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Linearized numerical stability bounds for solving the nonlinear time-dependent Schrödinger
equation (NLSE) using explicit finite-differencing are shown. The bounds are computed for
the fourth-order Runge–Kutta scheme in time and both second-order and fourth-order
central differencing in space. Results are given for Dirichlet, modulus-squared Dirichlet,
Laplacian-zero, and periodic boundary conditions for one, two, and three dimensions. Our
approach is to use standard Runge–Kutta linear stability theory, treating the nonlinearity
of the NLSE as a constant. The required bounds on the eigenvalues of the scheme matrices
are found analytically when possible, and otherwise estimated using the Gershgorin circle
theorem.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is used to model a wide variety of physical systems since it describes, to least
nonlinear order, modulated wave propagation [10]. The general form of the NLSE can be written as

i
∂Ψ

∂t
+ a∇2Ψ − V (r)Ψ + s|Ψ |2Ψ = 0, (1)

where Ψ ∈ C is the value of the wavefunction, ∇2 is the Laplacian operator, and where a > 0 and s are parameters defined
by the system being modeled. V (r) is an external potential term, which when included, makes Eq. (1) known as the
Gross–Pitaevskii equation [13].

Often, efficient and easy-to-use numerical methods are employed to simulate the NLSE. One such method is the method
of lines where the time-stepping and spatial differencing are treated independently. This transforms the partial differential
equation (PDE) into a large number of coupled ordinary differential equations (ODEs). These ODEs can then be solved using
a variety of numerical schemes, one of the most common being the fourth-order Runge–Kutta (RK4) scheme [2]. Using the
RK4 scheme with the NLSE produces a fully explicit scheme where each grid point at time t is only a function of values
at time t − k where k is the time-step. This simplifies computational implementations because no matrices are needed to
be formed and stored, and no linear systems are needed to be solved (which in the nonlinear case also require a nonlinear
iterative process).

The only drawback to using explicit finite-difference schemes (such as the RK4) for simulating PDEs is that they are
conditionally stable. This means that there is an upper-bound on the allowed size of the time-step which is dependent on
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the spatial-step size. If the time-step is larger than this bound, the scheme is unstable and diverges [17]. Although rough
estimates of the stability bound can be found through an inefficient educated guess-and-check, for higher dimensional
scenarios, as well as long and/or large simulations, a more refined and predictable stability bound is essential for efficient
simulations.

In this paper, we formulate linearized stability bounds for simulating the NLSE with the RK4 scheme. The stability
bounds depend on the specific spatial differencing scheme being used, as well as on the boundary conditions. We formulate
the bounds for both second-order and fourth-order spatial differencing with a variety of boundary conditions (Dirichlet,
modulus-squared Dirichlet (MSD), Laplacian-zero (L0), and periodic). Each analysis is done for one, two and three dimen-
sions.

The paper is organized as follows. In Section 2 we review the basic RK4 stability properties and apply the results to
the NLSE to formulate general stability bounds. Our basic procedure in finding the stability bounds and the linear algebra
theorems that we utilize are also discussed. In Section 3 we summarize the forms of the boundary conditions we consider.
Our main analysis begins in Section 4 with the one-dimensional NLSE. Linearized stability bounds are found for each scheme
and boundary condition combination. In Sections 5 and 6, we use the same procedures to formulate the bounds for the
two- and three-dimensional NLSE respectively. A few numerical examples showing the accuracy of the bounds are shown
in Section 7. In Section 8, we conclude and summarize all the results from Sections 4, 5, and 6 into a concise reference.

2. Stability theory

2.1. General Runge–Kutta scheme stability

Given an initial value problem of a set of linear first-order ODEs (in our case, a method of lines explicit PDE finite-
difference scheme), one can formulate the matrix notation

∂ �Ψ
∂t

= A �Ψ , (2)

where A contains the coefficients of the right-hand sides of the ODEs. We now define

�p = k�λ, (3)

where k is the time-step size and �λ contains the eigenvalues of A. In our case, the eigenvalues of A will have the spatial-
step size (denoted h) included in them, as well as any parameters of the NLSE. As shown in Ref. [16], for the fourth-order
Runge–Kutta scheme, if a vector �R(�p) is defined whose elements are the polynomials

R(p) = 1 + p + p2

2
+ p3

6
+ p4

24
, (4)

then the stability of the RK4 scheme is guaranteed if∥∥�R(�p)
∥∥∞ < 1, (5)

where ‖‖∞ denotes the infinity norm defined as ‖�x‖∞ = max{|x0|, |x1|, . . . , |xN−1|}. Inserting Eq. (3) into Eq. (4) yields

∣∣R(λ)
∣∣2 = 1 + 1

576
k8|λ|8 − 1

72
k6|λ|6 +

(
k6|λ|6

6
− k4|λ|4 + 24

)
k

12
Re(λ)

+ (
k4|λ|4 + 24

) k2

12

(
Re(λ)

)2 + (
k2|λ|2 + 4

)k3

3

(
Re(λ)

)3 + 2k4

3

(
Re(λ)

)4
. (6)

In Fig. 1 we show the stability region for the RK4 scheme given by Eq. (5) as well as that for lower-order Runge–Kutta
schemes (whose R(p) is defined by progressively truncated versions of Eq. (4)) [16]. As we shall show, the eigenvalues of
the A matrix are all purely imaginary (or nearly so) in the case of the nonlinear (and linear) Schrödinger equation. Thus,
it can be seen from Fig. 1 that the third-order Runge–Kutta is the lowest-order RK scheme that is conditionally stable for
the Schrödinger equations (however, as shown in Ref. [8], this is not the case if the real and imaginary parts of the NLSE
are computed in a staggered time grid, or, as in Ref. [9], an artificial dissipative term is added to the NLSE), with the RK4
yielding a significantly larger bound on k. This is in contrast to similar PDEs such as the heat equation, whose A matrix
eigenvalues are typically all real-valued, in which case even forward differencing (RK1) is conditionally stable.

If, as in our case, Re(�λ) = �0, Eq. (6) simplifies greatly and becomes

∣∣R(�λ)
∣∣2 = 1 + 1

576
k8|�λ|8 − 1

72
k6|�λ|6, (7)

in which case, Eq. (5) leads to the simple stability bound

k <

√
8

‖�λ‖∞
. (8)
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Fig. 1. (Color online.) Left: Stability regions for Runge–Kutta schemes. Schemes from first-order to fourth-order are shown from center outwards. Right:
Magnified view of the same plot near the point where Re(λ) = 0.

2.2. Application to the NLSE

Applying the above stability theory to the NLSE has the obvious problem that the analysis is purely linear, while the
NLSE has one (or more) nonlinear terms. A full nonlinear stability analysis is beyond the scope of this paper, so instead
we linearize the problem by treating the nonlinearity (|Ψ |2) as a constant value U (the external potential term is usually a
constant independent of Ψ at each grid point, and so does not need any special treatment). This has been done previously
for the one-dimensional coupled NLSE for fourth-order differencing (in the exclusive case where s < 0) in Ref. [12]. Since
the value of |Ψ |2 changes over time during the simulation, the linearized stability bound will also change over time. This
change in many cases is expected to be small (which we have confirmed in numerical simulations, not reported here) and
therefore can be ignored, i.e. one may compute the bound using the initial condition of Ψ (and V (r)) and just leave a
few percent leeway to cover any changes. This is especially true in the repulsive case (s < 0) where most situations have a
constant-density background (or maximum background) and the dynamics do not cause the maximum background value to
change significantly (for example, when simulated coherent structures, most of the dynamics are translations of the initial
condition with little change in structure). In attractive cases (s > 0), blow-up can occur which can alter the stability bound
greatly, causing the simulation to crash (although in such a case the wavefunction is exploding towards infinity, which most
finite-difference schemes cannot handle anyways). Many times, simulations of a steady-state or near-steady-state in the
modulus-squared with a constant potential are performed. In such situations, the linearized stability bounds will be (nearly)
exact.

It is also useful to formulate stability bounds for the linear Schrödinger equation (LSE) (where s = 0 and V (r) = 0). In
addition to providing bounds for the LSE, as will be discussed below, the results can also be used as practical estimates of
the stability bounds for the NLSE (the discrepancy can often be solved by lowering the bound by a few percent).

2.3. Stability analysis procedure

In order to simplify the analysis, we first rewrite Eq. (2) as

∂ �Ψ
∂t

= A �Ψ = ia

h2
A �Ψ ,

where h is the step size of the spatial finite-difference scheme being used. Then, assuming all eigenvalues of A are real-
valued, the stability condition of Eq. (8) becomes

k <

√
8

‖�λA‖∞
h2

a
. (9)

In order to be able to use the stability bound of Eq. (9), we must first confirm that all eigenvalues of A are purely real
(or nearly so) for each scheme/boundary condition combination. In cases where the eigenvalues are not able to be easily
computed analytically, we show that the A matrix’s eigenvalues are a set of boundary values with the remaining eigenvalues
being those of a symmetric matrix denoted A′ . Then by Theorem 1, it is known that all the eigenvalues of A are real.

Theorem 1. (See Ref. [1].) The eigenvalues of a real-symmetric matrix are real.
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Once it has been established that Eq. (9) can be used, in order to get an upper-bound on k, we require an upper-bound
on the maximum absolute eigenvalue of A. Due to the sparsity and diagonal dominance of A, a good estimate of the
upper-bound can be found using the Gershgorin circle theorem (Definition 1 and Theorem 2).

Definition 1. (See Ref. [11].) Let A be a square complex matrix. Around every element aii on the diagonal of the matrix, a
circle with radius equal to the sum of the norms of the other elements in the same row (

∑
j 
=i |aij |) is known as a Gershgorin

disk.

Theorem 2. (See Ref. [11].) Every eigenvalue of a square complex matrix A lies in one of its Gershgorin disks.

Since every eigenvalue must be contained in a Gershgorin disk, by finding the maximum absolute value of the limits of
the disks will yield an upper-bound on the maximum modulus of the eigenvalues of A.

In the one-dimensional LSE case with no external potential and periodic boundary conditions, the A matrix becomes cir-
culant as defined by Definition 2. In this case, the eigenvalues can be computed analytically by Theorem 3. The upper-bound
is then taken by finding the limit of the maximum eigenvalue as the size of the matrix goes to infinity.

Definition 2. (See Ref. [15].) A circulant matrix is a square N × N matrix C that can be fully specified by one vector,
�c = {c0, c1, . . . , cN−1}, which appears as the first column of C . The remaining columns of C are each cyclic permutations of
the vector with the offset equal to the column index.

Theorem 3. (See Ref. [15].) The eigenvalues of a circulant matrix are given by

λ j = c0 + cN−1ω j + cN−2ω
2
j + · · · + c1ω

N−1
j , j = 0, . . . , N − 1,

where

ω j = exp

(
2π i j

N

)
.

3. Boundary conditions

Since boundary conditions of the spatial differencing in a PDE like the NLSE have the potential to alter the stability
of a scheme, it is necessary to have stability results for each specific boundary condition one would like to use. In this
paper we limit ourselves to four boundary conditions which we feel are a good combination of simplicity and usefulness.
These boundary conditions are: periodic, Dirichlet, Laplacian-zero, and modulus-squared Dirichlet. As notation, we use the
subscript b to represent any boundary point, and b − 1 to represent the grid position one point inward from the boundary
in the normal direction.

For use with the stability analysis, it is desirable to formulate each boundary condition in terms of the temporal deriva-
tive in the form

∂Ψ

∂t

∣∣∣∣
b
= ia

h2
BbΨb, (10)

and in terms of the spatial Laplacian in the form

∇2Ψb = 1

h2
DbΨb, (11)

where Bb and Db are assumed to be real-valued constants (possibly differing per boundary point) and defined based on
the specific boundary condition being used. For periodic boundary conditions (or linear one-sided conditions not discussed
here), these forms are not applicable. Writing the boundary conditions in the forms of Eqs. (10) and (11) allows them to be
expressed in the A matrix as a single real-valued entry (Bb), and in the case of the form of the fourth-order differencing
chosen here (see Section 4.2), the near-boundary interior points will contain Db in their formulation.

3.1. Periodic

For periodic boundary conditions, any element of the scheme that is too small or too large in index (i.e. they are ‘off the
grid’) are simply replaced by the grid points on the opposite side of the grid. In the case of the NLSE, periodic boundary
conditions can be problematic especially in background-density situations due to the unpredictable phase jump from one
side of the grid to the other.



28 R.M. Caplan, R. Carretero-González / Applied Numerical Mathematics 71 (2013) 24–40
3.2. Dirichlet

Dirichlet boundary conditions are defined as

Ψb = C,

where C is a constant. In terms of the temporal derivative of the NLSE, this condition is

∂Ψ

∂t

∣∣∣∣
b
= 0,

in which case Bb = 0 in Eq. (10). When inserted into the NLSE, this condition in terms of the Laplacian is given by

∇2Ψb = −1

a

(
s|Ψb|2 − Vb

)
Ψb,

and therefore Db = −h2/a(s|Ψb|2 − Vb) in Eq. (11).

3.3. Modulus-squared Dirichlet

In some situations Dirichlet boundary condition can fail. Such failure typically occurs in simulations with a constant-
density background, i.e. a constant value of |Ψ |2 at the boundaries. A standard Dirichlet condition will not work in such
cases because it does not take into account the phase rotation of Ψ . Instead, one would like to have the modulus-squared
of the wavefunction to be constant at the boundaries, i.e.

|Ψb|2 = C,

where C is a constant. We have recently formulated a method for such a boundary condition (which is almost as easy to
implement as Dirichlet) called the modulus-squared Dirichlet boundary condition [5]. The MSD boundary condition is given
in terms of the temporal derivative of the NLSE as

Ψt,b ≈ i Im

[
Ψt,b−1

Ψb−1

]
Ψb, (12)

where ∂Ψb−1/∂t is computed by the interior scheme first, and then used to compute the boundary values. Using the MSD
boundary condition gives Bb = (h2/a) Im

[
∂Ψ
∂t

∣∣
b−1

1
Ψb−1

]
, which is nonlinear, and not a constant independent of Ψ . As shown

in Ref. [5], due to the underlying assumptions of the MSD boundary condition, Eq. (12) can be viewed as

∂Ψ

∂t

∣∣∣∣
b
≈ iΩb−1Ψb,

where Ωb−1 is the real-valued frequency of the solution near the boundary. Thus, Bb would have the form Bb = (h2/a)Ωb−1.
Therefore, we can linearize the MSD boundary condition by treating the Bb term as a constant (which can change over the
course of the simulation, similar to the nonlinearity of the NLSE).

When inserted into the NLSE, the MSD boundary condition of Eq. (12) yields

∇2Ψb ≈
[

Im

(
i
∇2Ψb−1

Ψb−1

)
+ 1

a
(Nb−1 − Nb)

]
Ψb, (13)

where

Nb = s|Ψb|2 − Vb, Nb−1 = s|Ψb−1|2 − Vb−1, (14)

and therefore Db = h2
[
Im

(
i ∇2Ψb−1

Ψb−1

) + 1
a (Nb−1 − Nb)

]
. This too is a nonlinear, non-constant term, and so must be treated as

a constant in the same manner as the nonlinearity of the NLSE.

3.4. Laplacian-zero boundary condition

The Laplacian-zero boundary condition is defined by

∇2Ψb = 0,

and therefore Db = 0. In terms of the time-derivative of the NLSE, the L0 boundary condition is given as

∂Ψ

∂t

∣∣∣∣ = i
(
s|Ψb|2 − Vb

)
Ψb,
b
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Table 1
Boundary condition terms for use with stability analysis.

Boundary condition Bb Db

Dirichlet 0 h2

a (Vb − s|Ψb |2)

Laplacian-zero h2

a (s|Ψb |2 − Vb) 0

MSD h2

a Im
[ Ψt,b−1

Ψb−1

]
h2

[
Im

(
i ∇2Ψb−1

Ψb−1

) + 1
a (Nb−1 − Nb)

]

making Bb = (h2/a)(s|Ψb|2 − Vb). This condition is as easy to implement as the Dirichlet, and can be useful in many
situations.

To assist the stability analysis, a summary of the values of Bb and Db for all the mentioned boundary conditions is given
in Table 1 for future reference. Many other boundary conditions exist for simulating the NLSE, in which case the analysis
shown in this paper can be adapted to the other boundary conditions.

4. One-dimensional stability analysis

In the one-dimensional cases we analyze all four boundary conditions mentioned in Section 3. As stated, periodic
boundary conditions yield a matrix where (in the linear case with s = 0 and �V (r) = 0) the eigenvalues can be computed an-
alytically. This allows the results obtained using the upper-bound methods (which we use with other boundary conditions)
to be compared with the true eigenvalues giving an idea of how accurate they are.

4.1. Second-order central difference

The second-order central difference is one dimension is given by

∇2Ψi = ∂2Ψ

∂x2

∣∣∣∣
i
≈ Ψi+1 − 2Ψi + Ψi−1

h2
,

and when implemented into the A matrix, forms a matrix which is tridiagonal (except for the two boundary condition
rows).

4.1.1. Periodic boundary conditions
In order to obtain analytic expressions for the eigenvalues of A, we start with the LSE case with no external potential

and periodic boundary conditions. This yields the matrix

A =

⎡
⎢⎢⎢⎢⎣

−2 1 0 0 1
1 −2 1 0 0

0
. . .

. . .
. . . 0

0 0 1 −2 1
1 0 0 1 −2

⎤
⎥⎥⎥⎥⎦ ,

which, as per Definition 2, is a circulant matrix with �c = {−2,1,0, . . . ,0,1}. Also, since A is a real-valued symmetric ma-
trix, by Theorem 1, all eigenvalues are real and therefore the stability criteria of Eq. (9) can be used. By Theorem 3, the
eigenvalues of A are given by

λ j = −2 + exp

[
2π i j

N

]
+ exp

[
2π i j(N − 1)

N

]
, j ∈ {0, . . . , N − 1}.

The maximum value of |λ j | occurs either at j = N/2 if N is even, or j = (N ± 1)/2 if N is odd. For N even-valued we have

|λ|max = ∣∣−2 + exp[π i] + exp[π i]N−1
∣∣,

which yields

|λ|max = 4.

For N odd-valued we have

|λ|max = ∣∣−2 − (−1)1/N + (−1)N (−1)−1/N
∣∣,

which yields

|λ|max =
∣∣∣∣−2 − 2 cos

(
π

)∣∣∣∣.
N
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Table 2
Unique forms of the Gershgorin disk centers
(aii ) and radii (ri ) for the A′ matrix of the
one-dimensional second-order central differ-
ence scheme.

aii ri = ∑
i 
= j |aij |

Li − 2 1
Li − 2 2

Taking N → ∞, the maximum bound on the maximum absolute eigenvalue becomes

|λ|max < 4.

We therefore have an upper-bound on the maximum absolute eigenvalue which, for even-valued N , is guaranteed to be one
of the eigenvalues. The stability criteria of Eq. (9) is then formulated as

k <

√
8

4

h2

a
. (15)

In the general case where s 
= 0 and/or V (r) 
= 0, the A matrix is no longer circulant (since the values of the nonlinearity
or external potential vary over the diagonal of A). To get a bound on the maximum absolute eigenvalue, we make use of
Theorem 2. The matrix A has N Gershgorin disks, since each diagonal entry of A can be unique, but each disk has the same
radius (r = 2). Also, since the diagonal entries can in theory take on any value, all Gershgorin disk limits must be examined.
This yields the stability bound

k <

√
8

max{‖�L‖∞,‖�L − 4‖∞}
h2

a
, (16)

where we have defined the elements of �L to be

Li = h2

a

(
s|Ψi |2 − V i

)
, (17)

where the index i spans over the entire grid. It is important to note that all values of �L are O (h2). Thus, for h  1, and
reasonable values of |Ψ |2 and �V , the linear bound of Eq. (15) should be very close to the true bound of the nonlinear
problem.

If we set �L = 0 in Eq. (16), we recover the bound in Eq. (15). This shows that (in this case at least), using the Gershgorin
circle theorem yields the true bound on the eigenvalues of A.

4.1.2. Dirichlet, MSD, and L0 boundary conditions
As shown in Section 3, Dirichlet, Laplacian-zero, and modulus-squared Dirichlet boundary conditions can all be viewed as

single entries in the boundary value rows of the A matrix, denoted as Bb . As shown there, the values of Bb are real-valued
and their values for each boundary condition were given in Table 1. Using such a formulation, the A matrix becomes

A =

⎡
⎢⎢⎢⎢⎣

B0 0 0 0 0
1 L1 − 2 1 0 0

0
. . .

. . .
. . . 0

0 0 1 LN−2 − 2 1
0 0 0 0 B N−1

⎤
⎥⎥⎥⎥⎦ .

In order to use the simple stability criteria of Eq. (9), we once again need to show that all eigenvalues of A are purely real.
The A matrix is no longer symmetric, however it is easy to see that B0 and B N−1 are eigenvalues of A, and the remaining
eigenvalues of A are equivalent to the eigenvalues of the matrix A′ defined as

A′ =

⎡
⎢⎢⎢⎢⎣

L1 − 2 1 0 0 0
1 L2 − 2 1 0 0

0
. . .

. . .
. . . 0

0 0 1 LN−3 − 2 1
0 0 0 1 LN−2 − 2

⎤
⎥⎥⎥⎥⎦ .

Since A′ is real-valued symmetric, we can use the stability bound of Eq. (9).
We now need to find an upper-bound on the absolute value of the eigenvalues of A′ . We use the Gershgorin circle

theorem to find all unique Gershgorin disks and take the limits of the disks to find the bounds on the absolute eigenvalues.
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Many of the Gershgorin disks are similar, differing only in the value of Li of the specific row. Therefore, each disk of different
centers and radii has a subset of Li values relevant to it. Although in the current one-dimensional setting it is simple to
define the subsets, in higher dimensional settings, it can become burdensome to separate out each subset of �L relevant to
each Gershgorin disk of the same center and radius. Therefore, for practicality purposes, we define our bounds using all
possible values of Li for each Gershgorin disk center and radius. This may make the resulting stability bound slightly higher
than necessary in certain cases, but this is outweighed by the ease-of-use of the simplified bounds. The unique forms of the
Gershgorin disks of A′ are shown in Table 2. The resulting general stability bounds are

k <

√
8

max{‖�B‖∞,‖∀Li, Li − �G‖∞}
h2

a
, (18)

where �B are all boundary condition values (in this case B0 and B N−1), and �G is defined as

�G = {4,3,1,0}. (19)

In general, all possible values of �G must be taken into consideration since there is no theoretical restriction on what values
�L can take. However, in certain specific circumstances, some of the values of �G can be ignored (for example, when s � 0
and V (r) � 0, only the largest magnitude value in �G is needed).

4.2. Fourth-order central difference

The standard fourth-order central difference scheme is given by

∇2Ψi = ∂2Ψ

∂x2

∣∣∣∣
i
≈ −Ψi+2 + 16Ψi+1 − 30Ψi + 16Ψi−1 − Ψi−2

12h2
. (20)

The stability analysis follows directly from the second-order case. The only major difference is that since the fourth-order
stencil is five points wide, the grid points near the boundary may need special consideration for the different boundary
conditions. For our purposes here, we use the two-step high-order compact (2SHOC) version of the fourth-order scheme as
described in Ref. [6], in which case the near-boundary points can be formulated by combining the two steps of the 2SHOC
scheme.

4.2.1. Periodic boundary condition
In the periodic case, no special attention is needed near the boundaries, and the A matrix in the LSE case with no

external potential is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−15/6 4/3 −1/12 0 0 −1/12 4/3
4/3 −15/6 4/3 −1/12 0 0 −1/12

−1/12 4/3 −15/6 4/3 −1/12 0 0

0
. . .

. . .
. . .

. . .
. . . 0

0 0 −1/12 4/3 −15/6 4/3 −1/12
−1/12 0 0 −1/12 4/3 −15/6 4/3

4/3 −1/12 0 0 −1/12 4/3 −15/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is a circulant matrix, and its eigenvalues are therefore

λ j = −15

6
+ 4

3
exp

[
2π i j

N

]
− 1

12
exp

[
4π i j

N

]
− 1

12
exp

[
2(N − 2)π i j

N

]
+ 4

3
exp

[
2(N − 1)π i j

N

]
.

The maximum absolute value once again occurs at either j = N/2 if N is even, or j = (N ± 1)/2 if N is odd. For N
even-valued we have

λN/2 = −15

6
− 4

3
− 1

12
− 1

12
(−1)N−2 + 4

3
(−1)N−1 = −16

3
.

For N odd, we have

λ(N+1)/2 = −15

6
− 4

3

(
(−1)1/N + (−1)−1/N) − 1

12

(
(−1)2/N + (−1)−2/N)

,

which yields

λ(N+1)/2 = −15

6
− 4

3

(
2 cos

(
π

N

))
− 1

12

(
2 cos

(
2π

N

))
.

As N → ∞, |λ| → 16 , which is the same bound as the N even case. Thus, the stability bound is given by
3
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Table 3
Unique forms of the Gershgorin disk centers
(aii ) and radii (ri ) for the A′ matrix of the one-
dimensional fourth-order 2SHOC scheme.

aii ri = ∑
i 
= j |aij |

Li − 5/2 11/4
Li − 5/2 17/6
Li − 29/12 17/12

k <

(
3

4

)√
8

4

h2

a
, (21)

which we note is only a 25% reduction of the second-order bound of Eq. (15). In the general case where �L 
= 0, the bound
becomes

k <
6
√

2

max{‖3�L − 16‖∞,‖3�L + 1‖∞}
h2

a
. (22)

If s � 0 and V (r) � 0, the first term in the denominator is the maximum of the two terms, and the resulting stability bound
is equivalent to that found in Ref. [12] for using the RK4 scheme and fourth-order spatial differencing with the coupled
NLSE.

4.2.2. Dirichlet, MSD, and L0 boundary conditions
As per Section 3, we formulate all three boundary conditions in terms of a Bb entry in the A matrix. As discussed, an

important issue is that we need to handle the grid points near the boundary due to the width of the scheme. A common
way of dealing with the closest-interior points is to compute the Laplacian at those points using second-order differencing,
however this can lead to the overall scheme becoming second-order. However, since we are using the 2SHOC version of
the fourth-order differencing, we can derive the closest-interior points which, if the assumptions of the chosen boundary
conditions hold, should maintain fourth-order accuracy. In one dimension, the 2SHOC scheme is defined as [6]

1) Di = 1

h2
(Ψi+1 − 2Ψi + Ψi−1), (23)

2) ∇2Ψi ≈ 7

6
Di − 1

12
(Di+1 + Di−1). (24)

In the first step, the second-order Laplacian is computed with the chosen boundary condition applied to it. Next, the result
is used to compute the fourth-order Laplacian. As mentioned in Ref. [6], this two-step scheme is equivalent to the standard
wide-stencil of Eq. (20) for the interior points. We use the form of Eq. (11) for the boundary conditions on the Laplacian,
and after combining the steps of Eqs. (23) and (24), we get the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 0 0 0 0 0 0
14−D0

12 L1 − 29
12

4
3 − 1

12 0 0 0
− 1

12
4
3 L2 − 15

6
4
3 − 1

12 0 0

0
. . .

. . .
. . .

. . .
. . . 0

0 0 − 1
12

4
3 LN−3 − 15

6
4
3 − 1

12

0 0 0 − 1
12

4
3 LN−2 − 29

12
14−D N−1

12
0 0 0 0 0 0 B N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the Bb and Db (b ∈ {0, N − 1}) terms for each different boundary condition are once again given in Table 1. As in
Section 4.1.2, the A matrix is not symmetric and has eigenvalues equal to �B . The remaining eigenvalues are those of the
matrix A′ defined as

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 − 29
12

4
3 − 1

12 0 0 0 0
4
3 L2 − 15

6
4
3 − 1

12 0 0 0
− 1

12
4
3 L3 − 15

6
4
3 − 1

12 0 0

0
. . .

. . .
. . .

. . .
. . . 0

0 0 − 1
12

4
3 LN−4 − 15

6
4
3 − 1

12
0 0 0 − 1

12
4
3 LN−3 − 15

6
4
3

0 0 0 0 − 1
12

4
3 LN−2 − 29

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is once again real-symmetric so the bounds of Eq. (9) can be used. It is interesting to note that the values of Db do
not appear in any of the eigenvalues of A′ .
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Fig. 2. (Color online.) Form of scheme matrices A and A′ for second-order central differencing of the two-dimensional NLSE. The dots represent non-zero
entries of the matrices. The matrices shown are for a 7 × 7 grid.

Table 4
Gershgorin disk centers and radii for the A′
matrix of the two-dimensional central differ-
ence scheme.

aii ri = ∑
i 
= j |aij |

Li − 4 2
Li − 4 3
Li − 4 4

The unique forms (see the discussion in Section 4.1.2) of the Gershgorin disk centers and radii of A′ are shown in Table 3.
The full stability bound is the same form as Eq. (18), but with �G defined as

�G = 1

12
× {64,63,46,12,−3,−4}. (25)

Once again, in the most general case, all values of Eq. (25) must be considered in finding the maximum allowed time-step
value.

5. Two-dimensional stability analysis

In higher dimensions, the A matrix is formed by unwrapping the solution into a one-dimensional vector and then
formulating the scheme matrix accordingly.

In Sections 4.1.1 and 4.2.1 we noted that the stability bounds given using the Gershgorin circle theorem were equivalent
to those obtained analytically for the linear case with periodic boundary conditions. We therefore justify relying exclusively
on the Gershgorin theorem for higher dimensions, and focus on the stability bounds for Dirichlet, MSD, and Laplacian-zero
boundary conditions (since the periodic boundary condition bounds will be a subset of the bounds computed for the other
boundary conditions).

5.1. Second-order central difference

The second-order central difference scheme in two dimensions is given by

∇2Ψi, j = ∂2Ψ

∂x2

∣∣∣∣
i, j

+ ∂2Ψ

∂ y2

∣∣∣∣
i, j

≈ 1

h2

1

1 −4 1

1

Ψi, j. (26)

The corresponding A matrix has a tri-banded structure, with diagonal sub-sections corresponding to the boundary values.
The form of the A matrix is shown in Fig. 2 (we do not show the values of the entries of the matrix due to space consider-
ations, but they can be obtained through symbolic math codes). As in the one-dimensional case, all diagonal entries (which
are the boundary value entries Bb) of A are eigenvalues, and the remaining eigenvalues are real and equivalent to those of
a matrix A′ which is real-symmetric, thus allowing the use of the bounds in Eq. (9). The form of A′ is also shown in Fig. 2.
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Fig. 3. (Color online.) Form of scheme matrices A and A′ for the fourth-order 2SHOC scheme of the two-dimensional NLSE. The dots represent non-zero
entries of the matrices. The matrices shown are for a 7 × 7 grid.

The unique forms of the Gershgorin disk centers and radii for A′ are shown in Table 4. The stability bounds are once
again the same as in Eq. (18) with �B being the set of all boundary values Bb and with �G now defined as

�G = {0,1,2,6,7,8}. (27)

In the linear case (s = 0) with no external potential and periodic, Dirichlet or Laplacian-zero boundary conditions, we get
the linear stability bound

k <

√
8

8

h2

a
. (28)

As before, since within the A matrix, all boundary, potential, and nonlinear terms are O (h2) the simple bound of Eq. (28)
with slight adjustment can be used in many applications.

5.2. Fourth-order central difference

The fourth-order central difference scheme in two dimensions is given by

∇2Ψi, j ≈ − 1

12h2

1

−16

1 −16 60 −16 1

−16

1

Ψi, j. (29)

The low-storage version of the 2SHOC equivalent scheme is defined as [6]

1) Di, j = 1

h2

1

1 −4 1

1

Ψi, j, (30)

2) ∇2Ψi, j ≈ − 1

12

1

1 −12 1

1

Di, j + 1

6h2

1 1

−4

1 1

Ψi, j . (31)

The corresponding A matrix has a five-banded structure. The structures of the A matrix and its corresponding A′ matrix
are shown in Fig. 3.

The resulting unique forms of the Gershgorin disk centers and radii for A′ are shown in Table 5. The linearized stability
bound is once again Eq. (18) but with �G defined as

�G = 1

12
× {128,127,126,110,109,92,24,9,8,−6,−7,−8}. (32)

The linear bound (with s = 0 and V (r) = 0) is then given by
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Table 5
Gershgorin disk centers (aii ) and radii (ri ) for
the A′ matrix of the two-dimensional 2SHOC
scheme.

aii ri = ∑
i 
= j |aij |

Li − 5 11/2
Li − 5 67/12
Li − 5 17/3
Li − 29/6 17/6
Li − 59/12 25/6
Li − 59/12 17/4

Table 6
Gershgorin disk centers (aii ) and radii (ri ) for
the A′ matrix of the three-dimensional central
difference scheme.

aii ri = ∑
i 
= j |aij |

Li − 6 3
Li − 6 4
Li − 6 5
Li − 6 6

k <
3
√

8

32

h2

a
, (33)

which, as in the one-dimensional case, is 25% lower than the second-order linear bound given in Eq. (28).

6. Three-dimensional stability analysis

For the stability analysis in three dimensions, the same procedure utilized in the two-dimensional case of Section 5 is
used.

6.1. Second-order central difference

The second-order central difference scheme in three dimensions is given by

∇2Ψi, j,k = ∂2Ψ

∂x2

∣∣∣∣
i, j,k

+ ∂2Ψ

∂ y2

∣∣∣∣
i, j,k

+ ∂2Ψ

∂z2

∣∣∣∣
i, j,k

≈ 1

h2

⎛
⎜⎝ 1 Ψi, j+1,k +

1

1 −6 1

1

Ψi, j,k + 1 Ψi, j−1,k

⎞
⎟⎠ , (34)

and the structures of the corresponding A and A′ matrices are given in Fig. 4. The unique forms of the Gershgorin disk
centers (aii ) and radii (ri) for A′ are shown in Table 6. The stability bounds of Eq. (18) in this case has �G defined as

�G = {12,11,10,9,3,2,1,0}. (35)

In the linear case (s = 0) with no external potential and periodic, Dirichlet or Laplacian-zero boundary conditions, the linear
stability bound becomes

k <

√
8

12

h2

a
. (36)

6.2. Fourth-order central difference

The fourth-order central difference scheme in three dimensions is given by

∇2Ψ ≈ 1

12h2

[
Ψi+2, j,k + Ψi−2, j,k + Ψi, j+2,k + Ψi, j−2,k + Ψi, j,k+2 + Ψi, j,k−2

− 16(Ψi+1, j,k + Ψi−1, j,k + Ψi, j+1,k + Ψi, j−1,k + Ψi, j,k+1 + Ψi, j,k−1) + 90Ψi, j,k
]
. (37)

The single-storage version of the 2SHOC equivalent scheme is defined as [6]

1) Di, j,k = 1

h2

⎛
⎜⎝ 1 Ψi, j+1,k +

1

1 −6 1

1

Ψi, j,k + 1 Ψi, j−1,k

⎞
⎟⎠ , (38)

2) ∇2Ψi, j,k ≈ − 1

12

⎛
⎜⎝ 1 Di, j+1,k +

1

1 −10 1

1

Di, j,k + 1 Di, j−1,k

⎞
⎟⎠
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Fig. 4. (Color online.) Form of scheme matrices A and A′ for the second-order central difference scheme of the three-dimensional NLSE. The dots represent
non-zero entries of the matrices. The matrices shown are for a 5 × 5 grid.

Fig. 5. (Color online.) Form of scheme matrices A and A′ for the fourth-order 2SHOC scheme of the three-dimensional NLSE. The dots represent non-zero
entries of the matrices. The matrices shown are for a 7 × 7 grid.

+ 1

6h2

⎛
⎜⎝

1

1 1

1

Ψi, j+1,k +
1 1

−12

1 1

Ψi, j,k +
1

1 1

1

Ψi, j−1,k

⎞
⎟⎠ , (39)

and the structures of the corresponding A and A′ matrices are given in Fig. 5, while the unique forms of the Gershgorin
disk centers and radii for A′ are shown in Table 7. The stability bounds are the same as in Eq. (18), but with �G now defined
as

�G = 1

12
× {192,191,190,189,174,173,172,156,155,138,36,21,20,6,5,4,−9,−10,−11,−12}. (40)

In the linear case (s = 0) with no external potential and periodic, Dirichlet or Laplacian-zero boundary conditions, we get
the linear stability bound

k <

√
8

16

h2

a
, (41)

which, as in the one- and two-dimensional cases, is simply 3/4 of the second-order bound given in Eq. (36).

7. Numerical examples

Here we show some numerical examples to demonstrate the accuracy of the predicted stability bounds. Since the accu-
racy of the bounds is highly dependent on the problem including the values of s, a, and V (r), the tests given here are not
exhaustive, but serve as a good indication of the general accuracy of the bounds.
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Table 7
Gershgorin disk centers and radii for the
A′ matrix of the three-dimensional 2SHOC
scheme.

aii ri = ∑
i 
= j |aij |

Li − 15/2 33/4
Li − 15/2 25/3
Li − 15/2 101/12
Li − 15/2 17/2
Li − 22/3 67/12
Li − 22/3 17/3
Li − 29/4 17/4
Li − 89/12 83/12
Li − 89/12 7
Li − 89/12 85/12

We choose to use three initial conditions, one for each dimensionality case, and integrate them using both the CD and
2SHOC schemes. In one dimension, we use the exact steady-state bright soliton solution to the NLSE with V (x) = 0 and
s > 0 given as [14]

Ψ (x, t) =
√

2Ω

s
sech

[√
Ω

a
x

]
exp(iΩt), (42)

where Ω is the frequency, and we set V (x) = 0, Ω = 1, s = 1, and a = 1 and use Dirichlet boundary conditions (Ψ = 0). In
two dimensions, we use an approximation to a co-rotating dark vortex pair solution to the NLSE. Each vortex is given by [7]

Ψ (r, θ, t) = f (r)exp
[
i(mθ + Ωt)

]
, (43)

where m is the topological charge of the vortex (in our case, we use m = 1), Ω = −1, and we use s = 1 and a = 1. The term
f (r) is the real-valued radial profile centered at the vortex core which can be found numerically [4]. The pair of vortices
are then combined to yield the initial condition

Ψ (x, y, t = 0) = f (r1) f (r2)exp
[
im(θ1 + θ2)

]
,

where r1 = √
(x − x0)2 + y2, r2 = √

(x + x0)2 + y2, θ1 = tan−1(y/(x − x0)), and θ2 = tan−1(y/(x + x0)), which approximates
the true initial condition of a co-rotating steady-state vortex pair solution located at (−x0,0) and (x0,0). Here we choose
x0 = 4. Since |Ψ |2 does not decay at the boundaries, we use the modulus-squared Dirichlet boundary condition |Ψ |2 = 1. In
three dimensions, we use a steady-state bright Gaussian solution of the LSE in a potential trap with an added initial ‘kick’
in the x-direction which causes the structure to oscillate in the x-direction. The initial condition is given by

Ψ (x, y, z, t = 0) = exp

(
− x2 + y2 + z2

2a

)
exp

(
−i

x

2

)
, (44)

with external potential

V (x, y, z) = x2 + y2 + z2

a
, (45)

and we use the Dirichlet boundary condition Ψ = 0. For all simulations, we set the spatial-step size of the grid to h = 1/5.
The three initial conditions are shown in the left column of Fig. 6.

To test the stability bounds, each solution is integrated to an ending time of t = 100 and it is observed if the solution
remains stable. We increase the time-step k until the solution becomes unstable within the t = 100 simulation time, at
which point the largest time-step that was stable is denoted knum. This is then compared to the computed linear [Eqs. (46)
and (47) denoted klin] and fully linearized [Eq. (48) denoted klinz] stability bounds formulated in Sections 4–6. The time-step
is incremented to yield the numerical stability limit to within four significant figures. All of the simulations are performed
using the NLSEmagic software package [3].

Before displaying the results, we point out that there are some sources of error to consider. First, the predicted stability
bounds are linearized and therefore will not be the same as the corresponding true nonlinear stability bounds. Second,
in our analysis, we chose to use every possible combination of �L which may lead to predictions of the bounds which are
stricter than the true bound. Finally, it is sometimes difficult to determine the true stability bound numerically, as some
unstable time-steps may only exhibit their instability after a very long simulation time. For our test, we choose a moderately
long simulation time, but the exact bound may be slightly higher than the given result.

The results are shown in Table 8, while Fig. 6 shows the solutions before and after the recorded numerical stability
bounds for three chosen examples. We see that overall, the numerical results match the predicted stability values quite well
(especially in one and two dimensions) with a maximum percent difference of 6.5% when V (r) 
= 0 in the three-dimensional
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Fig. 6. (Color online.) Examples of integrating the LSE and NLSE before and after the numerical stability bound for the examples described in Section 7.
Left to right columns: Initial condition, solution with k > knum, and solution with k = knum. Top to bottom: one-, two-, and three-dimensional test cases
using the CD, 2SHOC, and CD schemes respectively. For the one-dimensional test, the predicted stability bounds are klin = klinz = 0.02828 and the solution
is shown with k = 0.02833 (middle) and k = 0.02832 (right) at t = 100. For the two-dimensional test, the predicted stability bounds are klin = 0.01061 and
klinz = 0.01057. The solution is shown with k = 0.01055 (middle) and k = 0.01054 (right) at t = 30 and t = 100 respectively. For the three-dimensional
test, the predicted stability bounds are klin = 0.009428 and klinz = 0.008650. The solution is shown with k = 0.009214 (middle) and k = 0.009213 (right) at
t = 100.

Table 8
Numerical test results of finding the numerical stability bound (knum) for the example problems described in Section 7 compared to the predicted linear
(klin) and linearized (klinz) bounds.

Example klin klinz knum %-diff klin %-diff klinz

1D CD 0.02828 0.02828 0.02832 0.14 0.14
1D 2SHOC 0.02121 0.02121 0.02124 0.14 0.14
2D CD 0.01414 0.01407 0.01402 −0.85 −0.36
2D 2SHOC 0.01061 0.01057 0.01054 −0.66 −0.28
3D CD 0.009428 0.008650 0.009213 −2.28 6.51
3D 2SHOC 0.007071 0.006624 0.006992 −1.12 5.56

example, but with a typical percent difference less that 1% when V (r) = 0. It is noted that in some cases the predicted
bounds are stricter than the numerical result, while in other cases, they are too lenient, noting that the examples with
s > 0 were all too strict, while those with s < 0 were all too lenient. However, due to the small number of tests, no
conclusions about the effect of the sign and presence of the parameters and external potential of the LSE and NLSE on the
stability bound predictions can be drawn from these observations. In terms of choosing a stable time-step for LSE and NLSE
simulations, the results given are well within a tolerable range, and in practice one would use a time-step some percentage
(say 10–20%) lower than the predicted bound to ensure stability over long integration times.
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Table 9
Values of �B in Eq. (48).

Dirichlet (Ψb = const) Laplacian-zero (∇2Ψb = 0) MSD (|Ψb |2 = const)

Bb 0 h2

a (s|Ψb |2 − Vb) h2

a Im
[ Ψt,b−1

Ψb−1

]

Table 10
Values of �G in Eq. (48).

Scheme → CD O (h2) 2SHOC O (h4)

1D {4,3,1,0} 1
12 × {64,63,46,12,−3,−4}

2D {8,7,6,2,1,0} 1
12 × {128,127,126,110,109,92,24,9,8,−6,−7,−8}

3D {12,11,10,9,3,2,1,0} 1
12 × {192,191,190,189,174,173,172,156,155,138,36,21,20,6, 5,4,−9,−10,−11,−12}

8. Conclusion and summary of results

In this paper we have formulated linearized stability bounds for using second- and fourth-order spatial finite-differencing
with fourth-order Runge–Kutta time-stepping for the multi-dimensional nonlinear Schrödinger equation (NLSE) with Dirich-
let, modulus-squared Dirichlet, Laplacian-zero, and periodic boundary conditions.

A summary of the stability results for easy reference is given presently. For the nonlinear Schrödinger equation defined
as

i
∂Ψ

∂t
+ a∇2Ψ − V (r)Ψ + s|Ψ |2Ψ = 0,

where a > 0 and s are parameters of the system and V (r) is an external potential, the numerical stability bounds on the
time-step when using the fourth-order Runge–Kutta time-stepping scheme is as follows:

In the linear case where s = 0 and with no external potential (V (r) = 0), utilizing periodic, Dirichlet, or Laplacian-zero
boundary conditions, the stability bound on the time-step k when using the second-order central difference (CD) scheme in
a d-dimensional setting is

kCD <
h2

d
√

2a
, (46)

while that of using a fourth-order central difference scheme (with interior points computed in the two-step high-order
compact (2SHOC) methodology of Ref. [6]) is

k2SHOC <

(
3

4

)
h2

d
√

2a
. (47)

The linearized stability bounds for the general NLSE are

k <

√
8

max{‖�B‖∞,‖∀Li, Li − �G‖∞}
h2

a
, (48)

where �B are the boundary points as defined by Table 9 (or in the periodic case is ignored), the elements of �L is defined as

Li = h2

a

(
s|Ψi|2 − V i

)
,

where the index i spans the entire grid, and �G is a set of values defined in Table 10, determined by the dimension and
method being used.

We have found through numerical testing (those of Section 7, as well as others not reported here) that to ensure stability
in all dimensions for typical problems, the bounds must be lowered by about 10–20% (most likely due to nonlinear effects).
Also, we note that the reduced linear results are often similar to the full linearized bounds and can therefore be used as a
good quick estimate of the stability bound.
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