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ABSTRACT 

We apply techniques of nonlinear dynamics to a cosmological problem in 

the Jordan Brans-Dicke theory. The solutions presented here show irregular 

oscillatory behaviour in the scale factors and a positive Liapunov exponent in 

the Bianchi IX model. This is evidence of stochastic behaviour in the model. 

1. Introduction 

Modern gravitation theories are highly nonlinear, for example Einstein equa
tions 

(1) 

'provide 10 coupled nonlinear partial differential equations in four variables to 
determine 10 metric functions. This nonlinear characteristic has proven to be 
one of the main obstacles for the proper understanding of the possible range of 
dynamical behaviour in a nonsymmetric spacetime. 

There has been attempts of applying nonlinear dynamics (NLD) techniques 
to problems of cosmological interest1 - 3 , and even some interest in uncovering its 
chaotic properties. Zardecki4 , Rugh and Jones,5 and others have investigated the 
irregular behaviour of cosmological Bianchi models in general relativity (GR). The 
most conspicuous result of these investigations is the ongoing discussion about the 
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meaning of NLD in gravitational theories. On the other hand, to our knowledge 
there has been no attempt of investigating the possible stochastic behaviour in 
alternative theories of gravitation. 

2. Scalar-Tensor theory 

We report here results obtained so far on the possible stochastic behaviour in 
the scalar-tensor cosmological theory of Jordan Brans-Dicke (JBD), this theory 
is perhaps the most serious contender of (GR). JBD includes Mach principle (GR 
does not) introducing an additional scalar field, </>, responsible of the "inertia 
producing" effects of distant matter. 

The specific model we work on is spatially homogeneous, with a line element 
given by 

ds 2 = -dt2 + gµv(t)wµwv, µ, 11 = 1, 2, 3, 

where wb are 1-forrns in the orbits of the group and 

g µv = diag( a~( t ), a~( t), ai( t) ). 

(2) 

(3) 

this metric is a function only of synchronous time t and the ai(t) with (i=l, 2, 3) 
are the scale factors for the model. The JBD field equations reduce to a system of 
nonlinear ordinary diferential equations (ODE's) for the ai-s and the scalar field 
</>. In the specific case of the Bianchi IX vacuum model the equations are 

i = 1,2,3. (4) 

(5) 

These equations have proven to be difficult to solve6• 
7

, but they admit the 
first integral 

C ·-.-
(6) 
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the equation above may be considered as a constriction on the specific model to 
be satisfied by the initial conditions. 

Given a set of initial conditions (ai(O), </>(O), ai(O), ~(O)) we have obtained 
numerically the evolution of the scale factors (figure 1) and the scalar field (figure 
2) in this model. 
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Figure 1. Time evolution of the scale factors ai , a2 , aa , plotted in a logarithmic scale. 
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Figure 2. Logarithmic time evolution of the scalar field </>. 
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For the sake of completeness, a 3D-plot of the scale factors (a1 vs a2 vs a 3 ) 

is also shown in figure 3. There are several papers about Bianchi IX model in 
GR4

•
5

•
8 which have concluded stochastic behaviour in this model. We show that 

this kind of behaviour appears too in JBD theory in the "same" cosmological 
model. A result that might be very important for cosmological considerations. 

Figure 3. Logarithmic evolution of the three scale factors. 

There are several ways of characterising chaos in a system. In this paper we 
evaluate the maximal Lyapunov exponent,9 >.,for the model using the relation 

(7) 

where 

3 3 

dt(e) = L(8ai)2 + (8¢)2 + L(8ai)2 + (8¢) 2
. (8) 

i=l i=l 

The Lyapunov exponent (LE) >. is defined as the limit t -+ oo of expression 
(7)1 0. Figure 4 shows the numerical results we have got for the LE as a plot >.tvst. 
The tendency is clear, >. is positive. This evidence has led us to guess stochastic 
properties for the model. 

We have analysed numerically the properties of the JBD Bianchi IX model. 
The results we have got may be taken as evidence that the model exhibits stochas
tic behaviour. The calculations were made using a fourth-order Runge- Kutta 
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routine from the CERN computer library and our own program for evaluating the 
maximum Liapunov exponent. . 

Figure 4. 
Succesive estimates of the maximum Lyapunov At exponent plotted against the synchronous time t. 
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