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Stability and dynamics of massive vortices in two-component Bose-Einstein condensates

J. D’ Ambroise ®,"" W. Wang ®,? C. Ticknor, R. Carretero-Gonzalez®,* and P. G. Kevrekidis ©>
' Department of Mathematics, Computer & Information Science, State University of New York (SUNY) College at Old Westbury,
Westbury, New York 11568, USA
2College of Physics, Sichuan University, Chengdu 610065, China
3Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
4Nonlinear Dynamical Systems Group, Computational Sciences Research Center, and Department of Mathematics and Statistics,
San Diego State University, San Diego, California 92182-7720, USA
5Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

® (Received 30 July 2024; accepted 18 February 2025; published 20 March 2025)

The study of structures involving vortices in one component and bright solitary waves in another has a
time-honored history in two-component atomic Bose-Einstein condensates. In the present work, we revisit this
topic, extending considerations well past the near-integrable regime of nearly equal scattering lengths. Instead,
we focus on stationary states and spectral stability of such structures for large values of the intercomponent
interaction coefficient. We find that the state can manifest dynamical instabilities for suitable parameter values.
We also explore a phenomenological, yet quantitatively accurate upon suitable tuning, particle model which,
also in line with earlier works, offers the potential of accurately following the associated stability and dynamical
features. Finally, we probe the dynamics of the unstable vortex-bright structure, observing an unprecedented, to
our knowledge, instability scenario in which the oscillatory instability leads to a patch of vorticity that harbors

and eventually ejects multiple vortex-bright structures.
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I. INTRODUCTION

The platform of atomic Bose-Einstein condensates (BECs)
has been particularly fruitful toward the exploration of non-
linear wave patterns, both solitonic ones and vortical ones
involving topological charge [1,2]. The ability to manipulate
external potentials in both space and time [3], as well as that
of controlling the size and the sign of the atomic scattering
length (and hence the coefficient of nonlinear interaction) in
time [4,5] or even in space [6,7] have paved new directions
of unprecedented perturbations and dynamics to the solitary
wave patterns that such systems can support.

In addition to the spatiotemporal control and the wealth
of phenomenology of one-component atomic systems, two-
component ones [8,9] are, arguably, even richer in their
potential phenomenology. On the other hand, the exploration
of spinor systems [10,11] has enabled the consideration of
magnetic, as well as nonmagnetic structures [12-20]. These
also include spin domains [21,22] and spin textures [23,24],
taking advantage of the spin degree of freedom. In this setting,
the ground state has been recognized to have the potential
for antiferromagnetism in **Na or ferromagnetism in Rb.
However, perhaps even more interestingly, the wealth of such
systems lies in the excited and topological structures that
they can support in the three-component F =1 and the five-
component F' =2 settings [10,11].

While these higher-component settings offer considerable
additional wealth in terms of the possible states, our aim
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herein is to revisit two-component settings. There, many
solitary waveforms have been considered, ranging from dark-
bright to dark-dark and dark-antidark, as well as magnetic
solitons [8,9,25]. Not only individual structures of this kind
have been experimentally explored, but also small clusters
thereof (see, e.g., Ref. [26]), as well as their collisions [27].
Such two-component settings have recently been leveraged
toward engineering effective, attractive interactions in both
1D and 2D, offering the possibility to generate structures such
as the Townes soliton [28] and the Peregrine soliton [29].
Here, we focus on the 2D variants of these solitary waves
in the form of vortex-bright (VB) solitons [30,31]. These
are sometimes referred to by other names, such as baby-
skyrmions, filled-core vortices, or massive vortices, and have
not only been theoretically explored but also experimen-
tally observed [32-34]. Note that some of these experimental
realizations, such as the one reported in Ref. [34] (and cor-
responding theoretical explorations, e.g., in Ref. [35]), have
probed these states in spinor settings. In recent years, there has
been a flurry of activity in such systems, seeking to provide
a theoretical understanding of the potential dynamics of these
structures. Indeed, they have been shown to be able to perform
flower-like motions [36,37]; they have been also explored in
generalized radial potentials [38,39], as well as in the context
of rotating traps [40] and, more recently, the case of multiple
such states and how they interact has been revisited [41] (see
also earlier studies in Refs. [42,43]). It is relevant to point
out here that, in the context of miscible BECs, the interaction
of these VB solitons was considered earlier in Ref. [44].
An additional, intriguing in its own right, setting where a
superfluid bearing a vortex is coupled to an impurity, that is, a
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second component without self-interactions but solely feeling
the vortex as an “external potential” was recently proposed in
Ref. [45]. Both the VB-like state but also higher excited states
of the second component impurity were considered therein.
Finally, yet another direction touched upon recently in the
VB setting is that of higher topological charges, where it was
found that the bright component could play a significant role
in their dynamical stabilization [46].

Here, our aim is to complement some of these devel-
opments, which have chiefly been based on Lagrangian
(variational) analytical formulations and direct numerical sim-
ulations, by means of steady-state computations, Bogoliubov-
de Gennes (BdG) stability analysis, dynamics, and a modified
ordinary differential equation (ODE) analytical framework.
In Sec. II, we provide a palette of relevant tools upon dis-
cussing the model. Notice that here we primarily focus on
scenarios that are deep within the immiscible regime, in line
with some of the previously mentioned works, for example,
by Richaud and collaborators [36,37,39,41]. We also discuss
the details of an analytical approach that has some modified
features compared to these works. We analyze the types of
motions that are permissible in this reduced system and pro-
vide their quantitative characteristics toward a comparison
with the full numerical partial differential equation (PDE)
results. In Sec. III, we provide the numerical continuation
of our VB states as a function of the system’s chemical
potentials for different values of the interspecies coupling.
Here, we also offer a systematic procedure for matching the
ODE and PDE dynamics, and showcase that this matching is
also reflected in the BAG spectrum of the VB matching the
corresponding particle model eigenfrequencies. Moreover, we
trace an (oscillatory) instability of the PDE VB state when
two pertinent eigenfrequencies collide and become complex.
These findings, in turn, prompt us to perform select dynamics,
reflecting some of the more elaborate VB features, such as
the flower-like trajectories thereof, but also the instabilities of
such structures. The latter turns out to be especially intriguing
as the oscillatory instability results in the formation of a patch
of vorticity harboring multiple VB structures that eventually
lead to a breakup of the relevant pattern in different segments.
Finally, in Sec. IV, we summarize our findings and present our
conclusions.

II. MODEL AND THEORETICAL SETUP

A. Full PDE model

To study the existence, stability, and dynamics of VB
complexes, let us consider the 2D Gross-Pitaevskii (GP) equa-
tion describing the interaction between two different atomic
species in a BEC. The corresponding GP equation can be cast
in nondimensional form as:

iV = —JAW + [V(r) + WP + g W10, (la)
iy = —JAW, + [V(r) + W + g2 |¥1*1W2,  (1b)

where both BEC wavefunction species W and W, are con-
fined by the common external parabolic potential V(r) =
%erz with strength €2, which is usually deployed in exper-
iments using a magnetic field [1,2,8]. Here, A denotes the
2D Laplacian, the overdot is used for differentiation with

respect to time, and gj» > 0O is the adimensional interspecies
coupling. It is relevant to point out here that we have in mind
a setup such as ®’Rb (or similar), in which the intraspecies
scattering lengths are practically equal, while we think of the
interspecies one as being tunable via external fields [2,8]. To
construct VB complexes, we consider the first component to
be populated with a relatively large number of atoms so that
it is close to its Thomas-Fermi (TF) limit. We dub this com-
ponent the “dark” component as it will be primarily governed
by the self-repulsive interaction present in the first component
[cf. positive sign in front of | ¥, |? in Eq. (1a)] and will feature
a vortex structure. In turn, the vortex embedded in the dark
component will induce an effective potential on the second
component through the term g»| W, |>W, in Eq. (1b) that will
trap a relatively small number of atoms and create a localized
hump that we dub the “bright” component. This is the origin
of the terminology associated with the VB (or dark-bright
in 1D [9]) complex. Solutions to Eq. (1) conserve the atom
number (power) in each of the two components:

+0o0
szff |¥j|*dxdy for j=1,2. )
—00

An additional important parameter for the VB complex is
the—also conserved—mass ratio:

=2 3)

Let us now seek stationary-state solutions of the form
\Ijl (X, Ys t) = wl ('x’ J’) e_iﬂdt and lIJz(x’ Ys t) = Iﬂz(x’ Y) e—im,t
where ©, and p, denote the chemical potentials of the dark
and bright components, respectively. Then, the spatial part of
the stationary solutions satisfies

—IAY + V) + 1Y P + gualvnl® — walyn =0, (4a)
—IAY: + V() + Wl + gulvn® — wply = 0. (4b)

The VB states are studied in the relevant parameter space.
Here, the key parameters determining the properties of the VB
complex are €2, g12, 4, and w,. For example, the powers and
the mass ratio depend directly, in a nontrivial manner, on the
chemical potentials for a given set of Q2 and g, values.

We find numerically exact stationary states using finite
differencing for the spatial discretization together with a
Newton-based fixed-point iteration method. First, we find a
relevant solution, and then numerical continuation can be
deployed along any of these parameters. The first solution is
obtained by embedding a vortex centered at the origin in the
first component; we discuss the details in Sec. III. We also
study the (spectral) stability of these centered VB complexes
by the BAG analysis. Then, taking parameter values where
the VB complex is stable, we proceed to appropriately seed
it away from the trap center and monitor, according to Eq. (1),
its dynamical evolution. Our dynamics is carried out using
the regular fourth-order Runge-Kutta method. The location
of the VB complex is monitored by first computing the re-
spective centers of mass of each component along the x and y
directions:

1 +00 )
CoM] = 7 // o|V;|°dxdy, 5)
fi —o0
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where o = x, y. Then, the relative location of the VB with
respect to the background cloud of the dark component is
recorded as CoM3 — CoM7.

The BdG analysis for the two-component stationary so-
lutions works as follows. Given the steady-state solutions
(Y1, ¥rp) as per Eq. (4), we perturb them according to

Wy = {Y1 + elai(x, y)e” + bi(x, y)e e 1,
Wy = (Y + elar(x, y)e” + bi(x, y)e” Nle ™. (6)

The spectra are then computed by plugging Eq. (6) into Eq. (1)
and solving the resulting linearized eigenvalue problem at
order ¢ as:

My M, M My || a
T/ T VA V0 | D N

My, My M, My |la| ™ “|a |

My, My M3 =My, || b by
where

My = —3A+V — pg + 2191 + gl

My = —3A+V — puy+ 2190 + gnlvn 1%,

and My, = Y, Mi3 = gy vy, Mis = gy ¥a, and My =
V3. The eigenvector for the corresponding eigenvalue v is
(W, W,17 = [(ay, by), (a2, b»)]", and the mode is unstable if
Re(v) > 0. As we see in Sec. III, after stationary solutions are
displaced away from the origin and for appropriate parameter
regimes, the VB states can exhibit flowering trajectories. To
follow potential instabilities emerging from the collision of
eigenvalues, for each eigenvector, we monitor the sign of the
quantity (so-called Krein signature) [47]:

+o00
K = f/ (la11* = |b1|* + |aa)* — |b2|*) dx dy.

The collision of two dynamically stable [Re(v) = 0] eigenval-
ues of opposite Krein signs generically leads to an oscillatory
instability [30]. In Sec. III, we detail the presence of a super-
critical Hamiltonian Hopf bifurcation when continuing along
the w;, parameter. This is induced precisely by the collision of
two opposite Krein sign eigenvalues that correspond to the
observed flowering frequencies of the VB evolution (more
details are presented later).

B. Reduced ODE model for the VB complex

We now turn to a theoretical description of the particle
motion of the VB structure inside the parabolic trap. This will
provide a yardstick of comparison for the parametric depen-
dence of the PDE results that will be obtained based on the
methods presented in Sec. Il A. Our model somewhat differs
from the one used, for example, in Ref. [36] in the following
two ways: The latter model contains a singular logarithmic
term in its potential energy, while the model used herein
contains an effective potential energy essentially proportional
to the system density at the location of interest (see details to
follow). Furthermore, the term giving rise to the Magnus force
and being effectively associated with the angular momentum
also emerges linearly in its dependence on the density (leading
to the right equation in the single-component vortex limit). In
that vein, based on these motivations, we follow the approach

of Ref. [48], using effectively as the dynamical model of
relevance the one of Eq. (29) therein.

The ODE model can be reduced to the following second-
order system on the VB position (x(¢), y(¢)):

. A )
Mos = Zx = p(r)y

. A .
Moy = 57 + p(r)x )

where My and A depend, in a nontrivial manner, on the
relative mass M and the interspecies coupling g, [48],
and p(r) = ug — V(r) is the TF background density of the
dark component. The equations of motion can be recovered
through the Euler-Lagrange equations %(g—ﬁ) = g—ﬁ, foro =
x, y, from the corresponding Lagrangian:

L= %(xz +37) - 1(x' - x)( - lV(r)> LA
=5 y Sy YO\ e — 5 1
®)
Note that we may also write L in polar coordinates using stan-
dard conversion formulas x> + y> = 2, x> + y* = i2 + r26?,
and xy — yx = r20 for r = r(¢r) and 6 = 6(z). Comparing
Eq. (8) with the Lagrangian (23) of Ref. [36], we find similar
structural features with the expression used herein bearing an
additional contribution [y — %V(r)] in the second kinetic en-
ergy term, while instead of the logarithmic term in Ref. [36],
we include herein only the quadratic term in its Taylor series.
Additionally, their r is normalized as r/Rtp for Rtg the TF
radius of the dark component.
The conservation of angular momentum in polar coor-
dinates can be inferred from the angular Euler-Lagrange

equation j_z(%) = %, which yields

€= Q*Mor*0 + 1 p%(r). 9)

On the other hand, to derive the Hamiltonian formulation of
the ODE system (7), we can utilize the Legendre transform
H =xp, +ypy, — L with p, = % for o = x, y, to obtain

L, 1
H = 2—Mo<px +py — Opx — xm)(ud - 5””))
n 2 IV( ) 2 A 5
— — =V(r - —r.
8M, \ 7 2 4

The effective total (and conserved) energy can then be written
as follows:

E = IMoi* + Ve (r), (10)

with the effective potential
1 . A
Vege(r) = §M0r202 -7 .

Using Eq. (9) to replace 6% with the corresponding expression
in terms of £, we can also write the effective potential as

1 1\ A,
Veﬁ(r)=m4—W 5—50(1’) -7 (11)

The Euler-Lagrange equation in the radial variable
%(% = % yields

L A
My(r —r0°) = —p(r)ré + Er,
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which can be used to derive the expected precessional fre-
quency of a circular trajectory by setting r = ro and ¥ = 0 to
obtain the quadratic-in-6 equation

- . A
0= Mp0” — p(ro)0 + 5 (12)
Solving for 6 yields frequencies

. 1
b = Sy (P00 £ Vo0 P —2MeB). (13)

The smaller frequency wp, = 6_ corresponds to the expected
precessional frequency of a circle, and reduces to the expected
single-component precession frequency asymptotically in the
limit of My — 0. Here, given the presence of the second com-
ponent, we also obtain a larger frequency 6, that also pertains
to a precessional motion, but indeed one whose frequency
diverges in the My — O limit.

For simplicity, we assume that a circle begins with x(0) =
X0, ¥(0) = 0, and x(0) = 0. This yields, according to Eq. (12)
converted to Cartesian coordinates, the initial velocity for a
circle in the ODE model as

) 1
$0) =~ (p(ro)xo £ | p(ro)2xi — 2MoA).
2My
Finally, we note that the resulting frequencies of flowering
trajectories can be estimated by converting the conservation
Egs. (9)-(10) into a first-order system and linearizing as
follows. First, the potential flowering pertains to small oscil-
lations in the radial direction around an equilibrium circular
trajectory r = ry. Differentiating Eq. (10) and solving for 6 in
Eq. (9), we can write the system as 7 = u, u = 7 = G(r), and
6 = K(r) for

1
G@r)=— A7OVe/ff(r)

I 1,

Near the minimum ry of V (r) we estimate
r(t) =~ rg + Rcos(w,t)
0(t) = wyt + Ag sin(w,1) (14)

for radial and precessional frequencies (w,, w,r) and R and Ag
being small perturbations off of the circular motion. Plugging
Eq. (14) into the first-order system gives

Vi (ro)
o = Jeit

r MO ’
RK’'
4, = R0} (15)
w;

for R = r(0) — ro. Note that, according to Eq. (14), flower-
ing trajectories with looping petals occur when min{6(z)} =
wpr — w,Ag is negative so that looping appears at the threshold
amplitude Ag = wpr/w, according to the linearized prediction.

In the next section, we make the correspondence between
the PDE model and its effective ODE reduction using the
following program. Since we expect frequencies 6 from the
ODE model to correspond to purely imaginary frequencies in
the PDE model, we use the BAdG bifurcating eigenvalues v and

the correspondence § = Im(v) to estimate the ODE parameter
value of A in terms of Mj. The value of M| is then determined
by minimizing the sum of squares of differences between the
PDE and ODE trajectories. For a given pair of M and A, one
then finds initial velocities of the ODE model that best align
to a given PDE trajectory. In general, a larger initial velocity
gives flowering trajectories with more looping on the petals so
this can be used to guide best choices of these initial velocities
in the ODE. For the obtained flowering trajectories, we also
show examples comparing the ODE trajectories according
to Eq. (7) versus the results of the linearized predictions in
Egs. (14) and (15).

III. RESULTS
A. Steady states and stability for the PDE model

To obtain the stationary solutions to Eq. (4), the ground
state cloud (Y1, ¥2) = (g, 0) for the isolated dark compo-
nent is found via a standard fixed-point Newton’s iteration
method with an initial guess corresponding to the TF ap-
proximation v; = /max(uy — V(r),0). In turn, to find a
VB solution to Eq. (4) centered at the origin, we again use
Newton’s method, this time with the initial guess in the bright
component as ¥ = ,/up sech(upr) and in the dark compo-
nent as Y = Y tanh(pugr)e ™), where 6 is the (polar)
angle of (x, y) from the origin. The resulting unit (negative)
charge VB stationary centered solutions exist for a variety of
combinations of the parameters 2, g2, ip, and py. Once a
relevant solution is found, it can be further continued along
any of these parameters. Similarly, if we take the complex
conjugate of the initial guess, we can obtain a VB state with
an oppositely charged vortex.

We monitor three properties of the stationary VB states:
the full width at half maximum (FWHM) W, the squared
amplitude A% of the bright component, and the mass ratio M
of the two components as defined in Eq. (3). These properties
are computed along a continuation in u; for fixed values of
812, M4, and €, and are depicted in Figs. 1 and 2. For the
relatively small values of g, closer to 1 shown in Fig. 1,
increasing u;, results in a larger mass ratio M, larger FWHM
W, and larger amplitude A. In this regime, higher mass ratio
solutions are wider and taller. In contrast, for the relatively
larger values of gi, shown in Fig. 2, namely, farther into the
immiscible regime, it is the lower u;, values that correspond to
a higher mass ratio M, and as u; decreases, this corresponds
to an inverse relation between A and W (cf. as width increases,
the amplitude decreases). In this regime, higher mass ratio
solutions are wider but also shorter. In Fig. 3, we depict two
typical examples of the densities of the VB complex stationary
solution, one in each of the mentioned regimes. Figure 4
shows the corresponding density cross sections. Figures 3 and
4 tend to suggest that, for the same mass ratio M, bright
spots in the lower g, regime are tapered at the top with a
wide base (appearing with soft edges), while bright spots in
the higher g, regime appear less tapered (sharper with more
well-defined boundaries). This is rather intuitive on account
of the deeper immiscibility region arising as gy, > 1.

Let us now track the BAG eigenvalue spectrum for the
centered VB structure as a function of the parameter u,.
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Grp =1
9 =1.05

0.04 |
=902}

G2 =13

10.’.’3 32 34 3.6 338 4 42 4.4

3 32 34 36 Ub3'8 4 42 44

FIG. 1. Static properties of the vortex-bright steady state cen-
tered at the origin. From top to bottom: mass ratio M, full width
at half maximum W, and squared amplitude A? of the bright compo-
nent. These properties are plotted for relatively small values of the
interspecies coupling g, for fixed values of ; = 4.22 and Q = 0.1.
For these relatively small values of g;,, all properties increase with
increasing gi».

Figure 5 depicts a typical spectrum for g = 1.6 and py =
4.25. Note that Re(v) > 0 indicates an instability. Interest-
ingly, as the spectrum shows, there is a Hamiltonian Hopf
bifurcation as w; decreases. For u; = 4.25 and values g, =
1.4,1.6, 1.75, the bifurcations occur, respectively, at u, ~
4.349, 4.383, 4.403 and where, according to Fig. 2, the re-
spective critical mass ratios are M* =~ 0.057, 0.051, 0.048.
This (reverse) Hamiltonian Hopf bifurcation evidences that
the lowest two oscillatory (purely imaginary) eigenfrequen-
cies collide as u; decreases, giving rise to an unstable
(complex) quartet. The presence of a complex quartet
instability indicates that, in this parametric regime, the
VB will destabilize from the center of the trap along a
spiraling-out trajectory, as we will see soon. According to the
color-coded eigenvalues in the bottom panel of Fig. 5, the re-
gion of instability lies where the lower branch is colored black

g, =14
0.04 0,16
s T Y=l
0.02 G2 =175
0 .
44 45 45 47 48
10 ¢
= 5
0 .
44 45 46 47 4.8
45 —
35 : : : : :
44 45 46 47 48
Ho

FIG. 2. Same as Fig. 1 but for higher g, values.

40 |y4[? 40 |yl 4

3 3

0 2 0 2

1 1

40 0 40 0
-40 -40

40 4 -40 A

3 3

0 2 0 )

1 1

40 0 40 0

40 0 40 40 0 40

FIG. 3. Vortex-bright complexes. Depicted are the densities of
two steady-state solutions with parameter values 2 = 0.1 and u,; =
4.22, where both solutions have mass ratio M = 0.02. The top row
solution corresponds to (g2, i) = (1,4.16) and the solution ap-
pears to have soft edges with the bright spot having a wider footprint.
By contrast, the bottom row solution corresponds to (g2, tp) =
(1.4,4.43), where the solution shows a sharper boundary with the
bright spot featuring a slightly narrower footprint.

for i, < 4.383 and where the mass ratio M > M* exceeds the
critical value M* = 0.051. However, it is interesting that, with
the parameters provided in Fig. 5, spiraling-out is also present
for wu, values as high as u;, < 4.4 when the VB structure is
displaced by a large value such as xo = 2.5. This tends to
suggest that precessional circular orbits may also be prone to
instabilities. This is a topic of particular interest in its own
right, meriting an examination of such states in a corotating
frame (as was done, e.g., in Ref. [49]), yet this type of distinct
study is an interesting topic for future work.

Focusing on initially centered VB solutions, according
to our BAG spectral analysis, starting infinitesimally close

— Qi2=1
— Qy2=14

O ! 1 ! J
-40 -20 0 20 40
X

FIG. 4. Cross-sections of the solutions depicted in Fig. 3. The top
(bottom) panel illustrates the dark (bright) component for the values

of g1, indicated.
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0.01 1oees,,,

-0.01 ~ 1 1 1 1 1 1 1

4.38 4.4 4.42 4.44 4.46 4.48 45

4.38 4.4 4.42 4.44 4.46 4.48 4.5
P

FIG. 5. Bogoliubov-de Gennes stability spectrum for a vortex-
bright structure centered at the origin as a function of u, for g;, =
1.6, ny =4.25, and Q = 0.1. The top and bottom panels depict,
respectively, the real and imaginary parts of the eigenvalues. A pos-
itive real part indicates instability. The eigenvalues are color-coded
according to the sign of the Krein signature of the corresponding
eigenvector: zero (black), negative (blue), and positive (red). The
resulting bifurcation diagram evidences the presence of a (reverse)
Hamiltonian Hopf bifurcation at w, =~ 4.383. Overlaid are plots
(cyan) of @ values of the matching ODE given by Eq. (13).

to the center, spiral-out trajectories will only be present
in the u,-interval where the stationary solutions are unsta-
ble. For instance, the VB dynamics for an initial condition

(x0, y0) = (2.5,0) in the stable regime (u, ~ 4.4) displays
flowering trajectories that have roughly two petals, and as u;
increases, the number of petals increases. In Fig. 5, we overlay
the two frequencies obtained from the ODE model given by
Eq. (13) (see the two cyan curves). In the stable regime,
these ODE frequencies correspond to the two eigenfrequen-
cies emerging from the Hamiltonian Hopf bifurcation within
the PDE model. Note the excellent agreement between these
two BdG eigenfrequencies and their ODE counterparts. It is
important to note that this agreement is valid for a relatively
wide range of u; values since the fit of the ODE frequencies,
and hence the fit of the parameters M, and A in Eq. (7), was
performed for each value of u,. Nonetheless, we checked
that, for each chosen value of p; (and the corresponding
fitted parameters), the PDE and ODE orbits matched for a
wide range of initial conditions. This evidences the validity of
the ODE model not only qualitatively but, more importantly,
quantitatively in its ability to capture the VB evolution within
the full PDEs once the parameters of the system are set.

On the other hand, for our chosen parameters and as per
our stability analysis, for u, < 4.4, the VB structure centered
at the origin is unstable and tends to spiral out. We provide a
typical example of the destabilization dynamics in this region
in Fig. 6, which depicts the time-evolved solution together
with its phase and vorticity profiles. As expected, for initial
times (r < 1000), the VB destabilizes from the origin and
performs a spiraling-out motion (see overlaid blue curve in the
top-left panel) while approximately preserving its VB initial
shape albeit a small elongation along the spiraling direction.
Further down the evolution, this elongation of the VB “patch”
becomes more pronounced, allowing for the formation of
extra vortices inside the dark component of the VB. Initially, a

N/

1600

0 1400

1200

+
~

1000

-7

WM 800

FIG. 6. Evolution of an initially centered unstable vortex-bright structure for ;t;, = 4.25 and pu;, ~ 4.38. The first and second rows of panels
depict the (square root) of the densities for, respectively, the bright and dark components at the times indicated. The blue spiral in the top-left
panel corresponds to the orbit followed by the vortex-bright structure during its destabilization for 0 < ¢ < 1000. The third and fourth rows of
panels depict, respectively, the phase and vorticity of the dark component. For convenience, the phase panels only show the region inside the
Thomas-Fermi radius (outside this region, the phases are very complicated as the density rapidly decays to zero). The yellow (black) dots in
the vorticity panels depict the location of positively (negatively) charged vortices where the vorticity attains its maximum (minimum) denoted
by wy (w,,). The right panel depicts the evolution of the vorticity by means of isocontours of vorticity in (x, y, ), where the red and green
contours correspond to negative and positive vorticities, respectively.
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FIG. 7. Temporal evolution of the angular momentum for the
destabilization dynamics of an initially centered vortex-bright de-
picted in Fig. 6. The initial gradual angular momentum exchange
starting around ¢ ~ 800 corresponds to the spiraling-out of the
vortex-bright. As time progresses, the angular momentum of each
component tends to vary around the equipartition level L; =~ L, ~
L./2.

vortex—antivortex pair creation occurs inside the VB complex
(see the state at# = 1030). Then, the corresponding negatively
charged vortex remains trapped within the VB complex while
the positively charged vortex, carrying a small amount of
bright mass, is ejected out of the VB and runs toward the edge
of the condensate orbiting in the opposite direction of the VB
motion. Next, as the VB patch continues to stretch, a series of
aligned vortices of negative charge are created, giving rise to
a quasi-1D vortex “patch.” Eventually, the stretched VB patch
breaks into two smaller VB patches, each carrying a portion
of the vortices. We note that, to the best of our knowledge,
this intrinsic creation of vortices (i.e., without the need for
an external stirrer or potential) is associated with a novel
type of VB-creating instability. What seems to be happening
here involves the transfer of angular momentum associated
with the spiraling motion of the VB into net vorticity since
the vortices produced are predominantly of the same charge.
This is partially reminiscent of the process of generation of
persistent currents (see, e.g., Ref. [50]). A slightly different
in spirit, yet also intriguing, recent example of vortical phase
structure produced in the bright components of VB complexes
in rotating traps can be found in Ref. [51]. The latter so-called
ghost vortices can be rendered real through suitable interac-
tion quench protocols as discussed in Ref. [51].

To garner more information about the emergence of new
vortices through the previously mentioned destabilization dy-
namics of the centered VB complex, we monitor the vorticity
in the system. In particular, the total angular momentum in
each component can be computed using [52]:

+00
Los(t) = —i / / W (18 — yo )W dx dy,
—0Q

where the subscripts denote the dark and bright compo-
nents. Since the underlying potentials for both components
are independent of the angular coordinate, the total angular
momentum of the system is conserved:

L:(t) = La(1) + Ly(1) = L:(0).

Figure 7 illustrates the evolution of the angular momentum
for the destabilization dynamics of the initially centered VB

complex described in Fig. 6. As we saw in Fig. 6, the VB
complex evolves and creates vortices of different charges dur-
ing its evolution. However, as Fig. 7 confirms, the total angular
momentum is indeed conserved. It is interesting to note that
the angular momentum transfer from the dark to the bright
component seems to occur as a result of the spiral-out motion
(which only starts to become significant after # = 800). In this
process, the bright soliton gains angular speed and moves fur-
ther away from the origin, thus increasing |L,| at the expense
of |Ly]|.

Subsequently, as vortex nucleations and annihilations en-
sue, there is a back-and-forth exchange of angular momentum
between the two components. Nonetheless, it is particularly
interesting to note that in this case, the system tends to
“equilibrate” toward a state that has relatively small angular
momentum exchanges between the components that hover
around the mean value of the total angular momentum such
that Ly ~ L, ~ L;/2. It would be interesting to study this
apparent angular momentum equipartition between the com-
ponents in systems with a large number of vortices in the
quantum turbulent regime. It is also relevant to point out
that, in Fig. 6, the majority of the vortices created feature a
circulation in the negative direction. This is natural to expect,
given the selection of a spiraling direction of the vortic-
ity patch upon the manifestation of the Hamiltonian Hopf
bifurcation-related instability. In addition, this spiral direction
is a result of the negatively charged vortex state, that is, it is
the same as the precessional direction of the initial VB state in
the harmonic trap and can be reversed for vortices of opposite
charge.

B. VB dynamics

We now leverage the ODE reduction dynamics presented
in Sec. II B to describe the dynamics of the VB in the orig-
inal PDE model. To generate rotational dynamics of the VB
state at the level of the original GP model (1), we displace
the stationary solutions away from the origin and seed the
waveform into a ground state cloud according to the following
procedure. First, we compute, using our fixed-point algorithm,
the ground state cloud ¥r; = v, for a given chemical potential
value py and a fixed value of the interspecies coupling gi»
(while we keep the trap strength constant 2 = 0.1 throughout
this analysis). For convenience, we choose a starting point
with x(0) = xo and y(0) = 0. Next, we evaluate the local
chemical potential fi,, = [1gs(x0, 0)|?> where the VB will be
seeded. The VB solution with s = iy, for a chosen u, value
is prepared and subsequently imprinted at the location xy onto
the ground state cloud . The resulting displaced structure
is propagated according to the dynamical equation [Eq. (1)].
Note that to avoid unnecessary oscillations of the background
cloud induced by the imprinted VB, the initial condition is
“kicked” with a suitable (small) velocity k& by boosting yr,
with e/*” to eliminate any linear momentum for the dark cloud.
Our study of the resulting VB trajectories focuses mostly on
parameter regimes where flowering trajectories are obtained.

For the relatively small g, values shown in Fig. 1, the re-
sulting PDE trajectories after displacement away from the ori-
gin are observed to be approximately circular with additional
wobbling motion that does not genuinely resemble flowering
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trajectories. Nonetheless, for the relatively larger g;, values
shown in Fig. 2 and for large enough p; values, the PDE
trajectories result in flowering motion. It is in this regime that
we use the ODE reduction provided in Sec. II to match the
full GP VB dynamics. For example, keeping €2 = 0.1 and for
g = 1.6, ug = 4.25, and xo = 2.5, GP flowering trajectories
are seen for u;, = 4.4 while spiral-outs are seen for u, < 4.4.
This is consonant with the stability results depicted in Fig. 5.
However, it is important to note that the stability results in
Fig. 5 correspond to a VB that is centered at the origin, while
we are now seeding VB structures away from the center. For
instance, we note that within the pu,-interval 4.383 < u, <
4.4, stationary (i.e., centered at the origin) solutions are stable,
but the displaced state starting at xo = 2.5 results in a spiral-
out motion. This evidences that this displacement is relatively
far away from the origin for the (linear) stability analysis at
the origin to be valid. Nonetheless, we have confirmed that,
in the unstable region u, < 4.383, slightly perturbed solu-
tions from the origin tend to oscillate with frequencies given
by Im(v).

To compare the ODE reduction with the full GP dynamics
in the stable regime of Fig. 5, we also depicted therein the
value for & from the ODE model (see the two cyan curves)
overlaid to demonstrate the frequency matching between the
PDE and ODE models. This matching is done according
to the following procedure. For a given flowering trajectory
in the PDE model within appropriate parameter regimes, to
obtain the corresponding ODE parameters, we first identify
those eigenvalues where the Krein signature bifurcates from
zero to positive and negative values. The eigenvalues in Fig. 5
are color-coded using (blue, black, red) points when the Krein
sign is (negative, zero, positive). In particular, for a given
value, we use the upper branch of the bifurcated eigenvalues
to obtain the value & = Im(v). Then, by Eq. (12), we write the
corresponding ODE A parameter as

A = 2[p(r0)8 — Mb?].

Having obtained A as a function of My, a standard minimiza-
tion procedure is then used to determine the initial VB ODE
velocity and the M, value that best fit (in the least-squared
sense) the ODE trajectory to the PDE trajectory. As can be
seen in Fig. 5 (see cyan curves), this fitting procedure allows
us to accurately obtain the entire lower branch of the PDE
bifurcating eigenvalues from the ODE frequencies of Eq. (13),
as well as the critical point of the Hamiltonian Hopf bifurca-
tion. This very good agreement lends strong credibility to our
ODE reduction picture of the VB structure [i.e., Eq. (7)].
Figure 8 depicts the corresponding ODE parameters across
a range of p, values to the right of the Hamiltonian Hopf
bifurcation point. The blue dashed line P, /7 depicts the esti-
mate for our ODE parameter M according to Ref. [48] [note
their (M, M,,) corresponds to our (Mo, P»), respectively, as
their Eq. (29) agrees with our Eq. (7); see also their Eq. (24)
giving My = My, /m = P,/m]. Notice that our model differs
from Refs. [36,39], where they use parameter u to represent
the mass ratio, which is M = P, /P in our notation. The match
of the relevant curves in Fig. 8 is very good, revealing only
a slight relative discrepancy of no more than 3.5% for the
estimate of M. On the other hand, the red dashed line corre-
sponds to the precessional frequency of a vortex in the absence

0.2

0 I I I I I
4.4 4.42 4.44 4.46 4.48 4.5

M

FIG. 8. Plot of the ordinary differential equation parameters A
and M, that best match the partial differential equation trajectories
with zero initial velocity. Same parameters as in Fig. 5. The blue
dashed line corresponds to the estimate of the parameter M, from
Ref. [48] and the red dashed line shows the known zero-bright-mass
frequency A ~ Za)gr,ud (see text for details).

of the bright component given by A = ZwSIMd obtained from
Ref. [53] as follows. Taking our Eq. (7) with My = 0 near the
origin, we obtain

. A
Ma X = —5)’
. A

Hay = gx'

Comparing this reduced system to Eqs. (3) and (4) of Ref. [53]
gives A =2wp jig = Q2 In(8.88114/<2). The relatively large
discrepancy between A and the theoretical estimate may stem
from the fact that the latter, rather than being a true estimate
for the precessional frequency of the (massive) VB, is just
the precessional frequency corresponding to a vortex in the
absence of the bright component. Note that, for this region of
parameters (see Fig. 2), as (t;, increases, the mass of the bright
component decreases and thus, correspondingly, the A curve
progressively approaches the (red dashed) A = 2602,!&1 non-
filled vortex benchmark. In the two-component VB setting,
these results render evident the dependence of A on the bright
component, suitably dressing the effective (parabolic confine-
ment) landscape that the composite VB structure encounters
in connection to its motion.

Direct comparisons between the PDE and ODE orbits are
presented in Figs. 9 and 10, where the blue and red curves
correspond to the PDE and ODE orbits, respectively (the black
circle corresponds to the circular orbit at the effective potential
minimum). The different cases in each figure are shown for a
fixed value of g;, and a fixed mass ratio M for various initial
velocities. For each trajectory, the angular momentum £ is
obtained according to Eq. (9), and we compute the effective
energy of the flower defined as

AE = Veff(rmax) - mil’l{Veff}, (16)

where ryax 1S the maximum radius (distance to the origin)
attained by the orbit. In the bottom-right panels of Figs. 9
and 10, we also depict the ODE effective potential Veg(r)
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FIG. 9. Vortex-bright trajectories for g;, = 1.6, M = 0.01, u, =
4.25, and u, = 4.56. The vortex-bright is seeded at xo = 2.5 cor-
responding to a local chemical potential i, ~ 4.22. To match the
ODE trajectories we use My =~ 18.9. The top-left panel shows the
resulting trajectory with initial velocities k, = 0 in the PDE (blue
curve) and y(0) =~ 0.01 in the ODE (red curve) with a resulting
angular momentum of ¢ = 8.9. For this value of ¢, the effective
potential V. () in Eq. (11) is plotted in the bottom-right panel (blue).
The three black dots plotted on V. (r) correspond to its minimum
and the minimum and maximum radii of the trajectory. From these
values, we have an effective flower energy of AE = 0.002 according
to Eq. (16). Parameters are the same in the top-right panel except with
initial velocities k, = 0.1 in the PDE and y(0) ~ 0.06 in the ODE,
with € &~ 8.92 giving the effective potential in the bottom-right panel
(red) with AE ~ 0.01. Similarly, the bottom-left panel corresponds
to ky, = 0.15 in the PDE and y(0) ~ 0.08 in the ODE, while £ ~ 8.93
giving the effective potential in the bottom-right panel (yellow) with
AE = 0.03. The thin black circles in the trajectory plots correspond
to the circular orbits at the minima of the effective potentials.

according to Eq. (11). The corresponding overlaid black dots
represent the minimum and extremal values of Vg (r) attained
through the flowering motion. For guidance we also overlay
(see corresponding black circles), on top of the flowering
trajectories, the circular orbits corresponding to the effective
potential minima. Note that larger values of AE correspond to
trajectories with bigger petals. It is also worth mentioning that,
as can be noted from the values reported in Fig. 9, the initial
velocities for the PDE (k,) are larger than the fitted initial ODE
velocities (). This apparent discrepancy is due to the fact that
the VB initialization in the PDE is not perfect, as we are just
boosting the bright component with a velocity k, while we are
not adjusting the velocity of the dark component. Therefore,
part of the initial energy imparted to the VB in the PDE
case is lost to background radiation while the bright hump
accelerates the vortex in the dark component. As a result, the
effective velocity that the VB acquires after the initial radia-
tion is emitted is actually slightly smaller than k,. Finding a
better initialization procedure for the VB in the PDE model
is an intriguing topic for further consideration. The associated
difficulty is intimately connected to the “dual character” of
the VB. On the one hand, it behaves as a vortical particle
(for which, at the one-component level, effective equations

2 2
1 1
> 0 > 0
1 1
2 2
2 0 2 3 2 1 0 1 2 8
X X
\
2 0.2 \
1 0.1 \\
> 0 X o
>
-1 -0.1
2 -0.2
3 2 1 0 1 2 3 1 2 3 4
X r

FIG. 10. Similar to Fig. 9 with the same parameters except here
wp =447, M = 0.02, and M, =~ 37.0. The top left panel has initial
velocities k, = 0 in the PDE and y(0) ~ 0.01 in the ODE, ¢ ~ 8.9,
and AE = 0.006. For this ¢, Vi (r) is in the bottom right panel
(blue). For the top right panel k, = 0.1 in the PDE, y(0) ~ 0.06 in
the ODE, with £ & 8.95 to give the effective potential in the bottom
right panel (red) with AE = 0.016. Similarly in the bottom left panel
ky, = 0.15 in the PDE, y(0) ~ 0.08 in the ODE, £ ~ 8.97, and the
corresponding effective potential is in the bottom right (yellow) with
AE =~ 0.056.

involve first-order ODEs and an initialization based purely
on position), while it also behaves as a Newtonian particle
with (bright-induced) mass, thus necessitating an initialization
bearing both position and momentum information.

Figure 11 sketches several plots of the effective potential
Vet (r) as the bright chemical potential i, is varied while all
other parameters are fixed. Since larger p,-values correspond
to smaller mass ratios M, the resulting effective potentials

0.2

0.1

FIG. 11. Effective potential V. (7) as the bright chemical po-
tential w, is varied while all other parameters are the same as
in Fig. 8. The different curves correspond to the values w, ~
44,442,444, 4.46,4.48,4.5,4.52 where the shallower (steeper)
effective potentials correspond to smaller (larger) values of (.
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FIG. 12. A comparison between flowering trajectories of the
ODE system (dark blue) in Eqs. (7) and its corresponding lineariza-
tion (cyan) as per Egs. (14) and (15). The top panels show the
trajectories with My =~ 17.95, A ~ 0.07, and 2 = 0.1. In the top-left
panel, the initial velocity is y(0) = 0.06 giving an angular momen-
tum ¢ ~ 8.93, effective potential minimum at ry ~ 2.35, effective
energy AE = 0.01, and the linearized prediction of Ay ~ 0.1, R ~
0.18, and (w,, wp) 7~ (0.21, 0.01). In the top-right panel, the initial
velocity is y(0) = 0.08 giving £ =~ 8.94, ry &~ 2.22, and AE =~ 0.04
with linear predicted values Ay ~ 0.17, R ~ 0.31, and (o, @) ~
(0.21,0.01). The bottom panels correspond to M, = 36.05, A ~
0.08, 2 = 0.1, and (w,, w,) ~ (0.09,0.01). The bottom-left panel
corresponds to y(0) = 0.01, £ = 8.9, ry & 2.7, AE = 0.004, Ay ~
—0.08, and R ~ 0.15. The bottom-right panel corresponds to y(0) =
0.03, ¢ ~ 8.93, ry & 2.49, AE ~ 0.02, Ay ~ 0.04, and R ~ 0.07.

are steeper. Here, we are capitalizing on the accuracy of our
ODE-PDE comparison to infer the dynamical consequences
of parametric variation at the PDE level, based on the ODE
understanding. As a consequence, smaller bright masses will
tend to produce flowering with smaller petals as a steeper
potential means a larger initial energy (initial kick) to produce
the same petal sizes. We should also point out that higher g,
values result in flowering with a smaller frequency. Finally,
Fig. 12 depicts several examples of flowering in the ODE and
its corresponding linearized estimations as per Egs. (14) and
(15). Note that the linearized equations are able to capture
well the main shape and petal size of the flowering motion
even modestly away from the linear regime. This suggests that
Egs. (14) and (15) can be used as simple approximate analyt-
ical descriptors of the VB dynamics over a wide parametric
range.

IV. SUMMARY AND OUTLOOK

In the present work we explored the topic of the dynamics
of VB solitary waves deep within the immiscible regime.
Our motivation in revisiting this subject stemmed from the
renewed experimental ability to monitor such systems, which
creates the potential for connecting a particle-based under-
standing with a detailed analysis of the full PDE model. In
that vein, we explored equilibrium solutions in this deeply

immiscible regime (while some of the earlier studies of the
present authors had confined themselves to regimes close
to, for example, hyperfine states of ¥’Rb where the g; j co-
efficients are nearly equal [31]). In probing the excitations
around the VB equilibrium state, we found the possibility of
two frequencies of precession. One represents the frequency
of precession that is well-familiar from a single-component
vortex in a trap. We also identified an additional frequency
that can be associated with the oscillation of the VB structure
inside an effective radial potential (along the radial direction).
The combination of these two frequencies gives rise to the
potential for epicyclic motion, which, under suitable condi-
tions discussed herein, can lead to “flowering,” that is, to
flower-like curves of the dynamics of the VB pattern. This
intriguing feature, while observed and discussed previously
[36,48], is here intimately connected between the ODE and
PDE dynamics (both at the level of linearization and at that
of fully nonlinear dynamical evolution). Our analysis enables
both a reasonable approximate analytical description of the
relevant motion and key byproducts thereof, such as the crit-
ical oscillation amplitude leading to flowering as a (simple)
function of the precessional and radial oscillation frequencies.
Among the additional intriguing features identified herein,
we highlight the (oscillatory) instability of the VB structure
when the relevant two frequencies collide. The result of the
corresponding dynamics was found to be particularly unusual
in our experience of such systems. Indeed, as the VB embarks
on a growing spiral oscillation, it becomes a patch of vorticity
that gets elongated and eventually breaks into smaller patches
carrying multiple localized phase jumps inside an extended
region of vanishing density (in the so-called dark component)
in a way reminiscent of persistent currents [54].

While we considered a number of diagnostics (e.g., an-
gular momentum-based ones) and visualizations (e.g., the
3D isocontours of vorticity) of this phenomenon, clearly, it
merits further study. An additional natural theme of study
is to incorporate the (two or more) VB interactions to the
model systematically developed herein, so as to examine the
potential of formation of lattices (crystals) of such patterns.
Understanding the modes of such crystals, their potential in-
stabilities and dynamics promises to be an interesting avenue
for the future. It is relevant to also point out that an alterna-
tive formulation of such single and multi-VB configurations
is given in Ref. [41]. A comparative analysis of the latter
with the effective particle system produced herein (and its
multi-VB generalizations) would be a worthwhile topic for
further investigation. Furthermore, the states of interest can
be generalized to three spatial dimensions where the natural
analog is the vortex-ring-bright (filled core) solitary wave
[55]; of course, vortex-line-bright structures exist, too [56]. A
systematic particle-based understanding of such 3D settings is
a natural generalization of the considerations provided herein.
Relevant studies are currently in progress and will be reported
in future publications.
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