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Nonlinear waves in an experimentally motivated ring-shaped Bose-Einstein-condensate setup
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We systematically construct stationary soliton states in a one-component, two-dimensional, repulsive, Gross-
Pitaevskii equation with a ring-shaped targetlike trap similar to the potential used to confine a Bose-Einstein
condensate in a recent experiment [R. Mathew, A. Kumar, S. Eckel, F. Jendrzejewski, G. K. Campbell, M.
Edwards, and E. Tiesinga, Phys. Rev. A 92, 033602 (2015)]. In addition to the ground-state configuration, we
identify a wide variety of excited states involving phase jumps (and associated dark solitons) inside the ring.
These configurations are obtained from a systematic bifurcation analysis starting from the linear, small atom
density, limit. We study the stability and, when unstable, the dynamics of the most basic configurations. Often
these lead to vortical dynamics inside the ring persisting over long time scales in our numerical experiments.
To illustrate the relevance of the identified states, we showcase how such dark-soliton configurations (even the
unstable ones) can be created in laboratory condensates by using phase-imprinting techniques.
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I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) [1–4] offer an
ideal testing ground for comparing theoretical models of
nonlinear matter waves with experimental data. Since their
experimental realization, there have been tremendous ad-
vances [4–8] in trapping, guiding, manipulating and con-
trolling BECs. For instance, recent advances in all-optical
trapping [9–11] have produced confined atomic clouds with
temperatures at the nano-Kelvin scale. All-optical trapping, in
turn, has enabled the strength of the atom-atom interactions in
atomic gas BECs to be tuned to any desired value over many
orders of magnitude [12] by adjusting an external magnetic
field through the phenomenon of the Feshbach resonance [13].
This enables a wide range of experiments to be conducted
because the properties of BECs —as well as the nature of their
effective nonlinearity—crucially depend on the strength and
sign of these interactions.

These advances have led to more stable, easier to use exper-
imental settings and high-precision measurements of coherent
structures in BECs. In a plethora of experiments, matter wave
dark [14] and bright [15–19] solitons have been realized in
single- and multi-component BECs with repulsive or attrac-
tive interatomic interactions, respectively. For example, bright
solitons have been formed in ultracold 7Li gas [17,18] as well
as during the collapse of 85Rb condensates [19]. Dark solitons
have been studied in 87Rb condensates [20–23] and in sodium
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BECs [24,25]. Furthermore, coupled dark-bright solitons have
been engineered in 87Rb condensates using phase-imprinting
methods [22] or generated during superfluid-superfluid coun-
terflow [26,27]. Finally, matter wave gap solitons [28,29] have
been produced in BECs trapped in light-induced periodic
potentials.

At the theoretical level, and for sufficiently low temper-
atures, static and dynamical properties of BECs have been
quite successfully modeled by an effective mean-field equa-
tion known as the Gross-Pitaevskii equation (GPE) [1,2,30].
The GPE is tantamount to a (cubic) nonlinear Schrödinger
equation with the addition of the external potential that con-
fines the BEC. The (2 + 1)-dimensional version of the fully
three-dimensional (3D) equation reads, in terms of physical
units, as

ih̄∂t� =
[

− h̄2

2m
∇2 + g2D|�|2 + V (r)

]
�, (1)

where �(r, t ) is the macroscopic BEC wave function, ∇2 is
the Laplacian in r = (x, y), m is the atomic mass, and g2D

describes the effective two-dimensional (2D) strength of the
atom-atom interaction. The effective 2D coupling constant
g2D is given by g2D = g/(

√
2πaz ) = 2

√
2π h̄azωza, where ωz

is the harmonic trapping strength in the transverse direction,
with az being its corresponding harmonic oscillator length.
The 3D coupling constant is g = 4π h̄2a/m, where a is the
s-wave scattering length.

In the following, we set g2D > 0, that is, the nonlinearity in
the GPE is chosen to be defocusing [30–32], which models a
repulsive interatomic interaction, as is the case, e.g., in 87Rb.
Multiple stationary dark-soliton states can emerge when the
repulsion between dark solitons is counterbalanced by the
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inclusion of a trapping potential V (r) in Eq. (1). The exis-
tence and formation of nonlinear patterns in BECs crucially
depend on the chosen form for the applied trapping potential
V (r). The traditionally used magnetic traps can be adequately
modeled by a harmonic external potential of the form V =
1
2 m(ω2

x x2 + ω2
y y2) [6,33], where, in the general case, the trap

frequencies ωx and ωy along the x and y direction can be
chosen to be different. Static and dynamical properties of
matter wave dark solitons have been investigated in great
detail in model (1) with this parabolic confining potential and
higher-dimensional analogs thereof. For example, dark soliton
stripes and multivortex states such as vortex dipoles, tripoles,
and quadrupoles have been found [34,35] and their existence,
stability, and dynamics have been discussed in detail in the
literature [36,37].

However, in recent years there has been increasing re-
search activity in exploring different choices (specifically non-
parabolic ones) for the external trapping potential in Eq. (1).
Examples of trapping configurations recently used in BEC ex-
periments include double-well [38–44] and more-well (such
as four-well [45]) potentials, box potentials [2], optical lattice
potentials [2,46,47], and magnetic quadrupole traps combined
with optical dipole traps [48], among many others.

In this paper, we explore the existence and stability of
localized states in the 2D GPE (1) with a ring-shaped trapping
potential and repulsive interatomic interactions. A key feature
of our paper is the identification of a wide variety of nonlinear
states in this system including ones bearing different numbers
of phase jumps and associated dark solitons. The bifurcation
analysis of such stationary solutions is complemented by the
corresponding stability analysis, and the dynamical evolution
of potentially unstable configurations. Equally importantly,
phase imprinting protocols are utilized in suitably crafted
numerical experiments in order to illustrate the potential of
such states towards being realized in recently considered
experimental setups.

More specifically, our considerations are tailored to the
recent experimental setup of atomtronic systems [49,50], that
are confined, neutral, ultracold atomic gases which exhibit
behavior analogous to semiconductor electronic devices and
circuits. In atomtronics, ring BECs are used [51–53] to realize
atomic-gas analogs of superconducting quantum interference
devices (SQUIDs). In Ref. [51], a closed-loop atom circuit
was implemented for the first time in a ring-shaped confining
potential. Radio frequency SQUIDs [54] have been created
[52] in ring BECs by rotating a weak link (a localized region
of reduced superfluid density) around the ring-shaped conden-
sate. A rotating weak link was used to drive phase slips which
changed the circulation around the ring, and simulations based
on the GPE showed how the circulation of the ring BEC
can be probed by measuring the distribution of hole areas in
time-of-flight images [53]. We also note in passing that ring-
shaped BECs have been recently argued [55] as an interesting
laboratory testbed for cosmological physics.

The paper is structured as follows. In Sec. II we briefly
review some of the properties of the GPE in (2 + 1) dimen-
sions and introduce the chosen ring-shaped trapping potential.
For a detailed discussion of the existence and stability anal-
ysis of steady-state solutions in the 2D GPE with repulsive
interactions we refer the interested reader to the reviews

and textbooks of Refs. [3,30,31]. Our numerical results are
reported in Sec. III. Finally, in Sec. IV, we summarize our
conclusions and discuss possible directions for further work.

II. MODEL AND METHODOLOGY

To simplify our numerical calculations, we rewrite Eq. (1)
in its well-known dimensionless form [3,30]

i∂t� = − 1
2∇2� + |�|2� + V (r)�, (2)

where � = �(x, y) is the 2D wave function and ∇2 is the
Laplacian in r = (x, y). Equation (2) is obtained from Eq. (1)
by averaging (integrating) along the z direction and rescal-
ing space coordinates by the transverse oscillator length az

and rescaling time coordinates by ω−1
z . Then, the density

|�|2, length, time, and energy are, respectively, measured in
units of (2

√
2πaaz )−1, the harmonic oscillator length az =√

h̄/(mωz ), the inverse trap frequency ω−1
z , and energy h̄ωz.

We choose an external trapping potential as experimen-
tally obtained from a fit provided by NIST experimentalists
corresponding to a ring-shaped channel of mean radius rring

together with a central well of radius rdisk. Stationary ground-
state condensates filling this potential (see Fig. 1) consist of a
central disk surrounded by a ring, thus motivating the names
rdisk and rring [56,57]. In the experiments, this potential has
the flexibility to be either a ring-plus-disk or just a ring. The
general purpose for including the disk in the experiments is
to serve as a “phase reference.” Hence, when a condensate is
first formed, there is a common constant phase across both
the ring and the disk. Thus, when stirring the ring while
leaving the disk alone, phase gradients are induced in the
ring region. Then measurements are taken by turning off the
trap and allowing the disk and ring clouds to overlap, thus
creating a measurable interference pattern. Specifically, the

FIG. 1. Ring-shaped trapping potential V , given in Eq. (3), cor-
responding to an experiment performed at NIST [56]. In this figure,
and all subsequent ones, space (x, y) is displayed using physical units
(in microns).
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fitted potential from the experiments takes the radial form:

V (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − A e
− (r−rring )2

s2
ring − e

− (r−rdisk )2

s2
disk r � rdisk

−A e
− (r−rring )2

s2
ring r < rdisk

, (3)

where rring, A, and sring represent, respectively, the radius,
the amplitude, and the width of this ring-shaped potential.
The experimentally fitted potential parameters correspond
to rring = 22.27 μm, rdisk = 2.597 μm, sring = 3.913 μm,
sdisk = 4.717 μm, and A = 0.8206. Expressed in terms of the
dimensionless units of Eq. (2), based on a transverse trap
frequency ωz/2π = 500 Hz, these quantities correspond to
rring = 25.304738, rdisk = 2.95089, sring = 4.446226, sdisk =
5.3597867, and A = 0.8206. A plot of the resulting ring-
shaped potential is displayed in Fig. 1. Note that for ease of
interpretation we opt to display in this figure, and all subse-
quent ones, the spatial dimensions in the original variables,
namely, in microns.

Let us now construct stationary solutions of Eq. (2) by
separating space and time according to

�(r, t ) = φ(r)e−iμt , (4)

where μ is the (dimensionless) chemical potential. Substitut-
ing ansatz (4) into the 2D GPE (2) yields the steady-state
equation

− 1
2∇2φ + |φ|2φ + [V (x, y) − μ]φ = 0. (5)

Steady-state solutions for Eq. (5) correspond to monoparamet-
ric branches parametrized by the chemical potential μ which,
in turn, fixes the number of BEC atoms in the condensate. This
relationship is obtained through the conserved quantity of the
GPE corresponding to the (squared) L2 norm of the solution:

N =
∫∫ +∞

−∞
|φ(x, y)|2 dx dy. (6)

Thus, after bringing back the dimensions into Eq. (6), N
can be identified with the mass or total number of atoms
in the BEC. In what follows we find suitable starting points
on a given solution branch and then vary μ using continu-
ation methods to follow the entire branch possibly leading
to bifurcations (when two solution branches collide or when
new branches emanate from existing ones) as the chemical
potential μ is varied [37,58]. For given chemical potential μ,
we find stationary nonlinear solutions to Eq. (5) by using two
different implementations of Newton algorithms. Details on
these numerical methods are found in Sec. III.

It is important to mention at this stage that the central
disk portion of the potential plays a weak role in the results
shown below. In fact, for the configurations (bifurcating from
the ground state and, in turn, some corresponding bifurcating
states off of these configurations) that we are interested in,
the chemical potential will typically take values in the range
0 � μ � 0.8. For these values of the chemical potential, as
depicted in Fig. 2, the BEC populating the ring is barely
affected by the population on the disk. In fact, the difference
in the ring population is always smaller than about 10−4 (for
amplitudes of order unity). This maximum effect on the ring
population is reached for the highest chemical potential under
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FIG. 2. Effects of the disk population on the ring population
for the indicated values of μ. (a) Central slice (y = 0) for the
ground-state density |u(x)|2 for the full potential V (r) in Eq. (3).
(b) Slice for the “ring” ground state |uring(x)|2 corresponding to the
case when the central (disk) portion of the potential is removed. (c, d)
Density difference between the full ground state and the ring ground
state �(x) ≡ |u(x)|2 − |uring(x)|2. Note that the ring portion for the
difference is at most of the order 10−4 when μ = 0.8.

consideration, namely, μ = 0.8. For smaller chemical poten-
tials (see μ = 0.6 and 0.4 cases in Fig. 2), this effect is even
two to four orders of magnitude weaker (while the population
is still of order unity). Therefore, in what follows, the results
will be typically obtained with the central disk population
being absent (except for cases where we are interested in
bifurcations of the central disk population itself), with the
understanding that if the disk population is included the ring
population (including its dynamics and stability) will not be
significantly altered.

After having numerically computed solutions, for each
chosen value of μ, we proceed to study their instability
modes by performing the well-known Bogoliubov–de Gennes
(BdG) stability analysis [1–3]. We perturb around a stationary
solution φ0 using the perturbation ansatz

φ(r) = φ0(r) + [a(r)eiωt + b�(r)e−iω�t ], (7)

where (·)� denotes complex conjugation and ω is a complex
eigenfrequency. Linearization of the GPE (2) around the
stationary solution φ0 via the ansatz (7) yields the following
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BdG eigenvalue problem:

−ω

(
a

b

)
=

(
A11 A12

−A�
12 −A11

)(
a

b

)
, (8)

where the matrix elements are explicitly given by

A11 = − 1
2∇2 + 2|φ0|2 + V (x, y) − μ, (9a)

A12 = (φ0)2. (9b)

We compute the eigenfunctions {a(x, y), b(x, y)} and
eigenfrequencies ω of the BdG eigenvalue problem (8) for
a steady-state solution φ0 and for a given value μ using
the eigs MATLAB routine [59,60] and our results are further
checked with the Scalable Library for Eigenvalue Problem
Computations [61–63]. The BdG stability results are then
depicted in terms of the corresponding spectra by plotting
the real and imaginary parts of the eigenfrequencies as a
function of μ. Recall that for a linearly (neutrally) stable
soliton configuration all eigenfrequencies must be real, that
is, Im(ω) = 0.

III. NUMERICAL SIMULATIONS

Our numerical results are based on discretizing the ensuing
nonlinear equations—for the dynamics Eq. (2), for the steady
states Eq. (5), and for the BdG spectra eigenvalue prob-
lem Eq. (8)—on the rectangular, uniform, 2D grid (x, y) ∈
[−50, 50] and with grid spacing �x = 0.2. The steady-state
equation (5) is solved using a Newton-Krylov algorithm [64],
and then the obtained states are checked using Newton itera-
tions implemented in the SNES libraries of PETSc [65–67].

In order to pick a suitable initial guess for convergence
towards the steady state we use the first few solutions close
to the linear limit. The linear limit, corresponding to weak
nonlinearities in Eq. (8), may be formally identified with N →
0. Then, stationary states for larger values of μ are obtained
via numerical continuation by taking as initial guess the con-
figuration calculated at nearby chemical potential values. The
numerical results presented below were carried out with the
chemical potential μ varying over the interval [0,1] with steps
of �μ = 0.002. If not otherwise stated, all configurations
depicted here correspond to the chemical potential μ = 0.9.

Further insights into the dynamical properties and stability
of the found steady states can be obtained by perturbing
these solutions with the eigenvectors, computed in the BdG
linearization analysis (8), and studying their temporal evo-
lution. To simulate the time evolution based on Eq. (2), we
employ a fourth-order Runge-Kutta integrator in time with
second-order finite differences used for the discretization of
the spatial derivatives.

A. States bifurcating from the linear limit

The most basic steady state is given by the ground state.
For our system with the potential given in Eq. (3), the ground
state emerging from the linear limit simply corresponds to a
localized “hump” of atoms that populate the central well of the
potential [see Fig. 3(a)]. The corresponding particle number
(or mass) for the ground-state branch as a function of the
chemical potential is depicted in Fig. 4 (see line denoted by

FIG. 3. Ground-state and n-dark soliton solutions for μ = 0.9.
The real part and density of the solutions are depicted, respectively,
in the top and bottom rows of panels. (a) Ground state (that populates
the central well of the external potential). (b) Basic ring state without
any dark solitons. (c–e) First three excited states along the ring
containing, respectively, two, four, and six dark solitons. All these
stationary solutions are purely real.

GS). It is interesting to note that the ground state does not
populate the ring of the external potential. In fact the ring does
not get populated until μ reaches μ � μ

(0)
crit = 0.313.

For μ � μ
(0)
crit a new state emerges from the linear, N � 0,

limit that starts filling the ring with atoms [see Fig. 3(b)]. This
ring-shaped solution would correspond to the ground state if
the central well was absent. The mass for this ring state is
depicted in Fig. 4 (see line denoted by 0S). Since this ring state
could be considered as a quasi-one-dimensional (1D) periodic
line of density, it is possible to think about the configurations
stemming from its excited states.

For instance, in an infinite 1D line density, in the absence
of external potential, the repulsive GPE admits a dark soliton
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FIG. 4. Particle number N as a function of μ for the ground state
(GS) and the n-soliton (nS) stationary steady states. These steady
states are obtained by continuation from the N � 0 limit where
the solutions are calculated by taking an initial guess in our fixed-
point iterations corresponding to the first few eigenfunctions (excited
states) in the linear limit. The critical chemical potential values
μcrit at which the different states are found to emerge correspond
to μ

(0)
crit = 0.313 for 0S, μ

(2)
crit = 0.314 for 2S, μ

(4)
crit = 0.316 for 4S,

μ
(6)
crit = 0.320 for 6S, and μ

(8)
crit = 0.326 for 8S. The corresponding

profiles for these solutions for μ = 0.9 are depicted in Fig. 3.
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FIG. 5. Double-ring solution and some of its bifurcating states
for μ = 0.7. (a) Double-ring solution (that bifurcated from the
ground state) consisting of two concentric out-of-phase rings. (b–d)
Successive states bifurcating away from the double-ring solution.
The corresponding particle numbers for these solutions as a function
of μ are depicted in Fig. 6. The layout is the same as in Fig. 3.

solution [3,30] corresponding to the first excited state. In the
case of the ring line density, the system can support azimuthal
dark solitons [68]. Since the wave function necessarily has
to be 2π -periodic along the ring, if one does not consider
solutions with a net angular momentum (induced, e.g., by
rotation), this topological constraint restricts the number of
dark solitons that can be excited along the ring to be an even
number. With an even number of dark solitons along the ring,
periodic boundaries can be satisfied in the azimuthal direction.
Nonetheless, it is important to mention that configurations
bearing a single dark soliton (or an odd number of dark
solitons) are indeed possible when a net angular momentum
is present in the system as shown, respectively, for one,
two, and three dimensions in Refs. [69–71]. These nontrivial
configurations carrying angular momentum fall outside of the
scope of the current paper.

The n-soliton steady-state solutions are depicted in Fig. 3
for n = 0 (the ring state without any solitons), n = 2 (a pair of
dark solitons), n = 4 (two dark soliton pairs), and n = 6 (three
dark soliton pairs). Note that, due to symmetry, in the steady
state all the dark solitons must be equidistant from each other
along the periodic ring. The particle numbers corresponding to
these n-soliton solutions are depicted in Fig. 4. Note that the
n-dark soliton solutions, populating the ring, bifurcate from
the linear limit (N � 0) and are independent of the ground
state that populates the central well.

B. States bifurcating from the ground state

We also explored states bifurcating from the ground state.
In particular, at μ ≈ 0.560 a double-ring solution bifurcates
away from the ground state. This double ring [see Fig. 5(a)]
contains the ground state populating the central well coupled
to two out-of-phase rings, that populate the ring portion of
the external potential, as can be seen in the top panel of
Fig. 5(a)—depicting the real part of the solution—where the
phase difference between the inner and outer rings is evident.
Namely, this state effectively contains a ring dark soliton
[14,30,72] populating the outside ring channel. Figure 7 de-
picts the BdG spectra for the ground state and the double-ring
state as a function of μ. As expected, the ground state is
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FIG. 6. Particle number N as a function of μ for the ground state
(GS), the double-ring (a), and its first three bifurcating branches (b–
d). The corresponding profiles for μ = 0.7 are depicted in Fig. 5. The
double ring bifurcates from the ground state at μ � 0.560, while the
subsequent states bifurcate in turn from the double-ring solution for
(b) μ = 0.586, (c) 0.618, and (d) 0.708.

always (neutrally) stable. However, as it is clear from the
figure, the double ring is unstable since its inception. It is
relevant to note that this has been recently demonstrated to be
generically the case due to their azimuthal undulations in the
presence of an external radial potential with the quadrupolar
undulations representing the first among such spatial modes
that becomes unstable [73].

Interestingly, there exist further states bifurcating in turn
from the double-ring solution. These states, depicted in
Figs. 5(b)–5(d), correspond to the double ring with out-of-
phase “petals” along the azimuthal direction. The bifurcation
progression of the double ring from the ground state and,
subsequently, the states bifurcating from the double ring is
more evidently portrayed in Fig. 6 that depicts the particle
numbers for these solutions as a function of μ. It is relevant
to note that, apparently, configurations with higher number
of petals bifurcate first from the double ring. This bifurcation
cascade continues beyond what is shown in Fig. 6 (where the
first three bifurcating branches are depicted).

As concerns the stability of the bifurcating states, it is
important to stress that the double-ring solution is unstable
since its emergence from the ground state around μ � 0.560
and, therefore, all the subsequent bifurcating states from the
double ring inherit the instability from their double-ring “an-
cestor” and are thus always unstable as well. Furthermore, it is
interesting to note that the the first few instabilities seen in the
BdG spectrum of the double ring (bottom-right panel in Fig. 7)
coincide with the critical mass values corresponding to the
emergence of the different bifurcating states from the double-
ring configuration. Another way to state this in the language of
dynamical systems is that these multipetal states are emerging
via supercritical pitchfork (symmetry-breaking) bifurcations,
leading to the further destabilization of the radially symmetric
state via the emergence of a wide variety of azimuthally
modulated ones.
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FIG. 7. Stability BdG spectra for the ground state (top row of
panels) and the double-ring state (bottom row of panels) as a function
of the chemical potential μ. The corresponding profiles are depicted
in the first row of panels of, respectively, Figs. 3 and 5. The left and
right panel depict, respectively, the real and imaginary parts of the
spectra. Recall that (neutral) stability is only achieved when Im(ω) =
0. The ground state is always (neutrally) stable while the double-ring
state is, since its inception, always unstable.

Finally, in order to monitor the evolution of instabili-
ties for the double ring, we depict in Fig. 8 the dynamical
destabilization of the double ring. In this case, we perturb
the double-ring profile with an eigenvector picked from the
third instability in the BdG spectra (see bottom-right panel in
Fig. 7). The waveform involving the relevant wave number

FIG. 8. Evolution of the double-ring configuration [see Fig. 5(a)]
slightly perturbed (10−3 times the normalized eigenvector) with an
eigenvector picked from the third instability in the BdG spectra
(see bottom panels in Fig. 7). The top, middle, and bottom rows of
panels display, respectively, the real part, the density, and the phase
of the profiles at the times indicated. In this figure, as is the case
in all the figures in this paper, the indicated times are measured in
nondimensional units as per the adimensionalization discussed below
Eq. (2).

FIG. 9. Two-dark soliton profile and its bifurcating states for
μ = 0.7. The layout is the same as in previous figures. The corre-
sponding particle numbers as a function of μ are depicted in Fig. 10.

is clearly dynamically amplified and eventually destroys the
ringlike structure in favor of one that bears the periodicity of
the imposed perturbation.

C. States bifurcating from the n-dark soliton configurations

In a similar manner as we identified bifurcating states from
the ground state and subsequently from the double ring in the
previous section, we now follow the bifurcating states from
the n-dark soliton solutions and their associated phenomenol-
ogy. For instance, Fig. 9 depicts, alongside the two-soliton
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FIG. 10. Top: Particle number N as a function of μ for the
stationary states bifurcating from the two-soliton solution (a). Bot-
tom: Particle number difference �N between the states bifurcating
from the two-soliton configuration and the two-soliton configuration
itself. The corresponding profiles are depicted in Fig. 9. The first
three bifurcating states from the two-soliton solution (a) bifurcate at
(b) μ � 0.321, (c) μ � 0.466, and (d) μ � 0.614.
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FIG. 11. Same as Fig. 9, but showing (from left to right) the first
state bifurcating from the four-, six-, and eight-soliton profiles.

solution, its first three bifurcating states. In this case the bi-
furcating states pertain to excitations of the central well of the
external potential. These central well excitations correspond
to azimuthal, out-of-phase, “multipetal” configurations. Fig-
ure 10 depicts the particle numbers for these configurations.
In particular, the bottom panel displays the particle number
difference �N between the central excited states and the
original two-soliton solution. When this diagnostic departs
from zero, it signals the emergence of a bifurcation of a new
branch from a previously existing one (with �N = 0). As
shown in Fig. 11, similarly to the bifurcating states from the
two-soliton configuration, we were able to identify bifurcating
states from the four-, six-, and eight-soliton configurations.

Now that we have identified the two-soliton solution and its
bifurcating states, let us briefly discuss the ensuing stability
as a function of μ. In Fig. 12 we depict the BdG spectra of
the two-soliton state (top row) together with the spectra of its
first bifurcating states (bottom row)—profiles for these con-
figurations for μ = 0.7 are depicted in the first two columns
of Fig. 9. The BdG spectrum for the two-soliton configuration
indicates that this profile is (neutrally) stable for μ < 0.702.
For larger values of the chemical potential (not shown here)
other instabilities arise, however we do not consider them here
given their much weaker growth rates.

For instance, Fig. 13 shows the long time evolution of the
two-soliton ground state perturbed with an eigenvector picked
from the first instability in the BdG spectrum. We observe that,
when perturbed, as a result of the transverse instability and
the disappearance of some of the ensuing vortices at the ring
boundaries, the two-soliton configuration eventually develops

FIG. 12. Stability BdG spectra for the two-soliton configuration
and its first bifurcating state as a function of μ. The layout is the same
as in Fig. 7. The corresponding profiles for μ = 0.7 are depicted,
respectively, in the first two columns of Fig. 9.

one negatively charged vortex per dark soliton which travels
along the ring. The vortex nature of these traveling localized
solutions becomes apparent in the phase plots (see bottom row
of panels) and the corresponding 2π winding at the vortex
locations. To guide the reader we have included (red) arrows
that indicate the direction of motion for the vortices. Initially,
both vortices slowly rotate clockwise along the ring. As the
vortices start getting closer to each other, one of the vortices
changes direction (t ≈ 5000) and the vortices collide. As the
vortices have the same sign, they cannot annihilate each other.
After this scattering collision, the vortices move rapidly in
opposite directions along the ring until they collide again (t ≈
5800). After this second close encounter, one vortex is quickly
“absorbed” by the outside edge of the ring while the other
vortex suffers the same fate shortly after (t ≈ 5900). After the
scattering collision events and the respective disappearance
of the vortices at the ring’s edges, the system relaxes to a
perturbed, solitonless and vortexless, ring ground state which
persists indefinitely. We have also initialized the system by
perturbing with the eigenvector corresponding to the second
instability with the same qualitative results (see Fig. 14). For
the second instability perturbation, the configuration develops
a pair of opposite charge vortices per soliton. As depicted in

FIG. 13. Density (top row of panels) and phase (bottom row of panels) plots showing the time evolution of the two-soliton ground state
heavily perturbed (ten times the normalized eigenvector) with an eigenvector picked from the first instability in the BdG spectra (see Fig. 12).
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FIG. 14. Density (top row of panels) and phase (bottom row of
panels) plots showing the time evolution of the two-soliton ground
state heavily perturbed (30 times the normalized eigenvector) with
an eigenvector picked from the second instability in the BdG spectra
(see Fig. 12). The evolution past the times shown (t > 60) is qualita-
tively similar to the one depicted in Fig. 13.

Fig. 14, one of the vortices for each pair is rapidly absorbed
by the ring’s edges (t ≈ 50) and the resulting configuration,
and its subsequent evolution (t > 60), are qualitatively similar
to ones depicted in Fig. 13. It is also relevant to mention
that these evolution simulations suggest that a configuration
involving a vortex dipole (a pair of oppositely charged vor-
tices) could be a stationary one in the system. Nevertheless,
the case examples that we have considered suggest that such
a configuration may not be robust under perturbations and
hence we do not consider it here. For some examples of mul-
tivortex configurations of this type in toroidal and harmonic
settings, the interested reader can refer to Refs. [70] and [74],
respectively.

Here, we omit the time evolution of instabilities corre-
sponding to the higher excited states of the two-soliton con-
figuration since they do not provide any new insights into the
dynamical properties. In all cases, vortices are found to travel
back and forth inside the ring. For the excited states of the
two-soliton configuration, we also observe that vortices are
created in the central portion of the cloud. However, those
might be less relevant for experiments as the density is low
there and the vortices are more tightly packed.

For completeness, we depict in Fig. 15 the BdG stability
spectra for the four-, six-, and eight-soliton solutions. As it
was the case for the two-soliton configuration, the n-soliton
configurations are also stable for μ < 0.702 and the spectra
are quite similar. This is straightforward to understand as the
corresponding dark solitons are placed relatively far away
from each other along the ring and, therefore, their mutual
interaction is (exponentially) weak and thus not very notice-
able when dealing with a handful of solitons. Nonetheless,
higher-order excited states including a large number of dark
solitons will correspond to relatively shorter mutual separa-
tions leading to stronger interactions and modifications of the
stability spectra. We defer the study of such cases to future
publications.

Finally, we depict in Fig. 16 the corresponding dynamical
evolution for the n-soliton profiles for n = 4, 6, and 8, when
perturbed with eigenvectors picked from the first instability
in their BdG spectra. Note that in all cases the dynamics
tends to lead to the disintegration of the dark solitons (through
collisions and/or splitting into vortex pairs that in turn get
“absorbed” by the periphery of the ring). Eventually, and
potentially after long transient stages, the evolution settles into

FIG. 15. Stability BdG spectra for the four-, six-, and eight-
soliton states (from top to bottom). The layout is the same as in Fig. 7.
The corresponding profiles are depicted in Figs. 3(c)–3(e).

a perturbed ring structure without dark solitons or vortices in
its bulk.

D. Phase imprinting of n-dark soliton states

We now explore the especially important—in terms of a
practical implementation—possibility of seeding in the ex-
periment some of the excited-state configurations that we
described above. In particular, we are interested in the ex-
perimental possibility of initializing configurations that bear
n-dark solitons and letting them evolve to study their inter-
actions and collisional dynamics. For that purpose, we will
phase imprint the appropriate phase distribution onto the ring
steady state depicted in Fig. 3(b). As mentioned above, this
steady-state solution exists for μ � 0.313 and it is stable for
μ < 0.702 and therefore it is a good candidate to be attainable
in a physical experiment. Then, by using a phase imprinting
technique, e.g., by shining laser light on one half of the
condensate for a short period of time [20,24,75,76], whereby
half of the ring’s phase is shifted by π with respect to the
other half, it is possible to generate an initial condition that
has the correct phase profile of a two-dark soliton state. Such
scenarios with multiple phase jumps have been previously
used in quasi-1D settings in order to examine the effectively
1D interaction of dark solitary waves [77].

Figure 17 shows how this phase-imprinting technique is
successful at seeding long-lasting two- and four-dark solu-
tion solutions for a chemical potential μ = 0.6 below the
instability threshold around μ ≈ 0.7. Furthermore, as we are
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FIG. 16. Evolution dynamics for the four-soliton (top row), six-soliton (middle row), and eight-soliton (bottom row) configurations heavily
perturbed (30 times the normalized eigenvector) with an eigenvector picked from the first instability of the corresponding BdG spectra for
μ = 0.7.

interested not only in seeding steady states in the experiments
but also in observing the potentially unstable dynamics of
these n-dark soliton solutions, we also focus our attention on
phase imprinting n-dark soliton solutions past their stability
threshold (i.e., μ larger than 0.7). This is precisely what is
depicted in the top series of panels in Fig. 18 where we phase
imprint the two-soliton phase and let the system evolve freely.

FIG. 17. Phase imprinting in the case of stable two-soliton (top)
and four-soliton (bottom) configurations for μ = 0.6. The corre-
sponding top, middle, and bottom series of panels depict, respec-
tively, the real part, the density, and the phase of the solution. One
can observe that the configurations robustly persist in the condensate
dynamics.

As can be observed from the figure, after an initial period of
adjustment (t < 300), where the imprinted phase induces the
dark soliton nucleation, a pair of dark solitons on opposite
sides of the ring is formed. This configuration corresponds to
a slightly perturbed two-dark soliton state. This state, being
unstable for the chosen value of μ as per the discussion in
the previous sections, evolves in a manner akin to the one
depicted in Figs. 13 and 14. Namely, the dark solitons start
moving and colliding along the ring, eventually decaying into
vortices which in turn get absorbed by the ring’s edges.

This phase-imprinting technique can be straightforwardly
generalized to higher number of dark solitons by imprinting
the appropriate phase. For instance, by imprinting a phase
difference across the horizontal axis and then doing the same
across the vertical axis, one is left with the appropriate phase
to nucleate the four-dark soliton state. This case is depicted in
the bottom series of panels in Fig. 18 the dynamical evolution
of which is now similar to the one depicted in the first row of
panels in Fig. 16. It is relevant to mention that the dynamics
of the unstable n-dark soliton eventually leads to a perturbed
ground state as the dark solitons destabilize towards the
formation of vortex pairs, which in turn scatter and ultimately
get absorbed by the periphery of the ring. It is natural to expect
that as the ring gets thinner and more quasi-one-dimensional
the relevant states will be progressively stabilized against such
transverse undulations and the associated breakup towards
vortex dipoles [78].

E. Zoo of more exotic states

In addition to the states we constructed from the linear
limit, there also exist states which bifurcate from the ground
and dipole states and their excitations. Appropriate initial
guesses for these states have been constructed by using the
well-known ground and dipole ansatz for solutions of Eq. (5)
in the presence of a harmonic external potential. For instance,
as depicted in Fig. 19, there is a plethora of states bifurcating
from the ground state. All of the states presented in this figure
are real and pertain to the combination of an n-dark soliton so-
lution (populating the ring) coupled to a constant-phase hump
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FIG. 18. Dynamics ensuing from the phase imprinting of the two-soliton (top) and four-soliton (bottom) configurations for μ = 0.9. For
this value of the chemical potential the corresponding n-soliton steady states are unstable and thus evolve in a manner akin to what is shown in
Fig. 16.

of mass localized in the central well (namely, the remnant
of the ground state of the system). We have checked that all
of these states are actually unstable (results not shown here).
Similarly, as depicted in Fig. 20, it is possible to find more
families of purely real solutions corresponding to the com-
bination of, again, an n-dark soliton solution (populating the
ring) but now coupled to the first excited state of the ground
state (namely, the dipole consisting of a plus-minus hump at
the center of the cloud). We have also checked that all of

these states are actually unstable (results not shown here). This
process can be extended for higher excited states of the ground
state coupled to the n-dark soliton configuration on the ring.

Furthermore, it is also possible to find rich families of gen-
uinely complex solutions. For instance, as seen in Figs. 21(a)–
21(d), it is possible to couple the n-dark soliton state with the
ground state with a nontrivial phase difference between these
two states. In the same vein, as is shown in Figs. 21(e)–21(h),
it is possible to couple with a nontrivial relative phase the

FIG. 19. Real states bifurcating from the ground state for μ = 0.9 [except μ = 0.96 for panel (k)].
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FIG. 20. Real states calculated from the dipole state for μ = 0.9

n-dark soliton state with the dipole state at the center of the
cloud. We have also checked that all of these states are always
unstable (results not shown here).

Finally, it is relevant to mention that nontrivial phase con-
figurations can be constructed by replacing the n-dark soliton
solutions on the ring by a necklace of n-vortex solutions.
These more exotic profiles are depicted in Figs. 21(i)–21(k)
for the case of four, six, and eight vortices, respectively.

IV. CONCLUSIONS AND FUTURE CHALLENGES

We have studied the stationary and dynamical proper-
ties of BEC profiles supported by a ring-shaped potential
with a targetlike profile that has been used in a number of
recent experiments conducted at NIST [56,57]. By following
steady states and their bifurcations from the linear (low atom
number) limit, we have obtained a wide range of solution
branches (not all of which were shown here) and studied the
corresponding stability properties as the chemical potential
μ (cf. atom number) is varied. Importantly, numerous states
were found to be potentially stable, including states carrying
multiple (two, four, six, and eight) solitons between the start-
ing point of the respective branches and up to a suitable criti-
cal value of the chemical potential. Past this critical μ value,
we studied the ensuing dynamics of the dark solitons around
the ring. We typically observed that the dark solitons bounce
back and forth in the ring until they disappear in a process
involving each dark soliton splitting into a vortex pair and
then the vortices getting eventually absorbed by the periphery
of the ring. This process eventually led to a weakly perturbed
(i.e, almost homogeneous) ring void of any dark solitons or
vortices that persisted for long times.

In the case of n-dark soliton solutions, taking advantage
of their spectral stability, we illustrated their potential for ex-
perimental realization by using phase-imprinting techniques
to seed them in the condensate. We were able not only to
seed stable n-dark soliton solutions but, equally interestingly,
to seed unstable solutions whereby the ensuing dark soliton
instability dynamics can be studied.

Additionally, a plethora of states was identified involving
a combination of (ground or excited) states supported by the
central well of the targetlike potential coupled with states
supported by the ring channel. The states supported by the
central well corresponded to the trivial-phase ground state
and its excitations in the form of dipole, quadrupole, etc.,
states. On the other hand, the ring channel accepts n-dark
(equidistant) soliton solutions where n is even as the period-
icity of the ring enforces an even number of dark solitons.
We also followed states that, instead of bifurcating from the
linear limit, bifurcate from the ground state of the system
(a constant-phase hump populating the central well). These
states correspond to double-ring, out-of-phase, solutions and
petal-like patterns around the ring.

It would be interesting to implement the phase-imprinting
methodology in the actual experiment as it would naturally
allow for the study of dark soliton dynamics and interactions
especially in such an annular setup. The potential control of
the spatial width of the annulus and the associated control of
the snaking stability of the solitonic structures could play a
significant role in the explored dynamics. From the modeling
perspective it would be interesting to study the stability and
dynamics of steady states bearing a large number of dark
solitons. For instance, it is known that a chain of dark soli-
tons can be approximated by a Toda lattice on the solitons’

FIG. 21. (a–d) Complex states calculated from the ground state. These profiles correspond to an n-dark soliton state coupled to a the ground
state. (e–h) Complex states calculated from the dipole state. These profiles correspond to an n-dark soliton state coupled to a dipole state at the
center of the cloud. (i–k) Vortexlike states calculated from the ground state. These states are similar to the ones depicted in panels (a)–(d) by
replacing the n-dark soliton state by a ring of n vortices. μ = 0.9 in all cases.
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positions and thus one can create (Toda) solitons riding on
a backbone of dark solitons (see Ref. [79] and references
therein). Furthermore, a systematic extension of the present
paper considering the vortex patterns in the present setting
would naturally complement the present solitonic consider-
ations. Lastly, considering extensions of this type of setup
also in higher dimensions and suitable (e.g., toroidal-poloidal)
geometries may be particularly interesting and relevant in its
own right, as well as lead to an appreciation of (potentially
vortical) patterns that may be dynamically stable.
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