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Stability of finite and infinite von Kármán vortex-cluster streets
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A wake of vortices with sufficiently spaced cores may be represented via the point-vortex model from classical
hydrodynamics. We use potential theory representations of vortices to examine the emergence and stability of
complex vortex wakes, more particularly the von Kármán vortex street composed of regular polygonal-like
clusters of same-signed vortices. We investigate the existence and stability of these streets represented through
spatially periodic vortices. We introduce a physically inspired point-vortex model that captures the stability of
infinite vortex streets with a finite number of procedurally generated vortices, allowing for numerical analysis of
the behavior of vortex streets as they dynamically form.
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I. INTRODUCTION

The traditional von Kármán (VK) vortex street (VKVS)
is a classical problem in wake vortex dynamics and has
been analyzed in great detail in existing literature (see, for
instance, Refs. [1–4]). It has been shown that the VKVS
of alternating, opposite-charge vortices is the only neutrally
stable state of two rows of point vortices. More recently,
variants of the VKVS have been observed in Bose-Einstein
condensates [5,6]. For instance, it has been observed that
instead of producing a VKVS comprising single vortices at
the wake of an impurity [7,8], a Bose-Einstein condensate
produces a vortex street where the single vortices are re-
placed by rotating, like-charge vortex pairs [5]. Furthermore,
vortex streets comprising vortex pairs have been observed in
flapping foils experiments [9]. With the notable exception of
the works from Basu, Stremler, and coworkers [10–14], the
stability of the vortex pair VKVS has not been investigated in
great detail, nor have cases of larger, regular polygonal-like
vortex clusters. In the present work, we study, within the
realm of point-vortex models, the stability of vortex streets
comprising vortex K-gons and examine the changes to pa-
rameter space needed to minimize the effects of instability on
the street. These vortex configurations correspond to vortex
arrays that undergo periodic orbits in an appropriate comoving
reference frame. In Sec. II we consider the traditional, single-
vortex VKVS and its regions of neutral stability. Then, in
Secs. III through V, we discuss the implementation of a
dynamic generation model for single vortex streets and the
stability of the created streets. We then discuss in Sec. VI
a second method for computing the stability of streets of
vortex pairs through a spatially periodic model and discuss the
various configurations that lead to neutral stability. Finally, in
Sec. VII we further explore cases with larger vortex clusters
and relate this to the stability conditions for the vortex pair
case.

II. THE STANDARD VON KÁRMÁN STREET

The VKVS is defined as two parallel interlaced arrays of
equidistant vortices bearing, respectively, vortices of topo-
logical charge � and −�. The (horizontal) spacing between
vortices in each array is 2b while the (vertical) distance be-
tween the arrays is 2a. The street corresponds to a series of
alternating vortices in a zig-zag configuration (see Fig. 1).
The line of positively charged vortices is placed on top of
the line of negatively charged vortices and thus the inherent
velocity of the VKVS is from left to right. We consider two
particular cases in the present paper: the case of solid walls
being imposed on the flow at positions y = 0 and y = 2c (see
Fig. 2), and the case where the street exists in an unbounded
domain (equivalent to the limit as c approaches infinity).

We generalize the VKVS configuration by replacing each
individual vortex by a cluster of K like-charged vortices
arranged in a K-gon. For completeness and to justify our
analysis, we first discuss the literature results of the standard
VKVS where K = 1. The K = 1 street is neutrally stable
to perturbations when the ratio between the vertical and
horizontal spacings is 2a/(2b) = coth−1(

√
2)/π ≈ 0.281;

otherwise, the street is unstable [1]. This so-called von
Kármán ratio, at which the street is neutrally stable, with
some variation due to physical parameters, is seen naturally
in systems which show VK vortex shedding for appropriate
Reynolds number regimes [15].

Despite the existence of a neutrally stable steady state, it is
worth discussing whether it is possible to create a VKVS with
a wider range of stability beyond the particular VK ratio. One
possible modification to enhance the stability is by imposing
boundary conditions onto the fluid, more specifically by cre-
ating the street within a confining parallel channel. We refer
to the case of a domain that is defined to be unbounded in the
horizontal direction and bounded vertically in a strip of width
2c to be the channel case (see Fig. 2). For completeness, the
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FIG. 1. Von Kármán vortex street. The topological charge of the
vortices denoted by “+” (charge �) has equal magnitude but opposite
circulation with respect to the vortices denoted by “−” (charge −�).

analysis of the VKVS in a channel, obtained by Rosenhead in
1929 [4], is summarized below.

To represent the infinite horizontal VKVS in a channel, we
fix vortices of charge � at the complex valued (z = x + iy)
locations z = 2mb + i(c + a), and of charge −� at z = (2n −
1)b − i(c − a), ∀m, n ∈ Z. We represent the presence of the
channel by the method of images, in order to impose stream-
lines at the wall locations (i.e., no flux across the channel
walls), by adding “mirror” (opposite sign) vortices to the right
hand side of the system of equations whose positions are
functions of the corresponding actual vortex positions. The
infinite sum of the complex valued potential ω(z) of channel
vortices in the VK configuration may be written as the follow-
ing infinite sum of a point-vortex lattice [4]:

ω(z) = − �a

2bc
z − i�

2π
ln

[
f

(
z

2b
;

a

2b

)]
, (1)

where

f (z; α) = ϑ1(z − iα; τ )ϑ3(z − iα; τ )

ϑ2(z + iα; τ )ϑ4(z + iα; τ )
, (2)

where ϑm(z; τ ) is defined as the mth Jacobi theta function and
τ = 2ic/b. We note that the Jacobi theta functions, defined
through infinite sums, encompass the contribution of the infi-
nite series of mirror images induced by the channel walls.

The stability of the VKVS is characterized by the rescaled
parameters μ = πb/(2c) and ν = πa/(2c) which represent
the previously defined spacing parameters scaled relative to
the width of the channel. As all the systems under considera-
tion here are Hamiltonian, for simplicity, we interchangeably

FIG. 2. VKVS in a channel. The parameters of the street are de-
fined such that 2a is the separation between the positive and negative
vortex arrays, 2b the spacing between like-signed vortices, and 2c the
overall width of the channel.

FIG. 3. Largest real eigenvalue components of a von Kármán
street in a channel, with the magenta curve delineating the transition
to stability [i.e., eigenvalues such that Re(λ) = 0]. As the relative
horizontal spacing μ increases relative to the channel width, a region
of parameter ratios becomes neutrally stable, allowing for more a
wider range of physically relevant VKVS configurations. The hori-
zontal black dashed line at μ1 represents the μ-value above which
nonzero areas of stability start to appear, while the horizontal white
dashed line at μ2 represents the μ-value above which all configu-
rations are stable. The diagonal dashed white line indicates the von
Kármán stability ratio.

use the terms stable and neutrally stable. The results of the
channel analysis are fully explored in Ref. [4] and are repli-
cated in Fig. 3 for K = 1. For low μ and ν values (when the
channel walls are far apart relative to the spacing parameters)
the behavior of the system recovers that of the unbounded
domain case, with neutral stability for a μ and ν ratio equal
to the VK ratio. Above a critical μ value, dependent on ν, the
system becomes stable. At μ = μ1 ≈ 1.28 (b ≈ 0.815c; see
horizontal black dotted line) regions of stability in parameter
space appear, and at μ = μ2 ≈ 2.23 (b ≈ 1.419c; see hori-
zontal white dotted line) the system is stable for all values of
a and b (see Fig. 3). In terms of the system, the increasing
region of stability corresponds to the relative size of the street
growing to a larger scale compared to that of the channel,
the walls providing a stabilizing influence on the street. The
presence of a channel close to the street relative to the spacing
of the street itself permits the vortex wake to persist for a
variety of configurations, providing a broader stability for the
region and allowing for a VKVS to persist despite pertur-
bations in its structure. The stability diagram seen here has
been reproduced in physical experiments [16], with the added
constraint of the vortex width preventing configurations where
the vortices are too close to each other or to the walls such that
the point-vortex assumption no longer holds.

There has been a significant body of work over the past
century discussing the presence, propagation, and instabili-
ties in the classic VKVS, more particularly in cases of finite
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size (i.e., with an intrinsic width rather than being pointwise)
vortices, much of it centered on discussing the modes of
the instabilities. It was discovered by Jiménez [17] that the
common feature among the inviscid models was the existence
of stability only for a particular street parameter value. While
attempts have been made to find broader regions, these have
been broadly unsuccessful without some external feature such
as the restricting channel wall in the work of Rosenhead
[4]. While some stable regions were found by Saffman and
Schatzman [18] for the pairing instability in finite-sized vor-
tices (which von Kármán identified as the most unstable), it
was found in the work of Kida [19] and in later sources [20]
that, for finite-sized vortices, the pairing instability was not
the dominant instability. In the work of Mowlavi et al. [21] the
street was found to feature a strong convective instability such
that perturbations to the street were carried far enough away
from the source that they had little effect on the majority of
the street.

For our present analysis, we primarily focus on the pres-
ence of instabilities rather than an in-depth consideration of
the associated instability modes. The instabilities present in
the dynamic generation model are largely the result of asym-
metric zig-zag modes. An analysis of the modes becomes
more relevant in the discussion of VKVS with K > 1 in
Sec. VI. While we do see the appearance of pairing and con-
vective instabilities, we are less focused with the form of the
instability and more interested in the existence of stable con-
figurations. Our focus is in the particular geometric structure
(i.e., the shape parameters for the different configurations) of
the finite and infinite streets that lead to stability. A more de-
tailed discussion of the instability modes and their role in the
dynamical destabilization of the steady state configurations is
left to future work.

III. DYNAMIC MODEL OF VORTEX GENERATION

From the analysis of the point-vortex street, we have a
theoretical system that represents an infinite vortex street (in
the horizontal direction) and the stability of its comoving
steady states. Such a system is physically relevant for situ-
ations where the street is well spaced, such that successive
vortex cores have minimal influence on each other and, thus,
the dominant interaction term between vortices is through the
rotation that they induce on the fluid. However, to represent
the behavior of vortices generated by an impurity and inves-
tigate the stability of the K = 2 case seen in Bose-Einstein
condensate models [5], it is not realistic to represent infinitely
many independent vortices. Instead, we must consider finite
vortex streets (explained in more detail below), where a finite
collection of N vortices are positioned in a VK pattern and
allow to evolve forward in time. Considering the problem
in terms of finitely many vortices is closer to reality, given
that the infinite street will not appear in an actual fluid. We
propose a model that qualitatively imitates the generation of
a vortex street at the wake of an impurity through baroclinic
effects via a system of ODEs which will allow for increased
understanding of the dynamics of the vortex street and its
evolution.

Consider a system of N point vortices located in some
domain, either infinite in all directions or in a channel, at

positions zk , k ∈ ZN . Let us represent the motion of the kth
vortex by

dz̄k

dt
= dxk

dt
− i

dyk

dt
= Fk (z1, . . . , zN ), (3)

where Fk is a nonlinear function of the positions of all vortices.
In the case of the, no channel, unrestricted domain (which we
call from now on the unbounded domain case), the dynamics
of interacting point vortices is described by the following
velocity terms [22]:

Fk (z1, . . . , zN ) = 1

2π i

N∑
j=1, j �=k

� j

zk − z j
. (4)

On the other hand, when the vortices are placed in a channel
of finite width with the walls at y = 0 and y = 2c, one can
apply the method of images (see, e.g., Ref. [23]) to obtain the
following velocity terms [24]

Fk (z1, . . . , zN )

= i�k

8c
coth

(
π

zk − z̄k

4c

)

−
N∑

j �=k

i� j

8c

[
coth

(
π

zk − z j

4c

)
− coth

(
π

zk − z̄ j

4c

)]
.

Each of these equations forms a system of N complex, nonlin-
ear ODEs, which may be solved numerically by considering
either the complex system or the corresponding 2N system in
Cartesian coordinates, such that

dx

dt
= Re

(
dz

dt

)
, (5)

dy

dt
= −Im

(
dz

dt

)
. (6)

Vortices are generated by assuming a constant background
velocity, corresponding to a situation where a constant right-
to-left flow passes around a stationary impurity (which is
equivalent to an obstacle moving to the right though a sta-
tionary fluid). In addition to the background flow (at constant
velocity), we add, at regular time intervals, vortices at posi-
tions z+ and z− corresponding to the street we are creating. For
a K = 1 VKVS, the seeding would occur at z± = i(c ± a),
with the seeding time being determined by the background
velocity and the b parameter. Whether a generated street takes
the form of a parallel (rectangular) or antiparallel (zig-zag)
configuration depends on whether the vortices at z+ and z−
are generated at the same time (parallel) or in an alternating
fashion (antiparallel). Horizontal spacing, represented by b,
is determined by (ignoring again vortex-vortex interactions)
both the time between alternating (top and bottom) seedings
and the background horizontal velocity. As we consider a
background flow at a fixed right-to-left velocity v around a
stationary obstacle, in order to maintain the b vortex spacing,
b and the background velocity may be used to determine the
time between seedings ts with the relationship 2vts = b.

We can further generalize the algorithm for any regular
pattern of vortex generation. At the end of each interval,
we introduce some number of new vortices at predetermined
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FIG. 4. Dynamical generation of a (stable) von Kármán vortex
wake inside an impenetrable channel (hashed regions). The vortices
are initially seeded at x = 0 (location of the fictitious obstacle) and
move to the left following the background velocity of the fluid. Blue
(red) circles (triangles) represent vortices with positive (negative)
charge. To estimate the width (see horizontal lines) of the street
we consider vortices with a y position within a tolerance of 0.005c
of the final (average) vertical location of the street. Here μ = 2.5,
ν = π/4, and c = 10. Vortices between the two vertical dashed lines
are considered inside the von Kármán vortex configuration. It is
clear from the figure that the selected vortices form a reasonable
approximation of a consistent von Kármán vortex street.

locations, and integrate the system forward based on the rel-
ative interactions between the vortices, the background flow,
and the boundaries of the system. From results seen in the
literature [25], we also assume the vortex is created fully
formed at a sufficient distance away from the obstacle so as
to minimize the influence of the obstacle on the flow, which
is valid for vortices of sufficient distance from the point of
origin. Therefore, from this point forward, we neglect the
dynamical effects exerted by the impurity, and, thus, it is not
directly included in the model and it is not depicted in Fig. 4
(nor in Fig. 10 below).

It is important to mention that, per construction, when
no background flow nor impenetrable walls are considered,
the VKVS on its own moves left to right (i.e., towards the
fictitious impurity) while the background flows in the oppo-
site direction. Furthermore, the net effect of the impenetrable
walls is to slow down the intrinsic velocity of the VKVS. The
combination of these three effects (intrinsic VKVS speed, ef-
fects of the walls, and background flow) results in a combined
right-to-left VKVS velocity when measured in the stationary
frame (in which the impurity is fixed at x = 0).

IV. VORTEX STREET PARAMETERS

For a system generated dynamically, it is worth considering
the role that the finite and dynamic nature of the system plays
in determining the street spacing parameters a and b (i.e., ν

and μ in the channel case). Nonlinear interactions between
vortices in the system render it analytically impossible to
determine the asymptotic (final) spacing values. We define
the a priori estimates, corresponding to the original locations
where we seed the vortices, as aini and bini, and we evaluate
the settled values afin and bfin when the VKVS has settled. To
allow for the dynamic adjustment of the VKVS parameters,

FIG. 5. Maximum change in estimates for μ and ν values after
seeding N number of vortices for μ between 0.5 and 3 and ν between
0.1 and π/2. Top (bottom) panels depict results for μ (ν). Left (right)
panels show the maximum (mean) deviation. We see that after about
50 vortices are seeded, the change in the estimated parameters is
minimal. The only exception (see bottom-left panel) is the maximum
deviation for ν, 
ν, which does not seem to converge as N increases.

we allowed the system to run long enough to generate a large
number of vortices and define the estimates for afin and bfin

(correspondingly μfin and νfin in the presence of the channel)
given a large enough subset of the vortices. This subset was
determined to be all vortices (excluding the two most recent)
within a vertical deviation tolerance from the other vortices in
the subset. After some testing, we chose an arbitrary tolerance
of 0.005c (c being the half-width of the channel). We found
that varying this tolerance does not significantly affect the
results that follow; thus, from now on the tolerance is set to
0.005c. An example of the dynamical procedure generating
a stable wake is depicted in Fig. 4 where the vertical dashed
lines bound the region of the converged subset of vortices. The
parameter updating procedure was repeated for varying num-
bers of vortices to find an ideal number of vortices after which
the parameter shifting did not noticeably change, which, as
shown in Fig. 5, is around 50 vortices. These updated esti-
mates for the spacing parameters are the parameters we use in
all of our subsequent results.

Let us now study in more detail the relation between the
estimated (seeded) shape parameters (aini and bini) determined
by the dynamical vortex seeding and the converged shape
parameters (afin and bfin). Our dynamical model seeds the
vortices at (0, c ± aini ) every ts time units yielding bini = 2vts.
It is important to note that the final values afin and bfin de-
pend on the background velocity and the channel width. For
instance, Fig. 6 depicts the dependence of the final values
(as ratios with their initial counterparts) as the background
velocity is increased for the case of a narrow (c = 10) and
a wide (c = 100) channel. In all of these results we chose aini

and bini at the von Kármán ratio to ensure a stable formation
of the VKVS. The results in the figure show that the b shape
parameter (horizontal spacing) has a strong dependence on
the background velocity and the channel width. In contrast,
the a shape parameter (vertical spacing) has a much weaker
dependence on the background velocity and the channel width
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FIG. 6. Convergence of the VKVS spacing parameters a and
b as a function of the right-to-left background velocity v for two
channel widths (c = 10 and c = 100). We depict the ratios bfin/bini

(blue curves) and afin/aini (red curves) for c = 10 (solid curves) and
c = 100 (dashed curves) with bini = 19.1 and aini chosen at the von
Kármán ratio. The results are plotted after 100 vortices were seeded.
The final spacing parameters tend to their initial counterparts as both
the background velocity and the channel width increase.

(|afin/aini − 1| < 0.01). As the background velocity v is in-
creased, both afin and bfin tend to their initial counterparts. The
main effect of the presence of the channel is to (through the
interaction of the vortices with their opposite-signed images
emulated by the impenetrable walls) speed up the downstream
vortices. This effect results in the stretching of the horizon-
tal distance between vortices, which, in turn, results in an
increase of the ratio bfin/bini. Note that a wide channel (see
dashed curves for the c = 100 case in Fig. 6), having a weaker
influence on the forming vortex street, results, naturally, in
relatively small variations between the initial and final values
of the shape parameters. For simplicity, as here we are con-
cerned only with the final (converged) shape parameters, in
what follows we drop the “fin” subindex used in the shape
parameters in the previous section; namely, from now on,
νfin → ν and μfin → μ.

Finally, let us comment on the velocity for the front and
back ends of the street. We refer to the “front end” of the street
as the side furthest from the seeding point and the “back end”
the side closest to it. We monitor the position of the front and
back ends with time using the horizontal extent limits of the
forming VKVS as defined above; see positions of the vertical
dashed lines in Fig. 4. From these positions we compute the
respective average velocities until 100 vortices are seeded
(and discarding a short initial transient). Our simulations re-
veal that, after a short initial formation period, the back end of
the VKVS remains practically stationary. This consequently
slaves the vertical spacing of the street to the seeding process
and, thus, precludes noticeable variations in afin. As for the
front end, we found that, generally, its velocity was essentially
equivalent to the background velocity, with deviations becom-
ing more pronounced in unstable street cases. The deviations
in these unstable cases were the result of decreasing front end
velocities signaling the progressive destruction of the street
at the front end towards an irregular (chaotic) wake (see, for

instance, Fig. 10 where an unstable VKVS “sheds” vortices in
its wake that, in turn, accelerates its destabilization).

V. FINITE STREET RESULTS

With the stability of the ideal K = 1 case extensively ad-
dressed in the literature, we now examine the results of the
finite model for both the unbounded domain and channel
cases. The method of generation is the one introduced above;
spacing parameters, background velocity, and the channel
width are varied while all other features held constant. We
consider all point vortices to have topological charge � = ±1.

To compute the stability of the dynamically generated
street, we build the numerical Jacobian along vortex street
trajectories. We create the Jacobian by first iteratively con-
structing the street by the successive generation of vortices.
Once the street has been formed, we successively apply a
small perturbation to each position variable, allow the street to
develop for a fixed time interval, then map the vortices back
by their overall average horizontal displacement, compute the
difference between the initial and final positions, and from
there estimate the entries of the associated numerical Jaco-
bian. This allows us to analyze the stability of the street on
a comoving reference frame in which the VKVS is a fixed
point. Though the true fixed point exists for only an infinitely
long street, the numerical Jacobian approach used here will
converge to the results of the infinite street given a sufficient
number of vortices. Tantamount to the spacing parameters
convergence observed in Fig. 5, we also find that the eigen-
values extracted from this numerical Jacobian exhibited little
variance after 50 vortices had been generated. We thus extract
the maximal real eigenvalue component from this procedure
as a measure of the trajectory’s stability. If the largest unstable
eigenvalue is of sufficiently small magnitude, the destabiliza-
tion will become noticeable only after a significant amount of
time elapses. As we do not expect a real VKVS to continue
indefinitely (due to any number of physical boundary condi-
tions or flow features), we consider the street to be effectively
stable if the largest real eigenvalue is relatively small.

Plotting the stability diagram for the unbounded domain
case, we do see in Fig. 7 a decrease in the size of the largest
real eigenvalue, corresponding mainly to an increase in the
spacing parameters. The correlation between a finite collec-
tion of vortices spaced far apart and the effect of perturbations
on the structure of the vortices as a whole is clear: with a finite
number of vortices, the effect of increasing the vortex-vortex
spacing is to decrease the effect of any one vortex on all
others, indicating that whether or not the vortices do form a
VKVS, the perturbations have little effect. For high a and b
values, despite the presence of some instabilities, we do see
traces of the expected VK ratio. This indicates that, even in
the case of vortices generated one at a time in an unrestricted
domain, the VK stability ratio is still present.

For the horizontally finite K = 1 case in a channel, we
consider stability in terms of the scaled parameters μ and
ν. The stability diagram for the finite vortex street case in a
channel of width c = 10 is depicted in Fig. 8. We find that
for values that correspond to highly unstable vortex streets,
maximum real eigenvalues fall on the order of 10−3, and for
those where the only instability is the expected unwinding at
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FIG. 7. Stability diagram of the dynamically generated K = 1
vortex street in an unbounded domain across the parameter space
determined by the a priori initial estimates of the spacing parameters,
with background velocity v = 0.1. Depicted is the corresponding
maximum real eigenvalue component of the stability spectrum. The
system is clearly unstable in such a fundamental way that the tradi-
tional structure of the VKVS does not fully display the characteristic
VK ratio (see dashed line) except for higher parameter values.

the free end of the street, the maximum eigenvalues are on the
order of 10−5. As a result, we consider eigenvalues of around
10−4 as the boundary between in-practice stable and unstable
regimes. As seen in Fig. 8, by considering eigenvalues above
10−3 as unstable, the reconstructed parameter sweep strongly
mimics the results for the ideal, infinite, VKVS (see Fig. 3).

As depicted in Fig. 9, we further note that the number of
vortices that converged in a VKVS configuration within verti-
cal tolerance of 0.005c had a similar qualitative distribution as

FIG. 8. Stability diagram for the dynamically generated K = 1
vortex street in a channel of width 2c = 20.

FIG. 9. Number of vortices used in creating the updated μ and
ν estimates, for 50 seeded vortices. We note that in the more stable
region, a majority of the vortices are within vertical alignment tol-
erance 0.005c of each other, supporting that not only are the results
stable, but they form a well-established VKVS.

the one displayed by the stability diagram. The final a and b
(or ν and μ) values are most accurate when a large percentage
of vortices are in a street structure which corresponds to a
stable case. A low number indicates a relatively small sample
size to make any fair estimate. It also implies minimal adjust-
ment of the parameter near the point of generation. For stable
cases, relatively large number of vortices are used, while for
unstable cases, fewer contribute to the “von Kármán” street
(see also Fig. 10). We also note in Fig. 9 that the number
of vortices within tolerance for stable cases is significantly
higher than for unstable ones, and that the majority of these
cases seems to be for high μ and ν values, where the dominant
effect on the vortices would be from the channel influence
(and thus lower chance for instability).

In Fig. 10 we depict a characteristic example of a wake
for an unstable street in the channel. There is a clear dif-
ference between the stable wake depicted in Fig. 4 and the
unstable one in Fig. 10, marked by the behavior in the tail
end of the street. The impact of the channel walls appears
to effectively stabilize the tail end of the street. Interestingly,
the effect of the channel’s nearest wall on a seeded vortex is
to increase its velocity away from the point of origin. Thus,
vortices that break from the street formation in stable cases
will move further away from the street, minimizing the effect
the divergent vortex has on the street as a whole. Example
eigenvalue spectra for stable and unstable wakes are depicted
in Fig. 11. The spectra, computed using the numerical Ja-
cobian as explained above, display a symmetric distribution
across both axes, which is the expected distribution for a
Hamiltonian system. Nonetheless, it is important to mention
that we are computing the numerical Jacobian on a subset of
vortices as explained above, and, thus, the subsystem under
consideration, is not strictly Hamiltonian. As can been seen
from the inset zoom in the stable case (bottom panel), there

032205-6



STABILITY OF FINITE AND INFINITE … PHYSICAL REVIEW E 103, 032205 (2021)

FIG. 10. An example of a von Kármán vortex wake generated
dynamically inside an impenetrable channel (hashed regions). The
vortices are initially seeded at x = 0 (location of the fictitious ob-
stacle) and move to the left following the background velocity of
the fluid. The particular case corresponds to an unstable wake for an
initial vortex seeding with ν = π/4 and μ = 0.5. Compared to the
stable wake seen in Fig. 4, we see that although both wakes retain
some degree of the von Kármán structure, the unstable one develops
a disordered (chaotic) wake after a certain distance while the stable
one is essentially preserved in its entirety. The horizontal dashed
lines mark vertical positions of the converged vertical spacing. Of
the two scenarios, clearly the unstable case has fewer vortices within
the von Kármán configuration, while the majority of the vortices in
the stable case can be considered in a von Kármán configuration.

FIG. 11. Typical eigenvalue distributions for the unstable (μ =
1, ν = π/4; see top panel) and stable (μ = 3, ν = π/4; see bottom
panel) cases of a dynamically generated (finite) VKVS. The symme-
try across the axes is a consequence of the near Hamiltonian structure
of the underlying system.

FIG. 12. An example K = 2 vortex street. Note that a and b
are now defined to be the vertical and horizontal spacings between
the centers of vortex pairs instead of the spacings between vortices
themselves. We also see the addition of new parameters d , which
refers to the diameter of a vortex pair within the street, and 
θ ,
which indicates the relative angle of rotation between the positive
and negative pairs.

are roughly four orders of magnitude separating the size of the
largest real eigenvalue component when comparing the stable
(bottom panel) and unstable (top panel) cases.

Let us now discuss the impact of vortex street velocity on
the system as a whole. If we consider two arbitrary vortices at
some distance d apart, we note that as the distance between the
two increases, the mutual effects on their velocity converges
to zero at a rate 1/d . Thus, for any configuration of vortices
in a channel, the infinite images created by the system and the
others will have little noticeable effect after a certain distance,
leaving the background velocity as the dominant term. While
in the infinite street case the background velocity is a constant
dependent on the parameters, the finite case will instead have
its velocity converge to zero as the strength of the vortex-
vortex interactions diminishes the further apart the vortices
are positioned.

Finally, it is relevant to mention that, in contrast to the in-
finite street case, for the finite street case, varying the channel
width does have an effect on the stability of the system even
in the normalized μ and ν shape parameters. The effects can
be attributed to the finiteness of the model, where, unlike in
the infinite street, proximity to the walls have an unbalanced
effect between the bulk and the tail end of finite street. Seeding
the vortices with parameters relative to a wider channel will
minimize the overall influence of the vortices on each other
and, thus, lessen the influence of instabilities.

VI. PERIODIC MODEL RESULTS FOR K > 1

A VKVS configuration with K > 1 is composed of K-gons
(of radius r = d/2 and centered at the positions of the original
K = 1 vortices) of evenly spaced point vortices that replace
the original individual vortices for the K = 1 case. The vortex
clusters in turn, for sufficiently small radius relative to a and
b, act on the other clusters as a single vortex of charge K�,
causing the street as a whole to move horizontally like in the
K = 1 case with time rescaled by �. It is important to note
that it has been shown in the literature that an isolated K-gon
configuration is stable only for K � 7 (see Refs. [26–28]).
As a result, there exists a hard upper limit on the possible
stable streets that can be created. We consider as a base case
the K = 2 configuration as depicted in Fig. 12. Note that a
K > 1 VKVS will possess at least two new parameters: the
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diameter d of the K-gon and the relative angle 
θ between
the positively and negatively charged K-gons.

As before, the 2a and 2b, respectively, denote the vertical
and horizontal spacings of the pairs, while a new parameter
r is introduced to define the radius of the single like-signed
vortex cluster. We may further consider the parameters 2c
(defined as before to be the channel width) and 
θ (defined
to be the difference in rotational angle between positive and
negative vortex pairs). In addition, the K > 1 case does not
typically exhibit steady states even in a comoving reference
frame (the principal exception being the K = 2 case where
b = d and 
θ = 0, which is a street of parallel vortices shown
to be universally unstable [1]). Rather, in a comoving frame
the K > 1 case displays periodic orbits corresponding to the
rotation of the like-signed vortex pairs. Due to the intrinsic
nonlinearity of the problem, it is difficult to produce analyt-
ical stability results for these nonlinear periodic orbits on a
comoving reference frame. Therefore, we rely on a numerical
strategy based on elementary unit cells. We define a periodic,
unit, cell to be a portion of the infinite street of horizontal
width 2b containing one positive and one negative sign cluster,
with periodic boundary conditions to the left and right. In
particular, for the unbounded domain, the equations of motion
may be obtained as the sum of the equation for a single
periodic point vortex obtained from Refs. [11,29] and takes
the general form

dz̄k

dt
= 1

4bi

N∑
j=1, j �=k

� j cot

[
π

2b
(zk − z j )

]
. (7)

On the other hand, for the channel case, we recall that the
equations used by Rosenhead to model the VKVS in a channel
represent two vortices in predetermined positions repeated
periodically in the x-direction every 2b distance. Following
the derivation in Rosenhead [4] for a single vortex of arbitrary
position zk , it is straightforward to show that the equations of
motion for N point vortices repeated periodically in a channel
take the form

d

dz
ωk = 1

4bπ

N∑
j=1, j �=k

� j

[
4π

τ
(z̄ j − z j )

− i
ϑ ′

1

( 1
2b (zk − z j ); τ

)

ϑ1
( 1

2b (zk − z j ); τ
) + i

ϑ ′
4

( 1
2b (zk − z̄ j ); τ

)

ϑ4
( 1

2b (zk − z̄ j ); τ
)

]
. (8)

With the notable exception of the works of Basu, Stremler,
and coworkers [10–14], there is little explicit literature on the
K = 2 case. Therefore, let us numerically tackle the stability
analysis of the K = 2 configuration, both in an unbounded
domain and in a channel, through the lens of point-vortex
models. To examine the stability of the K = 2 street, we find
periodic orbits for streets with various values of a, b, and d , by
integrating forward a single expected period, correcting for
average displacement of mass, and computing as error how
far the corrected value is from the initial point on the orbit.
To find a “true” orbit, we minimize the error using a standard
nonlinear least square numerical procedure.

It is crucial to note that, because of periodicity, not only
are configurations periodic but their respective perturbations
are as well. Thus, any perturbation in the cell corresponds

FIG. 13. K = 2 von Kármán trajectories in a unbounded domain
plotted in a comoving reference frame for a = 1, b = 3/2, and

θ = 0 (top) and 
θ = π/2 (bottom). The different orbits corre-
spond to different values for the initial intervortex pair distance d
(measured on the top-right pair). Initial conditions are depicted with
circles. The VKVS velocities for the 
θ = 0 case (top) correspond
to v = −0.1301, −0.1300, −0.1297, −0.1293, and −0.1307, for,
respectively, d = 0.5, 1, 1.5, 2, and 2.5, while for the 
θ = π/2
case (bottom) they correspond to v = −0.1301, v = −0.1295, v =
−0.1274, v = −0.121, and v = −0.107 for, respectively, d = 0.5,
1, 1.4, 1.65, and 1.75.

to a periodic perturbation of the infinite street across all
cells. Therefore, to consider perturbations with nontrivial y
dependence (i.e., not only homogeneous across all cells due
to periodicity), we must consider instead the system of vor-
tices created by horizontally concatenating n unit cells and
adjusting the period to be 2bn in the x direction.

A. Existence of periodic orbits

Before studying the stability of the K = 2 configuration,
let us briefly comment on its regions of existence. Figure 13
depicts the families of K = 2 periodic orbits (in their corre-
sponding comoving reference frame) for 
θ = 0 (top) and
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FIG. 14. Convergence residual of a K = 2 orbit for a = 1, b =
10, and d = 1 as 
θ is varied, for multiple channel widths. Depicted
is the logarithm of the sum of square errors (sse) on our optimization
routine as a function of 
θ . Clearly, in the wide channel limit,
the only valid orbits are for 
θ = kπ/2, as convergence is poor
elsewhere. Contracting the channel eventually destabilizes even the
π/2 case.


θ = π/2 (bottom) for different values of the distance d
between vortices in each pair and while keeping the shape
parameters a and b constant. As it can be seen from the figure,
relatively small d values (when compared to the b) result in
almost circular orbits as the positively and negatively charged
vortex pairs are relatively distant from each other and thus
interact weakly. However, as d is increased, the vortex pairs
interact more strongly and the orbits deform into configura-
tions with a triangular-like shape. As d is increased further,
our optimization routine is unable to converge suggesting
the existence of a maximum threshold value above which
K = 2 solutions cease to exit. In fact, as d increases, there
will be a threshold value when vortices across pairs will be
closer than in their own pair. For 
θ = 0, as the orbits are
symmetric with respect to the origin, this critical distance
dc corresponds to the minimum between (i) dc = √

4a2 + b2

(distance between opposite signed-vortices across pairs) when
a <

√
3b/2 and (ii) dc = 2b (distance between same signed-

vortices across pairs) when a >
√

3b/2. For the parameter
values of Fig. 13 (a = 1 and b = 3/2; i.e., a <

√
3b/2) this

happens at dc = √
4a2 + b2 = 5/2. For 
θ = π/2, the traces

of the orbits are indeed symmetric with respect to the origin
(see bottom panel in Fig. 13); however, the orbits themselves
do not follow this symmetry as the orbit of the positively
charged pair is shifted by half a period with respect to the orbit
of the negatively charged pair. Therefore, the critical distance
in this case cannot be computed a priori. Nonetheless, we have
checked that our optimization routine ceases to converge at
dc ≈ 2.91 which is precisely when the interpair distance is
equal to the distance across pairs (see thin dark lines in the
bottom panel of Fig. 13).

Let us now briefly study the existence of K = 2 config-
urations as the channel wall width and the relative angle
between vortex pairs 
θ are varied. In particular, as observed
in Fig. 14, convergence to the steady state is hindered when
the channel walls get tighter into the vortex street configura-
tion. Namely, when the channel width 2c gets closer to the
vortex street width 2a + d . This is a direct consequence of the

effects induced by the mirror image vortices introduced by the
channel wall which preclude the vortex pairs to follow their
natural rotation. On the other hand, we find that convergence
to a periodic state is enhanced when the symmetry of the orbits
is preserved. Namely, when the relative angle between posi-
tive and negative pairs, 
θ is such that 
θ = kπ/2, ∀k ∈ Z.

B. Floquet stability analysis

To compute the stability spectrum of the numerically found
periodic orbits in the comoving reference frame, we call on
the method of Floquet analysis (see Ref. [30] and references
therein). The analysis is motivated by the need to adapt the
methods for computing the stability of a steady state to a
system which, in a comoving frame, has a periodic orbit. We
can adapt these methods by computing the effects of small
perturbations on the trajectory over one period and, impor-
tantly, on a comoving frame. Using optimization solvers, we
first numerically find a periodic (over a single period) orbit
u(t ) of the system on a comoving reference frame. We then
cast the linearization along this orbit on a comoving reference
frame as follows:

ṗ = DF [u, t] p. (9)

This system of equations for the perturbation along all direc-
tions corresponds to a linear system of ODEs with periodic
coefficients (through the periodic orbit u), where p(t ) is the
vector determining the direction and size of the perturbation
in perturbation space. In practice, since the orbit u(t ) can
only be found numerically, an explicit form for the above
ODE is not readily available. Therefore, we have to recur
to numerical integration of the above system of ODEs with
the numerically precomputed orbit u(t ). We thus construct
numerically the corresponding Jacobian by introducing an ini-
tial small perturbation along a chosen dynamical direction and
measure the rate of change for all dynamical directions over a
period (again, in a comoving reference frame). Repeating this
initial small perturbation along all possible directions allows
us to build, column by column, the numerical Jacobian. This
procedure allows us to numerically compute the eigenvalues
for the discrete map induced by perturbations on the dynamics
over one period (in the comoving frame), the so-called Flo-
quet multipliers. We then extract the corresponding stability
eigenvalue spectrum by taking the logarithm of these Floquet
multipliers. In what follows we use these stability eigenvalues
to probe for instabilities. In particular, stability eigenvalues
with positive real parts correspond to dynamical instabilities
for the comoving periodic orbits.

C. K = 2 unbounded domain stability

For the unbounded domain case, using the numerical meth-
ods explained above, we examine the stability for K = 2
VKVS orbits on n unit cells. Figure 15 depicts the stabil-
ity spectra as the number of periodic cells n is increased.
Interestingly, the most unstable mode is already picked up
for n = 2. In fact, our numerics show a notable convergence
of the maximum real part of the eigenvalue with a relative
variation below 10−10 (i.e., at the level of the precision for
our numerical eigenvalue computations) across all the values
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FIG. 15. Dependence of the spectral stability on the number n
of units cells used in the model. Real (top) and imaginary (bottom)
eigenvalue spectra for d = 1, a = b = 2.3673. We see that, after
relatively few cells, the maximal real components of the eigenvalues
show good convergence.

of n shown in the figure. This strongly suggests that the most
unstable mode is safely picked when using n = 2 unit cells.
Therefore, from now on, we restrict our analysis to the n = 2
cell case as we are focusing on the actual stabilization of these
configurations. Examining the eigenvectors corresponding to
the most unstable eigenvalues for a wide variety of a and b
values, we see that the most unstable mode corresponds to
a “sawtooth” mode, where alternating like-signed pairs are
both moved in opposite directions (see Fig. 16). This result is
tantamount to the instabilities observed in the K = 1 VKVS

-1 -0.5 0 0.5 1

10-3

-0.2

-0.1

0

0.1

0.2

FIG. 16. Example of the eigenvalue spectra (top) and the most
dominant eigenvector (bottom, on a visually scaled vortex street) for
the case where a = 20, b = 20, and d = 0.1. We note the charac-
teristic Hamiltonian distribution of the eigenvalues, as well as the
sawtooth (zig-zag) mode instability being seen in the most unsta-
ble mode (which correspond to a repeated pair of real eigenvalues
λ = ±0.00097).

FIG. 17. Stability diagram for a K = 2 vortex street in the un-
bounded domain (no channel walls present) using two unit cells and

θ = π/2. Depicted is the largest real eigenvalue across a and b with
d = 0.1. We note a stability region about the VK ratio (see dashed
line). The stability diagram corresponding to d = 1 is depicted in the
bottom panel of Fig. 18.

case where the most unstable mode corresponds to a zig-
zag, or pairing, instability mode [3,19]. Note that in order
to capture this most unstable mode with our periodic cell
methodology one requires a minimum of two unit cells. This,
in turn, explains the strong convergence of the maximum real
part of the stability spectrum when using two or more unit
cells.

We now consider the two unit cells case (n = 2) to com-
pute the stability diagram for VKVSs consisting of K-gon
vortex clusters. In particular, as shown in Fig. 17, we find
that the K = 2 unbounded street case for 
θ = π/2 strongly
correlates with the stability diagram of the K = 1 street.
More important to the stability is varying b, which decreases
the largest real eigenvalue component. We explain the dom-
inance of b by noting that an increase in b will correspond
to an increase in distance between both positive and negative
pairs, while increasing a will increase the distance between
opposite-sign pairs but have no effect on the distance between
like-signed. Quantitatively speaking, for any given vortex pair,
the nearest opposite-signed pair is

√
4a2 + b2 away, while the

nearest like-signed is 2b away. Therefore, as b is increased,
the effect of vortex pairs on each other will converge to zero,
lowering the magnitude of the effect of any perturbation.
Clearly, the K = 2 case retains, to some degree, the behavior
of the K = 1 phenomenology. For instance, stability is mini-
mized along the VK ratio. Thus, as intuitively expected, when
the vortices are positioned such that the vortex pairs do not
noticeably interfere with the orbits of the other vortex pairs
(i.e., d being relatively small when compared to a and b, or
more precisely to

√
4a2 + b2 and 2b; see above), the street

will have an overall behavior resembling the K = 1 case.
In Fig. 18 we contrast the stability diagram for 
θ = 0

and 
θ = π/2 for d = 1. Notably, we find that the system
has enhanced stability for smaller a and b values along the
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FIG. 18. Stability diagram for a K = 2 vortex street in the un-
bounded domain as in Fig. 17 but for d = 1 and 
θ = 0 (top) and

θ = π/2 (bottom).

VK ratio when 
θ = π/2 than when all pairs are initially
given the same rotational angle (
θ = 0). The improvement
in stability for 
θ = π/2 can be explained by noting that the
interaction between individual vortices in separate pairs can
be minimized by effectively positioning the vortex pairs out
of phase (i.e., 
θ = π/2).

D. K = 2 periodic channel stability

We now extend the stability analysis to the channel case.
We depict in Fig. 19 the stability diagram for a K = 2 VKVS
with d = 0.1, c = 100, and 
θ = π/2. We see that, for this
relatively small d value, the stability diagram imitates that
of the K = 1 channel case. Namely, for low μ and ν pa-
rameter values we see a similar stability behavior as in the
unbounded domain case: reduced instability along the VK
ratio and the instability decreasing as b (μ) increases. For high
ν, the channel wall effects override the vortex pair interactions
and the K = 2 case is unstable, seen as a sharp increase in
the greatest real eigenvalue. Beyond the previous two cases,

FIG. 19. Stability diagram for a K = 2 vortex street in a channel
for d = 0.1, c = 100, and 
θ = π/2.

where the scaled parameters are high enough that the effect
of the channel is large, the behavior of the system resembles
that of the K = 1 in the channel. On the other hand, we note
that the impact of varying d is to destabilize the system for
d large relative to the parameter spacing; while the stability
region can still be recreated, it requires larger b values for
each pair to be considered as a single vortex with respect to
the other pairs (see bottom panel of Fig. 18 corresponding to
d = 1 while Fig. 19 corresponds to d = 0.1).

On the other hand, varying the channel width and keeping
the K = 2 VKVS parameters constant (a, b, and d), will
elucidate the overall stabilization effects due to the presence of
the channel. Figure 20 depicts the largest real part of the eigen-
value spectrum as a function of (half) of the channel width c
(normalized by a). As the figure shows, there is a complex
dependence of the stability on the channel width. Namely,
one can discern four qualitatively different regions that can

FIG. 20. Effect of varying (half) the channel width c on the
stability of a K = 2 vortex street with a = 10, b = 100, d = 0.1,
and 
θ = π/2. Depicted is the largest real part of the eigenvalue
spectrum as a function of c normalized by a. The case c = a + d/2
(see leftmost dashed vertical line) corresponds to a channel that is
perfectly tight on the vortex street. See text for explanation of the
four different regions.
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FIG. 21. Examples of larger coherent vortex clusters for K = 5
(left) and K = 7+1 (right) obtained through our numerical fixed
point routines. In the K = 7+1 case, the natural instability of a
vortex octagon is counteracted by placing the eighth vortex at the
center.

be explained as follows. (I) For large c (c > c1) the effects
of the channel are negligible and the K = 2 pair behaves like
a single vortex of charge 2�. In this case one recovers the
stability of the K = 1 VKVS. (II) For intermediately large c
(c2 < c < c1) the channel starts having a noticeable effect on
the K = 2 pair despite this being a destabilizing effect. In this
c-range, the instability grows by about one order of magni-
tude. (III) For intermediately moderate c values (c3 < c < c2)
the channel provides a stabilizing effect of the K = 2 VKVS.
This stabilizing effect reduces the instability by two orders
of magnitude. (IV) Finally, for small c values (c < c3) the
channel starts to interfere with the K = 2 pair and completely
destabilizes the VKVS solution. This region ceases to exist
when c approaches a (or more precisely a + d/2) where the
pair “hits” the channel walls. The complex, nonmonotonic,
dependence of the stability on the channel width suggest that
each type of instability (i.e., each unstable eigenvector) is
affected in a different manner as the channel is tightened.

To summarize, the K = 2 VKVS is shown to be most stable
for values that correspond to the VK ratio in an unbounded
domain. The addition of the channel provides enhanced sta-
bility for carefully chosen channel widths (c3 < c < c2) but
otherwise might be detrimental towards stabilization. Despite
the fact that small instabilities are always present in the K = 2
case, as these instabilities are weak (of the order of 10−6)
in some regions, direct numerical integrations for long times
suggest that these K = 2 VKVS configurations may be long-
lived for physically realistic timescales.

E. K > 2 cases

Employing point-vortex models to represent more complex
VKVS states may be further extended to cover cases with
greater numbers of vortices. We note that for an isolated K-
gon of point vortices, cases where K > 7 are always unstable
[22,26–28]. Therefore, to construct long-lived VKVS config-
urations with vortex clusters consisting of regular K-gons,
one must choose K � 7. Beyond seven vortices, larger con-
structs can be created and form periodic orbits, but it requires
more complicated geometries. These geometries include the
so-called N + 1 vortex configurations consisting of a regular

FIG. 22. Same as in Fig. 14 but for the K = 3 case (i.e., equilat-
eral triangle vortex clusters). We observe convergence of the K = 3
VKVS when the relative angle between the equilateral triangles is a
multiple of π/3.

polygon of N vortices with an extra single-charged vortex
at the center [31] or even semiconcentric polygonal rings of
vortices [32,33]. For instance, Fig. 21 depicts VKVS configu-
rations with higher K values obtained through our numerical
fixed point iteration routines. Specifically, the figure shows a
K = 5 VKVS (left) with a regular pentagonal vortex clusters
and a K = 7+1 VKVS consisting of a regular septagon with
an extra (single) vortex at is center.

Similarly, we find that for higher values of K, the streets
exist most clearly when 
θ = nπ/K (see, for instance, the
convergence results for the K = 3 case in Fig. 22). The result
is that the system tends towards two broad states, given that
the states are identical across even and odd values of n which
correspond, respectively, to in-phase and out-of-phase K-gons
between the positively and negatively charged clusters. Given
the results from the K = 2 case, we predict that the configura-
tion corresponding to 
θ = π/K will be stable for relatively
low values of a and b, and thus will be more readily observ-
able.

VII. DISCUSSION AND CONCLUSIONS

In this work we extend the results on the standard von
Kármán (VK) vortex street (VKVS) with and without a con-
fining channel by implementing a reduced point-vortex ODE
model that dynamically generates a vortex street. This model
is tantamount as how these vortex streets are created in nature
at the wake of an impurity moving through a fluid. These
dynamically generated wakes inherit their stability from the
fully formed, infinite VKVS. For instance, we are able to
generate stable wakes around the so-called VK ratio between
horizontal and vertical spacings between vortices. In case of
instability, the tail end of the VKVS breaks into a disordered
(chaotic) collection of vortices.

We also generalize the concept of a VKVS by replacing
each vortex by a small cluster of K corotating vortices. In its
simpler form, these clusters correspond to a regular K-gon.
We study the existence and stability of the K = 2 VKVS
case comprising corotating vortex pairs. We find that the
K = 2 VKVS inherits the stability properties of its K = 1
counterpart when the diameter of each pair is relatively small
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compared to the distance between pairs. In particular, we find
that K = 2 VKVSs are stable for relatively large values of
the horizontal separation (compared to the channel width) and
along the VK ratio. This stability is progressively lost as the
diameter of the vortex pair increases. We also note that the
K = 2 (or in general for any K) VKVS has, in addition to the
size of the K-cluster, an extra shape parameter as oppositely
charged clusters may be placed at an angle 
θ with respect
to each other. Our results suggest that the case of 
θ = π/2
has enhanced stability when compared to the 
θ = 0 case.
This is explained by the fact that in the 
θ = π/2 case, the
vortices across clusters are kept further away during evolution
(i.e., weaker interactions) than when 
θ = 0.

On the other hand, our results reveal, for certain shape
parameter combinations, a complex dependence of the stabil-
ity of the K = 2 VKVS on the channel width. In particular
we have shown cases where the stability is described by
four different regions as follows: for large channel width the
K = 2 VKVS mirrors the stability of the K = 1 VKVS; for
intermediately large channel width the channel has a destabi-
lizing effect; for intermediately moderate channel widths there
exist small intervals where the channel enhances stability;
and finally, as the channel becomes too tight to the VKVS,
large instabilities ensue as the vortices get too close to the
channel walls. This complex dependence is attributed to the
different unstable eigenmodes being affected differently by
the presence of the channel.

Also, our analysis suggests that the appearance of the
K = 2 VKVS instead of the K = 1 VKVS in Bose-Einstein
condensates is not due to a combination of instability of the
K = 1 with stability (or weaker instability) of the K = 2
VKVS. In fact, our results suggest that a K = 2 VKVS will
always be more unstable than its K = 1 counterpart. However,
our study does not reveal why indeed K = 2 are prevalent in
Bose-Einstein condensates. We postulate that, in this case, the
generation of the K = 2 VKVS, instead of the K = 1, is due
to the way the vortices are generated around the impurity. For
instance, it is possible that a symmetry breaking mechanism
could be responsible for the early generation of a single vortex
close to the impurity. Close proximity to the impurity will
induce the vortex to quickly migrate along the periphery of

the impurity (due to the effects of its mirror image) and pair
up with another vortex on the other side of the impurity thus
creating the K = 2 pair. This pertinent speculation deserves
further consideration.

We point to the possibility of creating VKVSs comprising
larger clusters of vortices. These clusters, if stable on their
own right (i.e., when isolated), might replace each vortex in
the K = 1 VKVS to create a VK vortex-cluster street. Our
preliminary analysis suggests that VKVSs comprising K-gons
exist only when positively and negatively charged K-gons are
in phase (
θ = 0) or out of phase (
θ = π/K). It would
be relevant to study in more detail the stability properties
of VKVSs comprising K-gons (or other stable tight clusters
like the concentric-type polygons cataloged in Refs. [32,33])
with larger values of K. In the same vein, even at the level
of existence, it would be interesting to study VKVSs com-
prising positively charged clusters that are different than the
negatively charged ones. For instance, it is interesting to ask
whether the total charge of each of these clusters should be
same in order to support a steady state. Work in these direc-
tions is under way and will be reported in a future publication.

Finally, it is worth mentioning that a helical vortex [34]
has a transverse cut that is precisely a VKVS. Therefore, one
could consider VKVSs as the low-dimensional (2D) cousin of
3D helical vortices, and thus their properties could be related.
For instance, a prevalent destabilization mode observed in
helical vortices correspond to the sawtooth (zig-zag) mode
[35] that is precisely one of the most unstable modes iden-
tified in our work. Furthermore, K > 1 streets also have their
higher-dimensional equivalent in the form of interlaced helical
vortices [36]. The intriguing connection between VKVSs and
helical vortices could be exploited to elucidate some configu-
rational and dynamical properties (i.e., stability) for the latter.
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