand–Levitan–Marchenko (GLM) equation 11.6 Soliton solutions of the KdV equation Exercises 	$134 \\ 134 \\ 135 \\ 140 \\ 142 \\ 147 \\ 149 \\ 156$
12	 Direct Perturbation Theory for Solitons* 12.1 General aspects of the perturbative approach 12.2 KdV with a dissipative perturbation 12.3 Transverse instability of line solitons of the KP equation Exercises 	$157 \\ 157 \\ 160 \\ 166 \\ 171$
13	 The Kadomtsev–Petviashvili Equation* 13.1 The KP equation and its variants 13.2 Basic properties of the KP equation 13.3 Line solitons and lumps of the KP equation 	$172 \\ 172 \\ 174 \\ 175$

	Contents	xvii
13.4 Interactions of line solitons of the KP-II equation		177
13.5 Finite-genus and quasi-periodic solutions		182
Exercises		187

PART III KLEIN-GORDON, SINE-GORDON, AND PHI-4 MODELS

14	Another Class of Models: Nonlinear Klein–Gordon Equations	191
	14.1 Models, physical motivation, and principal kink waveforms	191
	14.2 Linear and nonlinear transformations	195
	14.3 Linear stability, homogeneous steady states, linear dispersion relations	199
	14.4 Linearization around non-homogeneous states: kinks	201
	14.5 A stability tool: the Evans function	203
	Exercises	209
15	Additional Tools/Results for Klein–Gordon Equations	210
	15.1 Finding solitons using the method of Bäcklund transforms	210
	15.2 Examining soliton interactions: the Manton method	212
	15.3 Kink-kink and kink-antikink collisions	214
	15.4 Higher dimensional sine-Gordon equation: a teaser and an invitation	219
	15.5 Sine-Gordon with gain and loss: a cute application	221
	Exercises	223
16	Klein–Gordon to NLS Connection – Breathers as NLS Solitons	225
	16.1 Preliminaries: model and the method of multiple scales	225
	16.2 NLS from Klein–Gordon	227
	16.3 Sine-Gordon breathers as NLS bright solitons	229
	16.4 On the formal derivation and universality of NLS	232
	Exercises	234
17	Interlude: Numerical Considerations for Nonlinear Wave Equations	235
	17.1 Existence and stability	235
	17.2 Nonlinear dynamics	240
	Exercises	245

PART IV THE NONLINEAR SCHRÖDINGER EQUATIONS

18	The Nonlinear Schrödinger (NLS) Equation	249
	18.1 Obtaining linear and nonlinear Schrödinger from dispersive wavepackets	249
	18.2 Plane wave solutions and modulational instability	252
	18.3 A more general analysis: solitons and periodic solutions	256
	Exercises	264
19	NLS to KdV Connection – Dark Solitons as KdV Solitons	267
	19.1 Preliminaries and motivation: structure of the dark soliton	267
	19.2 Defocusing NLS to Boussinesq and to KdV	270

xviii Contents

	19.3 Direct derivation of the KdV	274
	19.4 Shallow dark solitons vs. KdV solitons	276
	Exercises	278
20	Actions, Symmetries, Conservation Laws, Noether's Theorem, and All	200
	That	280
	20.1 Lagrangian and Hamiltonian formalisms	280
	20.2 Poisson brackets	285
	20.3 Noether's theorem	287
	20.4 Field-theoretic variants	288
	20.5 The nonlinear Schrödinger case example	291
	20.6 Connections with the cubic NLS and its soliton linearization problem	294
	20.7 Connections with wave collapse: NLS with generalized power law nonlinearity	296
	20.8 Final twist: antisymmetric operators and generalized Poisson brackets	299
	Exercises	300
		000
21	Applications of Conservation Laws – Adiabatic Perturbation Method	303
	21.1 Scaling and phase invariances and Galilean boost for NLS solutions	303
	21.2 Conservation laws and conserved quantities for NLS: redux	305
	21.3 Adiabatic perturbation theory for bright solitons	307
	21.4 Adiabatic perturbation theory for dark solitons	312
	Exercises	319
22	Numerical Techniques for NLS	322
	22.1 Finite differences	322
	22.2 Steady states: Newton's method	324
	22.3 Stability	329
	22.4 Dynamics: finite differences and RK4	331
	22.5 Example: soliton on top of a hill	334
	22.6 Validating your codes and results	336
	Exercises	337
23	Inverse Scattering Transform II – the NLS Equation*	338
	23.1 The Ablowitz–Kaup–Newell–Segur (AKNS) approach	338
	23.2 IST for the focusing NLS equation	344
	23.3 Soliton solutions	352
	23.4 A note on the defocusing NLS and the role of boundary conditions	358
	23.5 The inverse problem as a Riemann–Hilbert problem	358
	Exercises	361
~ (0.00
24	The Gross–Pitaevskii (GP) Equation	362
	24.1 Physical motivation: Bose–Einstein condensates	362
	24.2 The Gross–Pitaevskii (GP) equation	363
	24.3 Dimensional reductions and adimensionalization	364
	24.4 Small and large mass limits	368
	Exercises	370
05	Waisting 1 Amounting for the NEC 1 CD E	070
25	variational Approximation for the INLS and GP Equations	372

		Contents	xix
	25.1 Preliminaries25.2 Illustrative examples: the NLS solitons25.3 Perturbation theory within the VA approachExercises		372 375 380 392
26	 Stability Analysis in 1D 26.1 Linear stability analysis for the GP equation 26.2 Time-independent problem 26.3 Time-dependent problem 26.4 Application to the linearization problem Exercises 		397 397 398 402 406 411
27	 Multi-Component Systems 27.1 Dark-bright solitons in multi-component systems 27.2 Twist I: a dark (trapping a) bright soliton 27.3 Twist II: dark-dark soliton in the integrable limit 27.4 Twist III: dark-bright solitons for general couplings 27.5 Twist IV: 2-DB-soliton solution in integrable limit and beyond 27.6 Twist V: lattices of solitons with general couplings 27.7 Twist VI: dark-bright solitons in a trap Exercises 		$\begin{array}{c} 413\\ 413\\ 415\\ 415\\ 415\\ 417\\ 418\\ 419\\ 421\\ 423\\ \end{array}$
28	 Transverse Instability of Solitons Stripes – Perturbative Approach 28.1 Transverse instability of bright solitons 28.2 Transverse instability of dark solitons 28.3 From the 2D defocusing NLS to KP Exercises 		424 424 430 438 441
29	 Transverse Instability of Dark Stripes – Adiabatic Invariant Approact 29.1 Adiabatic invariants 29.2 The case of dark soliton stripes 29.3 The case of ring dark solitons Exercises 	h	442 442 444 447 449
30	 Vortices in the 2D Defocusing NLS 30.1 Vortex solutions 30.2 Vortex dynamics in inhomogeneous backgrounds 30.3 NLS vortices as classical point-vortices 30.4 Generating functions for vortex interactions Exercises 		452 452 455 459 463 466

PART V DISCRETE MODELS

31	The Discrete Klein–Gordon Model	471
	31.1 Discrete nonlinear Klein–Gordon models	471
	31.2 A complementary perspective: energy landscape	477
	31.3 Exceptional discretizations: a first glance via momentum conservation	482

xx Contents

31.4 Exceptional discretizations: a second glance via Bogomol'nyi bounds	484
31.5 Exceptional discretizations: a final unifying view	487
31.6 Integrable discretizations: the sine-Gordon case	488
Exercises	491
32 Discrete Models of the Nonlinear Schrödinger Type	492
32.1 DNLS: existence and stability analysis	492
32.2 Integrable discretizations: the Ablowitz–Ladik model	506
Exercises	509
33 From Toda to FPUT and Beyond	512
33.1 Toda lattice: an integrable starting point	512
33.2 Going beyond Toda: FPUT variants	517
Exercises	523
References	
Index	