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Abstract
Adaptive behavioral interventions that automatically adjust 
in real-time to participants’ changing behavior, environmental 
contexts, and individual history are becoming more feasible 
as the use of real-time sensing technology expands. This 
development is expected to improve shortcomings associated 
with traditional behavioral interventions, such as the reliance 
on imprecise intervention procedures and limited/short-lived 
effects. JITAI adaptation strategies often lack a theoretical 
foundation. Increasing the theoretical fidelity of a trial has been 
shown to increase effectiveness. This research explores the 
use of shaping, a well-known process from behavioral theory 
for engendering or maintaining a target behavior, as a JITAI 
adaptation strategy. A computational model of behavior dynam-
ics and operant conditioning was modified to incorporate the 
construct of behavior shaping by adding the ability to vary, 
over time, the range of behaviors that were reinforced when 
emitted. Digital experiments were performed with this updated 
model for a range of parameters in order to identify the behav-
ior shaping features that optimally generated target behavior. 
Narrowing the range of reinforced behaviors continuously in 
time led to better outcomes compared with a discrete narrow-
ing of the reinforcement window. Rapid narrowing followed by 
more moderate decreases in window size was more effective 
in generating target behavior than the inverse scenario. The 
computational shaping model represents an effective tool for 
investigating JITAI adaptation strategies. Model parameters 
must now be translated from the digital domain to real-world 
experiments so that model findings can be validated.
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INTRODUCTION

Behavior shaping in health interventions
In the USA, the leading causes of death and disease 
are modifiable behavioral factors such as tobacco 
use, poor diet, physical inactivity, alcohol consump-
tion, and avoidable injuries [1, 2]. Studies have indi-
cated that preventable, extrinsic factors contribute 
>70%–90% of lifetime cancer risks [3]. Consequently, 
enormous gains to public health are achievable 
through behavior-altering interventions. Most be-
havioral interventions, though, generate limited, 
short-lived effects [4], partly due to the reliance on 
episodic assessments of behavior captured by tools 

such as counseling sessions, ecological momentary 
assessments, surveys, and discrete direct observa-
tions. In contrast, recent advances in mobile tech-
nology have enabled the development of just-in-time, 
adaptive interventions (JITAIs) that have the poten-
tial to improve upon the shortcomings associated 
with traditional trials [5, 6]. JITAIs typically use 
assessment technology that is capable of observing 
and recording behavior in a natural environment on 
a near-continuous basis over a long period of time. 
By pairing intensive data collection with analytic sys-
tems capable of real-time decision making, JITAIs 
enable interventions to be provided on an ongoing 
basis and automatically adapt in response to partic-
ipants’ varying behaviors, environmental contexts, 
and past history. This process is hypothesized as an 
ongoing two-way “conversation” between patients 
and providers. While still in the preliminary stages, 
adaptive interventions have been implemented to, 
for example, encourage physical activity [7], assist 
with in-home living for older adults [8], and manage 
HIV medication adherence [9].

The implementation of JITAIs can be enhanced 
by consideration of the precise mechanisms by 

Implications
Practice: A  computational model of behav-
ior shaping has been developed in order to 
aid with the formalization and automation of 
behavior-shaping procedures within adaptive 
behavioral interventions that utilize real-time 
technology.

Policy: Policymakers interested in leveraging 
real-time sensing technology to automatically 
personalize behavioral interventions should con-
sider theoretically rooted intervention adaptation 
strategies.

Research: Further research should be aimed at 
verifying computational model outcomes with 
real-world experiments.
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which interventions should adapt in response to par-
ticipants’ behavior. Often, adaptation strategies are 
developed in an ad hoc fashion with little consider-
ation of theoretical underpinnings, despite findings 
indicating that adherence to established theory can 
increase the efficacy of behavioral interventions 
[10]. Current behavioral theories provide little in-
sight into this regard because they rarely consider 
behavior as a dynamic entity [11]. Introducing theor-
etically sound, responsive adaptation strategies will 
probably lead to more effective interventions and, 
furthermore, can generate results that will allow 
the underlying theories to be refined. One possible 
adaptation strategy with a theoretical foundation 
is behavior shaping, defined as the process whereby 
a targeted behavior is gradually cultivated via the 
differential reinforcement of successive approxima-
tions to the target [12]. When implementing this pro-
cedure, the range of behaviors that are reinforced 
narrows with time (Fig.  1A). The shaping process 
can lead to complex behaviors that would otherwise 
not be emitted as quickly, or at all. In a traditional 
shaping scenario, a practitioner must discriminate 
which behaviors are sufficiently similar to the target 
behavior in order to receive reinforcement and 
determine the optimal time to discontinue the re-
inforcement associated with crude approximations. 
The withholding of reinforcement produces a tem-
porary extinction condition that might occasion 
novel or differential rates of behavior that are ap-
propriate for shaping. This process typically occurs 
in a controlled environment such as classroom or 
training center. Proficiency in performing these 
tasks arbitrates the ultimate effectiveness of shaping 

routines and specialists such as teachers and coaches 
do this as an art. JITAIs, though, offer the oppor-
tunity to precisely gauge behavior on a nearly con-
stant basis and to continually assess its similarity to a 
target behavior. This enables shaping procedures to 
be automatically implemented in a much wider var-
iety of contexts than has typically been possible [13].
Many behaviors are reliably shaped throughout so-
ciety. For instance, the entire educational system can 
be viewed as a high-level shaping procedure where 
successively close approximations to proficiency 
in certain disciplines are reinforced as individuals 
proceed through each grade. Subsequent to these 
formal shaping protocols, the environment contin-
ues to shape behavior, albeit under less predictable 
schedules. For example, education is reinforced by 
the admission to college and subsequent employ-
ment. In contrast, behavior-shaping routines that 
would be deployed in JITAIs, at least during this 
preliminary stage, are likely to be rudimentary and 
not have the benefit of a host of strong, supporting 
contingencies. In some cases, such as when attempt-
ing to shape tobacco-smoking cessation, the op-
posite may even be true and environmental factors 
could discourage the target behavior. The extent to 
which simple shaping procedures deployed within 
a natural environment would be successful in pro-
ducing elevated levels of healthy human behavior 
is an open question that this manuscript begins the 
process of addressing.

Outside of the JITAI domain, the effectiveness 
of behavior shaping in humans has been reliably 
demonstrated in areas ranging from promoting 
motor activity in patients recovering from strokes 

Fig. 1 |  (A) Behavior shaping schematic. (B) McDowell computational model flowchart.
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[14] to improving dental treatment acceptance 
among children [15] to the management of cellu-
lar service consumption [16]. For individuals with 
autism, shaping has been used to promote soci-
oemotional functioning [17], to aid in toilet training 
[18], to increase the duration of sustained attention 
[19], and to develop social-cueing skills [20]. The 
latter of these examples utilized automatic behavior 
assessment features similar to those that are required 
for JITAIs.

Behavior shaping and computational models
Using computational models to assess the effect-
iveness of behavior shaping routines in JITAIs is 
an attractive preliminary approach since it allows 
for the components of complex systems to be effi-
ciently isolated and manipulated. Methodologies 
can be explored, tweaked, and sometimes aban-
doned without the complications associated with 
their real-world counterparts. The ultimate aim of 
the procedure presented herein is to leverage the 
insight gained within simplified, digital domains to 
develop increasingly more realistic controlled labo-
ratory experiments and subsequent real-world trials, 
which will all share a common theoretical underpin-
ning. This will allow behavior shaping programs to 
be designed with a degree of theoretical fidelity [10] 
that has been absent in this area thus far.

There is a rich history of implementing digi-
tal shaping programs within reinforcing learning 
models that are popular in the realm of artificial 
intelligence (AI) research. For example, behavior 
shaping routines have been implemented in rein-
forcement learning schemes within computational 
models of bicycle riding [21] and navigating a rod 
around obstacles [22]. In addition to experiments 
occurring in a virtual environment, shaping has also 
been included within the reinforcement learning 
protocol for robots learning to simulate foraging 
and other survival behaviors [23, 24]. The shaping 
protocols in these reinforcement learning models 
typically consist of having the agent preliminarily 
complete a simplified version of the full target task 
and demonstrating that this priming increases the 
rate at which the target behavior is acquired. In con-
trast to the hypothesized implementation of shaping 
within JITAIs, these shaping routines have only a 
rudimentary temporal component and do not adapt 
over time, which limits their generalizability to the 
JITAI domain.

Due to the shortcomings of the existing computa-
tional shaping routines discussed above, this paper 
aims to develop computational models that are suit-
able for a JITAI framework. This is accomplished 
by modifying McDowell’s evolutionary model of 
behavior dynamics [25] by incorporating behavior 
shaping. In accordance with Darwinist principles, 
the McDowell model emits a stream of behaviors 
chosen from a population via a system of selection, 

reproduction, and mutation, a process that may be 
equivalent to reinforcement learning [26]. As will be 
detailed below, this is an abstract model that con-
siders a digital organism emitting generic behaviors. 
The absence of specificity regarding behaviors and 
targets is an attractive feature since, as opposed to 
the behavior-specific AI reinforcement learning 
tasks described above, it enables findings to be gen-
eralized to many different JITAIs. As described in 
Table  1, the McDowell computational model has 
consistently produced results that agree with many 
material world experimental findings. In the case 
of temporally adaptive behavior shaping routines, 
the appropriate real-world experiments required 
for model comparison have not yet been per-
formed. The results outlined within this paper lay 
the groundwork for the development of such exper-
iments that will allow the consistency of computa-
tional and material-world findings to be assessed in 
order to inform behavior-shaping JITAIs.

BEHAVIOR SHAPING IN MCDOWELL MODEL

Summary of previous work
McDowell’s model [25] considers a hypothetical 
digital organism whose behavior evolves over time 
according to low-level rules informed by principles 
of behavior. This foundation defines the relation-
ship between the emission of a behavior and its 
consequence, as specified by the probability of this 
behavior being emitted in the future. In a process 
similar to agent-based modeling, the interaction of 
these rules for various behaviors is simulated via 
computational experiments that produce emergent, 
higher-order results that cannot be extrapolated by 
solely examining the structure of the rules. The sys-
tem is entirely decentralized without explicit con-
siderations of global outcome and has stochasticity 
built into it. Drawing on the parallels between oper-
ant behavior and natural selection, model compo-
nents are presented in evolutionary terms.

The behavior of the digital organism evolves 
over time according to the algorithm illustrated in 

Table 1 | Summary of previous findings from computational model

Study Finding

Ref. [25] Consistency with the law of effect
Ref. [31] Consistency with the power-function matching 

equation
Ref. [32] Consistency with an extension of the power-function 

matching equation that considers reinforcement 
magnitude

Ref. [33] Demonstrated the effect of changeover delays when 
switching between reinforcement schedules

Ref. [34] Changing response preference based on concurrent 
reinforcement schedules

Ref. [35] Consistency with known inter-response time 
distributions
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Fig. 1B and described as follows. Each behavior is 
associated with a unique integer within the interval 
[0, 1000], and at each time step, a repertoire of 100 
behaviors is active. The integers are stratified into 
behavior classes, one or more of which represents 
a targeted class which contains behaviors that are 
eligible to receive reinforcement when emitted. The 
experiments detailed herein include three classes: 
class I: [0, 494], class II: [495, 505], and class III: 
[506, 1000], the second of which is the target class. 
The range of integers defining behaviors, the size 
of the active repertoire, and the specification of the 
reinforced class can be freely chosen. At each time 
step, the probability that a particular class of behav-
ior is emitted is given by the proportion of total 
behaviors within the repertoire that correspond with 
this class. Based on the probabilities calculated for 
each class, one class is selected at random for emis-
sion. The specific behavior from within the class that 
is emitted is randomly selected from the behaviors 
in the repertoire associated with this class. To cre-
ate the behavioral repertoire at the next time step so 
this procedure can be iterated, “parent” behaviors 
are selected from the current behavioral repertoire 
and “cloned” and “mutated” to generate a new set of 
100 behaviors comprising the new repertoire. The 
full details of this process are detailed in Ref. [25] 
and in Appendix 1, which describes deviations from 
the methodology outlined in Ref. [25].

The computational model includes a reinforcement 
component, which allows behavior shaping to be intro-
duced. Reinforcement is defined as the delivery of a 
stimulus contingent upon performance of a behavior 
which results in the increased probability of future 
occurrences of this behavior and others similar to it [27]. 
This construct is included in the model as follows. If 
the emitted behavior is from the target class, a rein-
forcement schedule is consulted to determine whether 
this behavior should be reinforced. If reinforcement 
should occur, the emitted behavior is characterized 
as “fit” and the fitnesses of the other behaviors in the 
repertoire are based on their similarity (i.e., distance) 
to the reinforced behavior. A  fitness function, fully 
detailed in Ref. [25], is then used to select the parent 
behaviors for the next repertoire that are similar to the 
emitted, reinforced behavior with preference given to 
the most similar behaviors. As a result, after cloning 
and mutation, the behaviors comprising the repertoire 
at the next time step will be similar to the emitted 
behavior, satisfying the definition for reinforcement. 
If the emitted behavior is not reinforced, the parent 
behaviors are selected at random.

Operationalizing behavior shaping
The primary focus of the research summarized 
in this manuscript is to operationalize the con-
struct of behavior shaping within the McDowell 
computational model so that digital experiments 
concerning its optimal implementation can be per-
formed. To simulate the reinforcing of successive 

approximations to a target behavior, the McDowell 
model was modified so that a class of behaviors 
wider than the target behavior class was reinforced. 
Because shaping requires, as time progresses, behav-
iors to be increasingly similar to the desired behav-
ior in order to receive reinforcement, the width of 
this reinforcement class was gradually tightened 
according to some nonincreasing function, w t( ). 
The reinforced class at any given time is defined as 

[500 ,500 ]− +W W
, where W

w t
=

( ) 1

2

−
. It follows that 

w t( ) =11 defines the reinforcement of only the tar-
geted behavioral class [495, 505]. To ensure that the 
reinforced class is defined by integers, all the values 
of w t( ) are rounded to the nearest odd integer. As the 
behaviors defining the reinforced class are updated 
according to w t( ) , the other classes must be updated 
as well. class I is thus defined as [0,500 1]− −W  and 
class III is defined as [500 1,1000]+ +W . This study 
aims to identify w t*( ), the function that optimally nar-
rows the reinforcement class toward the target class.

Discrete shaping procedure
The simplest shaping procedures start with a rein-
forcement window that is wider than the target win-
dow and tighten it at discrete time point(s), which can 
be summarized by treating w t( ) as a step function. 
Several example step functions chosen for explo-
ration and denoted as w tn( ) for n =16 are shown in 
Fig. 2. Figure 2A represents the baseline case where 
only the target behavior class (w t( ) =11) is reinforced 
at all times. Figure  2B and C is denoted as 1-step 
shaping procedures. In this case, the class [489–511] 
(w t( ) = 22 ) was initially reinforced and then the rein-
forcement window was reduced to the target class 
at t = 60 and t =120, respectively. Figure  2D and 
E illustrates 2-step shaping procedures and Fig. 2F 
illustrates a 3-step shaping procedure.

Figure  2G depicts the results generated by these 
shaping functions. The metric shown is the percentage 
of target behaviors in the behavior repertoire at each 
time step. To account for stochasticity in the system, 
this value is averaged over 5,000 simulations. After 
approximately 50 time steps, each of the shaping pro-
cedures produces higher levels of the target behav-
ior than does w t1( ), where only the targeted class was 
reinforced. This demonstrates that the operationaliza-
tion of shaping within the computational algorithm is 
functioning as expected since higher levels of behav-
ior were eventually produced relative to the scenario 
where only the target behavior class was reinforced. 
w t2( ) and w t3( ) are both 1-step functions that utilize 
the same two reinforcement windows, but spend a dif-
ferent amount of time in each window. The different 
results for these functions demonstrate the effect of 
this temporal feature on results. The 3-step function 
w t6( ) produced a higher level of target behavior than 
the 2-step functions, w t4( ) and w t5( ), which in turn 
produced a higher level of behavior than the 1-step 
functions. Taken together, these results indicate that 
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continuously narrowing the reinforcement with time, 
as opposed to the discrete contraction used in this 
section, might lead to more pronounced behavior 
change.

Continuous shaping procedure
The first step in the continuous shaping procedure 
is to develop functions that can be used to guide the 
reinforced class width. These functions are analo-
gous to those illustrated in Fig. 2, but are continu-
ous and nonlinear. The following generic piecewise 
function is used:

	 w t
A w t t

w t t

bt
f

c f

( ) =
(1 )

> ,
0− + ″




e � (1)

where w0 is the initial width of the reinforcement 
class, b is an exponential loss/gain parameter, A is the 
distance between the horizontal asymptote and w0

, 
and t f  is the time at which the target reinforcement 
width is met. For t t f> , only behaviors within the tar-
get behavior class are reinforced. To ensure that w t( ) 

is continuous, the restriction w t wf c( ) =  is established, 

which leads to the condition, A
w wc

bt f
≡

−
−

0

1 e
.

In equation (1), negative values of b correspond 
to concave-up functions, which represent an ini-
tial rapid decrease in the reinforced class. Positive 
values of b correspond to concave-down functions, 
representative of a gradual initial decrease in the 
reinforced class along with a rapid narrowing of 
the reinforced class later in time. For b = 0, the non-
constant component of w t( ) is undefined. However, 
a linear Taylor expansion about b = 0 shows that, 
in the limit, this function can be approximated by a 
straight line crossing through the two points (0, )0w  and 

( , )t wf c , that is, the slope is 
w w

t
c

f

− 0
 and the . y-intercept 

is w0. Therefore, when b = 0, the reinforced class  is 
narrowed at a constant rate. Figure 3A illustrates the 
qualitative shape of equation (1) for different values 
of b.In order to fully define equation (1), values for t f , 
wc, b , and w0 are required. The chosen target behav-
ior class of [495,505] corresponds to wc = 11. t f  was 

Fig. 2 |  (A–F) illustrate step w t( )  functions for discrete shaping and (G) illustrates analytic results for each function.

Fig. 3 |  (A) Qualitative shapes for the shaping function described by equation (1) for different values of b. wc , depicted as the horizontal 
line represents the width of the target class. (B) The w t( ) functions with optimal parameters at time t  = 100, 200, and 250 for the FR1 
simulations outlined in the text. The largest area under the curve of the target behavior trajectories (see next section) was used to deter-
mine which parameters were optimal.

(A) (B) (C)

(D) (E) (F)

(G)
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set equal to 100 and the simulations were run until 
t = 250 . These three values are free parameters of 
the system. Exploratory analyses outside the scope 
of this manuscript indicated that different values 
for these parameters did not affect the qualitative 
nature of the findings detailed below. The computa-
tional experiments performed in this work explore 
the effects of varying w0, the initial value of w t( ) that 
can be interpreted as the maximal deviation from 
the target behavior that will result in reinforcement 
and b , the reinforcement window narrowing rate. 
The experiments were conducted for values of 
( , )0 0b w B W∈ × , where B = [ 0.2, 0.19,...,0.19,0.2]− −  
and W0 = [80,120,...,200,210].

Results of the continuous shaping procedure
Figure 4A illustrates the target behavior level (meas-
ured as in Fig. 2G) as the percentage of target behav-
iors in the behavioral repertoire at each time step 
(averaged over 5,000 simulations) versus time for 
selected values of ( , ) 0b w B W∈ × . For all cases, includ-
ing those not shown in Fig. 4A, the evolution of tar-
get behavior proceeds in, roughly, three different 
ways. For certain sets of parameters, the percentage 
of target behavior increases rapidly at the onset of 
the simulations and then asymptotes. For other sets 
of parameters, the trajectory is sigmoid-like with a 
nearly constant low level of behavior followed by a 
large, rapid jump to a higher level of behavior that 
approaches an asymptote. The last class of behavior 
does not begin to increase until t f , when the target 
class is reached, and then increases gradually before 
asymptoting. To characterize the trajectory for the 
entire set of parameters, the following two metrics 
were calculated: (a) the time at which the trajectory 
begins to increase, denoted by tc  and approximated 
by time at which a target behavior value equal to 15 
is first breached (horizontal dashed line in Fig. 4A) 
and (b) the asymptote as time approaches ∞, 
denoted by hM  and approximated by the maximum 
value a given trajectory realizes over the course of 
a simulation. The highest hM  values summarized in 
Fig. 4C and E are higher than those produced by the 
discrete shaping functions in Fig. 2, demonstrating 
the superiority of continuous shaping procedure.

Figure 4B and C illustrates tc and hM  over B W× 0. The 
variation in target behavior associated with parame-
ter b, the curvature of the function, is much greater 
than the variation associated with w0 for all metrics. 
For example, in Fig. 4B, if b is fixed at zero and w0 
is varied, the range of tc  values is approximately 50 
to 90, whereas if w0 is fixed at 150 and b is varied, tc  
ranges from approximately 20 to 120.

As summarized in Fig. 4B, the smallest value for 
tc  was 16, generated by six ( , )0b w  combinations, all 
located in the bottom-left corner of the figure. These 
are concave-up shaping functions characterized 
by a rapid initial decrease in reinforcement class 
width followed by long time intervals with a width 

relatively close to wc. High values for tc , on the other 
hand, are produced by parameter combinations in 
the upper-right corner of Fig. 4B, which represent 
w t( ) functions that start relatively far from wc and de-
crease very slowly until t is near t f . Both of these 
results indicate that w t( )’s proximity to wc is associ-
ated with a jump in the level of target behavior.

hM  (the asymptotic height) changes dynamically and 
only a snapshot at a particular moment can be illus-
trated. For instance, Fig. 4C presents the results at t t f= ,  
where the maximum value is 51.2% of target behaviors 
in the repertoire, which is associated with the parame-
ter set ( , ) = ( 0.01,130)0b w − . In this snapshot, the largest 
values of hM  are associated with nearly linear functions 
that have negative b values near 0. But tc, the time at 
which the trajectory jumps, is larger for these values 
of b than for large negative values of b. This represents 
competing effects where the target behavior trajecto-
ries that jump most quickly are not associated with 
highest levels of target behavior. To account for this 
competition between tc and hM  in determining the 
overall levels of target behavior, the area under the tra-
jectory curve (AUC) was also considered as a metric, 
as illustrated in Fig. 4D. The maximum AUC is asso-
ciated with ( , ) = ( 0.06,100)0b w − , and in general, larger 
area values are associated with concave-up functions as 
opposed to concave-down functions.

The analyses described above were calculated at 
time t t f= . As Fig.  4A illustrates, many trajectories 
have not reached their maximum height at this time. 
At t = 250, which represents the end of the simulation, 
the trajectories have developed further, and Fig.  4E 
and F illustrate hM  and AUC at this time. The con-
cave-down functions associated with positive b values 
now have the highest hM  levels, although the largest 
values are still associated with essentially linear func-
tions. The highest values are also associated with larger 
w0 values. This rightward shift in the graph is mirrored 
when considering the AUC, as shown in Fig. 4F. In this 
case, the maximum values are for ( , ) = ( 0.01,130)0b w − .  
The functions with negative b values, that is, the 
concave-up shaping functions, jumped to elevated 
target behavior levels very quickly. Although the con-
cave-down functions take longer time to jump, their 
hM  values are higher. As longer time frames are con-
sidered, this elevated level of behavior outweighs the 
initial gains made by the concave-up functions and the 
AUC increases, as shown in Fig. 3B). The maximum 
hM  values, though, remain centered around b = 0, indi-
cating that a linear function will ultimately result in the 
most target behavior.

To summarize, concave-up shaping functions 
(b < 0) produce rapid increases to asymptotic target 
behavior levels, but this asymptote is lower than that 
of linear (b = 0) and concave-down functions (b > 0), 
particularly as the simulation runs for longer peri-
ods of time. The linear and concave-down shaping 
functions result in extended periods of a low rate of 
target behavior before jumping up to higher levels.

Downloaded from https://academic.oup.com/tbm/article-abstract/8/2/183/4859457
by San Diego State University Library user
on 23 April 2018



ORIGINAL RESEARCH

TBM� page 189 of 194

EFFECTS OF MODEL PARAMETER VARIATION

Fixed initial behavioral repertoire
The results summarized in Fig.  4A) point to an 
upper limit for the horizontal asymptote of the be-
havior trajectories. The generic w t( ) functions used 
in the continuous shaping procedure were selected 
to capture a range of concavity characteristics. It 

is possible that more complex shaping functions 
could ultimately lead to higher levels of targeted 
behavior. This section explores the level of tar-
geted behavior supported by the computational 
model with the specific parametrization described 
in Appendix 1. Simulations were performed where 
some portion of the initial behavioral repertoire 

Fig. 4 |  Result of simulations for FR1 reinforcement with the values defined in Table A1. (A) illustrates the level of target behavior with 
respect to time and (B) illustrates tc , the time required for the targeted reinforcement to reach a level of 15, for all ( , )0b w B W∈ × , 
where b is the concavity and w0 is the initial value of the shaping function w t( ). (C) and (D) illustrate the maximum height (hM ) and the 
area under the curve (AUC) for all combinations of parameters calculated at t =100. (E) and (F) are a recalculation of the results in (C) 
and (D), but with the metrics calculated at t = 250 rather than t t f= . All results are averaged over 5,000 simulations.
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was required from the outset to be from the target 
behavior class. This stands in contrast to the 
standard procedure where the initial behavior 
class  is chosen at random. Furthermore, setting a 
fraction of the initial behavior class to the target 
behavior simulates a previous learning history for 
the organism, a scenario which more accurately 
reflects the real-world conditions to which this 
model can be applied.

Once a fraction of the initial behavioral reper-
toire was fixed, only behaviors within the targeted 
class were reinforced, that is, there was no shaping. 
The behavior trajectories, averaged over 5,000 
simulations, for various proportions are illustrated 
in Fig.  5. There appears to be an upper limit of 
approximately 65% for the asymptotic level of 
targeted behavior, even for the ideal case when 
all behaviors initially in the repertoire are tar-
get behaviors and each of these target behaviors 
is reinforced when emitted. This feature is due 
to the shaping and cloning procedures (Ref. [25] 
and Appendix 1), which result in sufficient varia-
tion in the next generation of behaviors to ensure 
that nontarget behaviors are included in the reper-
toire. Interestingly, beginning with 60% and 70% of 
the initial behavioral repertoire in the target class 
results in an overshoot of this asymptotic level, 
but eventually the rate of behavior decreases to 
the asymptote. In the simulations detailed thus 
far, asymptotes as high as approximately 55% have 
been observed. Given an upper limit of 65% and 
the fact that the standard shaping procedure begins 
with a random initial behavioral repertoire, it is not 
expected that alternate shaping functions would 
drastically improve the ultimate levels of behavior 
generated.

Parameter variation within the computational model
In all of the previously detailed findings, a fixed-ratio 
1 (FR1) reinforcement schedule was implemented, 
meaning that every time a behavior from the rein-
forcement class was emitted, it was reinforced. The 
effects of utilizing an FR3 schedule, where every 
third reinforcable behavior that is emitted is rein-
forced, were also explored. Figure 6 illustrates the 
effects of this schedule, where differences compared 
with the previously described results can be seen. 
As is expected with less reinforcement, the overall 
target behavior levels are lower. This effect is par-
ticularly pronounced for parameter sets pairing 
large, negative values of b with small values of w0 
(i.e., the lower left corner of the figure), where tc  val-
ues are much larger. It appears that the infrequent 
reinforcement coupled with a sharp initial reduction 
in reinforcement window does not result in suffi-
cient reinforcement for shaping to be effective. This 
reinforcement schedule also resulted in the highest 
AUC values being more localized around b = 0 than 
was the case for previous analyses. As was the case 
for the FR1 schedule, at t = 250, the maximum hM  

values are associated with linear functions, but, in 
general, the values are relatively higher for con-
cave-down shaping functions.

The effects of varying the reinforcement strength 
(how similar the next repertoire is to a reinforced 
behavior), target class size, and time to target class 
were also explored. A full accounting of these results 
is beyond the scope of this article, but the results of 
these analyses were in accordance with the findings 
above, namely, they contained a trade-off between 
trajectories that quickly jump to elevated levels of 
target behavior versus trajectories that took longer 
to jump to ultimately higher levels of target behav-
ior. Approximately linear shaping functions pro-
duced the highest levels of behavior. This indicates 
that the results detailed within are not a function of 
the choice of modeling parameters.

DISCUSSION
This work demonstrated the viability of using com-
putational models to investigate behavior shaping 
routines, a process that may be valuable in devel-
oping an alternative to the ad hoc modifications 
often incorporated into adaptive, just-in-time, health 
behavioral interventions. The results indicate that 
shaping was effective at engendering higher lev-
els of target behavior than when only the target 
behavior class  is reinforced. When shaping target 
behavior, narrowing the scope of behaviors that 
are reinforced on a continuous basis rather than at 
discrete time points is more effective in producing 
the target behavior. Within this continuous frame-
work, computational experiments were performed 
to explore the role of both w0, the initial size of the 

Fig. 5 |  Target behavior trajectories for simulations with parame-
ters in Table A1 with no shaping routine. Each line represents fixing 
a certain proportion of the initial repertoire with behaviors from the 
target class, rather than choosing the initial repertoire randomly as 
is the case with other simulations.
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reinforced behavior class, and b, which determines 
the concavity of reinforced class narrowing, on the 
effectiveness of shaping routines. The b values were 
more crucial in arbitrating the ultimate effectiveness 
of shaping. When considering the total amount of 
target behavior produced, there were two compet-
ing effects to consider: concave-up shaping functions 
that resulted in the percentage of target behav-
ior quickly jumping to a relatively low asymptotic 

value versus concave-down shaping functions where 
the percentage of target behavior took a longer 
period of time to jump to higher asymptotic levels. 
Approximately linear functions did the best job of 
managing these two effects and led to the highest 
levels of target behavior.

There are practical conclusions to be drawn from 
the results outlined in the previous paragraph. If 
high levels of target behavior are the chief concern 

Fig. 6 |  Result of simulations with the default values defined in Table A1 but with an FR3 reinforcement schedule. The metrics illustrated in 
each panel are the same as in Fig. 4 with the exception that (B) illustrates the time required for the targeted reinforcement to reach a level 
of 10 rather than 15.
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of the shaping system, then either a linear or con-
cave-down shaping function should be used to guide 
the evolution of reinforcement windows with the 
latter being appropriate if it is only possible to rein-
force behaviors that are relatively similar to the tar-
get behavior, that is, small w0. An example of this 
scenario is someone training for an athletic competi-
tion, where the highest levels of target behavior are 
desired regardless of the time it takes to reach this 
goal. As an alternative scenario, consider a target 
behavior that is defined as the absence of some dele-
terious behavior, such as cigarette smoking. Shaping 
routines could be used within a gradual cessation 
program by informing the scheduling of increas-
ingly longer intervals between prompts designed 
to support cessation. If a linear or concave-down 
function is used to guide the shaping, considerable 
harm could be done during the extended period of 
low-level target behavior (high levels of smoking). In 
scenarios like this where it is critical to change the 
behavior as soon as possible, a concave-up shaping 
procedure might be preferred. Once the individual 
has reached a constant level of target behavior that 
has a sufficiently low risk, the shaping schedule can 
be transitioned to a linear/concave function that 
may increase the level (or improve the topography) 
of targeted behavior even further.

Behavior shaping can be implemented in nearly 
any domain, but the argument for formalized, 
automated shaping procedures presented herein 
requires the use of real-time sensing technology 
such as accelerometers, particle sensors, and smart 
outlets. These technologies provide the ability to 
continually assess an emitted behavior’s similarity 
to a target behavior in order to determine the ideal 
moment for reinforcement. As an example, our 
research team recently completed an intervention 
that used real-time air monitors in homes to dis-
courage second-hand smoke exposure by providing 
reinforcement when air particle levels stay below a 
threshold for some extended period of time [28]. 
These low-particle time intervals represent approxi-
mations to the desired behavior of no particle expos-
ure at any time. Shaping would proceed by requiring 
increasingly large time intervals in order to receive 
reinforcement. The computational shaping platform 
in this manuscript represents a tool to investigate 
the optimal way to expand the duration of intervals 
required for reinforcement. The intervention model 
in this example can be replicated in many fields, 
including the use of accelerometers to shape shorter 
bouts of sedentary behavior or the use of screen 
tracking devices to promote less screen time. Each 
of these interventions can be informed by the com-
putational shaping model, but as discussed in the 
next paragraph, the translation to real-world scenar-
ios presents complications to be addressed.

The shaping procedures outlined within this 
report proceed by reinforcing a class of behaviors 

that are wider than a target class. In the compu-
tational model, the similarity between nontarget 
and the target behavior is clearly defined as the 
difference between two integers. This feature is 
not easily translated into most real-world scenar-
ios. For instance, although a large w0 value in w t( ) 
indicates that behaviors that are quite dissimilar 
from the target will be reinforced at the outset of 
the shaping procedure, there is no interpretation 
as to whether this difference is based on function 
or topography or how the model would handle 
very rare, distal approximation to the target. It is 
not likely that it will be possible to associate a one-
to-one correspondence between the model constit-
uents and the components of any material-world 
models. It has been argued in Ref. [29], though, 
that this lack of accordance is a feature of many 
successful models. For example, consider quantum 
theory where underlying model components do 
not conform to standard descriptions of space and 
time and, therefore, do not have an analogue in 
experimental model components. Rather, consist-
ency across model predictions and experimental 
findings are sufficient to declare the two systems 
to be computationally equivalent, making the com-
putational model a suitable platform for investi-
gation. Although agreement between McDowell 
computational model findings and several real-
world experiments have been demonstrated, to the 
best of our knowledge, behavior shaping experi-
ments with continuously adapted reinforcement 
criteria have not yet been performed (Table  1). 
Laboratory experiments including this feature are 
currently under development by the authors of this 
paper and, when performed, they will allow the 
computational equivalency of the model and real-
world findings to be assessed. This will probably 
increase the interpretability and generalizability 
of computational results and refine the ability to 
automatically programming generalizable-shaping 
procedures.

In addition to being compared with real-world 
experiments, the computational modeling can be 
made more robust by exploring more complex mod-
eling scenarios, such as shaping the extinction rather 
than the establishment of behavior. More complicated 
reinforcement schedules can be implemented and the 
consequences of errors within the shaping routine (e.g., 
incorrectly reinforcing a behavior that is not eligible 
for reinforcement) can also be explored. In particular, 
the use of variable ratio (and interval) reinforcement 
schedules should be explored since the ultimate goal 
of public health interventions is to sustain healthy 
behavior on a long-term basis and variable sched-
ules are known to lead to longer maintenance effects. 
Whether it is better to implement the shaping routine 
with a variable schedule or to shape with a continuous 
schedule and then transition to a variable schedule is 
an open question to be investigated.
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A focus on single simulations rather than aggregate 
results would be more appropriate for comparison to 
JITAIs. As these features are added and the compu-
tational shaping model becomes more rigorous, it will 
have an increasing potential to serve as a beneficial 
tool to be used in the design and refinement of JITAIs.
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APPENDIX 1. DETAILS OF THE MCDOWELL 
COMPUTATIONAL MODEL
The computational model begins by randomly 
selecting a repertoire of 100 behaviors from the 
1,001 possibilities and grouping them by their re-
spective classes. The probability that a particular 
class of behaviors is emitted is defined as the pro-
portion of total behaviors within the repertoire that 
correspond to this class. Based on these probabili-
ties, a class of behavior is randomly chosen to be 
emitted and a specific behavior in the repertoire 
from this class is randomly selected. If the selected 
behavior is from the target class, a reinforcement 
schedule is consulted to determine whether this be-
havior is reinforced. Any behavior that is to be rein-
forced is characterized as “fit” and the fitness of the 
other behaviors in the repertoire is based on their 
similarity (distance) to the reinforced behavior. The 
fitness metric is used to select 100 “parent” behav-
iors that will generate the behavior repertoire at 
the next time step with preferential selection given 
to behaviors that are most similar to the behavior 
that is being reinforced. The relationship between 
a behavior’s fitness and the likelihood of its selec-
tion as a parent behavior is governed by a parental 
fitness function, which can be any function that assigns 
higher probabilities to smaller distances. The anal-
yses in this report used the exponential parental 

fitness function developed in Ref. [25] as follows. 
Let p x r rx( ) = e−  be the probability of reinforcing a fit-
ness value of x  for x∈ °[0, ). The mean is calculated 

as µ ≡
∞

∫0
 =

1
xp x dx

r
( ) . This relationship implies r =

1
∝

 

making the cumulative density, P x
x

( ) =1
1

−
−

e ∝ . Using 
this function, inverse transform sampling is used 
to select a value at random from this distribution. 
The fitnesses of the current behavioral repertoire 
are searched for a match and if one does not exist, a 
new random value is generated. This process contin-
ues until 100 parent behaviors have been selected. 
∝, the mean, is the only value required to param-
eterize this procedure. If the reinforcement schedule 
indicates that reinforcement is not available or if the 
emitted behavior is not from the target class, then 
rather than using the procedure described above, 
100 parent behaviors are selected at random from 
the repertoire.

Each of the selected parents is “cloned” to gen-
erate the behavior repertoire at the next time step. 
In the original McDowell model, parent behaviors 
were “mated” via a bitwise, binary procedure rather 
than cloned, but diagnostic analyses revealed biases 
within this procedure that were not present with clon-
ing. Cloning proceeds by considering a collection of 
Gaussian distributions with a mean set equal to each 
of the parent behaviors. The standard deviation of 
these distributions, a free parameter of the system, 
was set equal to 2 and one new behavior for the next 
repertoire was then selected from each one of these 
distributions. A certain percentage of this new gener-
ation of behaviors is selected at random for mutation, 
which is also done by considering a Gaussian distri-
bution, with mean set equal to integer representation 
of the behavior to be mutated and some standard de-
viation as a parameter of the system. For the analyses 
presented herein, a proportion of 0.01 behaviors in 
the new repertoire were selected, at random, for mu-
tation and the standard deviation was 2.5. For both 
of the cloning and mutating steps, all calculations 
are performed using modulo-1,001 arithmetic so that 
all behaviors are guaranteed to fall within [0, 1000]. 
Once the mutation has occurred, the behavior reper-
toire at the next time step has been completely deter-
mined and the probability that a particular class will 
be emitted is updated accordingly as the proportion 
of total behaviors in this new repertoire that belong to 
each class. The process then repeats. Table A1 details 
each of the parameters in the system and default val-
ues, if appropriate.

All model simulations were performed in 
MATLAB R2012b. The model has a stochastic fea-
ture to it so when assessing results it is important 
to consider outcomes that are averaged over many 
runs. Due to the dimensionality of the parameter 
space that was explored, this was a computation-
ally demanding requirement. However, because 
the runs are not dependent on each other, the 
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computations are “embarrassingly parallel” [30]. To 
take advantage of this feature, the runs were exe-
cuted using Matlab’s built-in parallel parfor loops. 
A  batch script was created that allowed multiple, 
parallelized simulations to be run simultaneously on 
different nodes within a cluster.
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Table A1 | Variable definitions and default values used for all simulations, unless otherwise noted

Variable Symbol Value

Computational model
Range of behaviors – [0, 1000]
Target behavior class – [495–505]
Number of behaviors in repertoire – 100
Fitness function mean (reinforcement strength) ∝ 5
Cloning Std. Dev. – 2
Proportion mutated – 0.01
Mutation Std. Dev. – 2.5
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