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Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice
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We investigate the stability of dark solitofBSs in an effectively one-dimensional Bose-Einstein conden-
sate in the presence of the magnetic parabolic trap and an optical (&ti¢eThe analysis is based on both the
full Gross-Pitaevskii equation and its tight-binding approximation countetgatrete nonlinear Schdinger
equation. We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the
period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by
quasiperiodic oscillations of the DS about the minimum of the parabolic trap.
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The experimental creation and great advancement in thelere,u(x,t) is the mean-field wave function, while the terms
theoretical understanding of Bose-Einstein condensates the square brackets represent the external magnetic trap
(BECs9 [1] have stimulated a lot of interest in nonlinear mat- and the OL potential, respectively, with the strengthand
ter waves, including dark2] and bright[3] solitons. The V,, while X\ is the wavelength of the interference pattern
dynamics of dark soliton@Ss in the presence of the exter- created by the laser beams.
nal magnetic trap has been extensively studidincluding To study the dynamics of a DS in the framework of Eq.
thermal [5] and dynamical 6] instabilities. More recently, (1), we consider an initial condition similar to an ansatz pro-
apart from the rectilinear DSs, ring-shaped counterparts werposed for the description of DSs in BECs in Ref2],
predicted in BEC$7].

The study of nonlinear excitations is particularly relevant Uo(X) = ure(X)tani(x—Xq), (2
for BECs trapped in optical lattice®©Ls) generated by in-
terference patterns from laser beams illuminating the conwhereu= Jmax(0u —kx?) is the Thomas-Fern(iTF) ex-
densatd8-13. The controllable character of the OL allows pression for the background wave-function distribut{dn
for the observation of numerous phenomena, such as Blocfu is the chemical potentinbndx, is the initial location of
oscillations[10,14] and Zener tunneling8] (in the presence the DS’s center. In most cases, we ggt0, i.e., the dark
of an additional linear external potendiabr classical15]  soliton is placed at the bottom of the magnetic trap. The
and quantunj13] superfluid-insulator transitions. choice for a TF background is motivated by the fact that it is

Apart from the mean-field description via the Gross-a good approximation for the steady-state atomic density
Pitaevskii(GP) equation[8—-13], a BEC trapped in a strong whenV,=0 [1].

OL may be described, in the tight-binding limit, by the dis- In the tight-binding limit, Eq(1) reduces to the following
crete nonlinear Schdinger (DNLS) equation[16]. This ap- DNLS equation16],

proximation is not always accurate, but its applicability can

be systematically examingd 7,18. In cases where such a iUp=—C(Ups1+Uy_1—2Up) +|up2uy+knPu,, (3
reduction is possiblée.g., when the chemical potential is

much lower than the height of the potential barriers induceqyhere the dot denotes time derivative,is the lattice-site
by the OL), the DNLS model is particularly relevant and has index, andC is the coupling constar(see, e.g., Ref§16—
been successfully applied in many instan¢es a recent 18] for exact expressions and relevant estimatas initial
review on DNLS, see, e.g., R¢fl9] and references thergin  condition for a DS in the case of E¢3) can be given by a

In this paper, we study DSs in repulsive BEQs., straightforward discretization of the continuum ansér
positive-scattering-length collisions the presence of OLs. Typically, simulations were run for a lattice with 200 sites,
We use both the continuous-GP and DNLS equations. In paind free boundary conditions for both the continuum and
ticular, we assume a cigar-shaped B&@nsverse directions  djscrete models. In fact, it has been verified that the results
smaller than the healing lengft]), which can be described are insensitive to the choice of boundary conditions. Note
by the normalized quasi-one-dimensional GP equatioRhat DSs in discrete latticéin the absence of parabolic thap
[1,20,21 were already studied in the framework of the DNLS equation

[23], revealing that they are subject to oscillatory instabilities
U= —Ug+|u|2u+[kx2+Vocog(2mx/N)Ju. (1) [24].
Stationary solutions to Ed3) are sought for in the form
u,=exp(iut)v,, where u is the chemical potentiall],
*http://nlds.sdsu.edu/ which leads to the steady-state equation
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FIG. 1. The left and right top panels show, respectively, the FIG. 2. The top panels in Fig. 2 are equivalent to those in Fig. 1,
(square root of thenumber of atoms in the condensaeand the ~ but now the strength of the trapping potential is fixée;0.001,
largest unstable eigenfrequeney for the discrete dark soliton as a While the coupling constan€ is varied. The middle and bottom
function ofk for C=1. The profile of thexacy solution is shown, Panels show, respectively, examples of the spatial profiles and
for k=0.001 andk=0.119 (just prior to the termination of the €igenfrequency spectral planes of unstafide C=0.25) and stable
branch, in the left middle and bottom panels, respectively. The (for C=0.01) DSs.

right middle and bottom panels show the spectral plane ¢;) of

the corresponding eigenfrequencies, the subscripts standing for tiBis instability is gharacterized bysmallgrowth rate, whose
real and imaginary parts. maximum value isw;~0.04 (at k~0.024).

An example of the weakly unstable DS for0.001 can
be seen in the middle panels of Fig. 1, and an example close
to the termination of the branghatk=0.119) is shown in the
bottom panels. Note that the instability is manifested by the
presence of a nonzero imaginary part of the eigenfrequen-
cies.
Next, we consider the case where the strength of the para-
im ot ot bolic trap is kept fixedk=0.001, while the coupling con-
u,=e '“[v,+ea e+ eb,e 1, (5 stantCis varied in the interval & C<1. In this case, the DS
configuration on top of the TF background has been obtained
where the asterisk denotes complex conjugation. The ensuifgr every value ofC, see Fig. 2, down t€=0 correspond-
eigenvalue problem, for the eigenfrequency-eigenfunctionng to the so-called anticontinuum limit. The norm of the
pair {w,{a,,by}}, is then solved numerically wittv=w,  solution(top left panel of Fig. 2is a slowly(almost linearly
+iw; (where the subscripts denote the real and imaginarglecreasing function o€, which can be easily understood.
parts. In what follows, since Eqs1) and (3) admit an ad-  Indeed, since the effective size of the TF distribution is kept
ditional rescaling, the chemical potential has been fixed atonstant(the trap strengtlk is fixed), the DS placed at the
u=1. center of the condensate expands to a larger number of lattice
We first consider the DNLS model with a fixed coupling sites asC increases, hence a bigger internal part of the BEC
constantC=1 while the strengtlk of the parabolic trap is cloud is effectively devoid of atoms. The dependence of the
varied. In this case, it is found that the assumed configuratargest unstable eigenfrequenay on C, shown in the top
tion, in the form of a DS on top of the TF background, existsright panel of Fig. 2, reveals that there exist a critical value
only up to a critical value ok.~0.12, as is seen from the C.~0.076 at which a Hamiltonian-Hopf bifurcation occurs,
top left panel of Fig. 1, which complies with the well-known as two pairs of eigenvalues with opposKeein signatures
fact that the DS cannot have a width essentially smaller thaf5] collide and bifurcate into a complex quartet.
the healing lengthl], and thus cannot exist in a very narrow  Notice the proximity of the critical value observed herein
trap. and the one found in Ref24] for optical DSs(without the
This solution family is quantified by the top panels of Fig. parabolic trap. This observation suggests that the presence
1. The normN=||v,||5==,v2 (number of atomsN) as a of the parabolic trap does not significantly affect the thresh-
function of k is depicted in the top left panel. The depen-old of the oscillatory instability.
dence of the largest instability growth rate on k, which is It is noteworthy that, at larger values @f (see the top
shown, for the same discrete-DS solution, in the top rightight panel of Fig. 2, there are windows on the axis (e.g.,
panel of Fig. 1, reveals a narrow stability window close t00.895<C=<0.935 for the 200-site lattigewhere the DS is
k=0 (for 0.002<k=0.004). At larger values df, the DS is  stable. Examples of unstab{éor C=0.25) and stable DSs
always subject to an oscillatory instability similar to that (for C=0.01), as well as the respective spectral planes
found for regular dark optical soliton24]. Nevertheless, (w,,w;) of the eigenfrequencies, are shown in the middle

_C(Un+l+vn—l_Zvn)+(|vn|2+kn2_ﬂ)vn:0 (4)

for a discrete functiorv,. Once a solution of Eq(4) is
found, linear stability analysis is performed by looking for
perturbed solutions of the form
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FIG. 3. The top panels show the number of atoms resaéted
convenienceby a factor of 10%* (left) and the maximum of the  tinuum dark soliton(rescaled by the factor 16/ left) and the

instability growth ratew; (right) for the dark soliton vs the para- |argest instability growth rate; (right) vs the OL wavelength for
bolic trap strengtfk, as found from the continuum Gross-Pitaevskii the GP equation withV,=1.5 andk=0.001. The middle and bot-

equation(1) with Vo=1.5 and\ =5. The middle and bottom panels tom panels show the spatial profile of the dark solitonsXNer3

display the spatial profiles for the dark solitons witk 0.024 and  and\ =5 (left) and their respective spectral plar(eight).
k=0.01 (left) and the respective stability spectral plar(eght).

(k=0.01 being very close to the termination point of the branch.

for A<\ and unstable otherwise. Examples of stable and
unstable DSs foh =3 and\=5 are shown in the middle
and bottom panels in Fig. 4, together with their respective

As the DNLS of Eq.(3) is only a tight-binding approxi- sp_ectrgl plang_s. We .have verlflgd that .101(3 the DS re-
mation of the full continuum model, i.e., the GP equatiby tains its stability, while for\>5 it remains unstable up to
it is necessary to investigate whether and how the weak inr <\2)~5.45 and restabilizes for larger valuesaf After
stability of the DSs, demonstrated above in the discrete limfunning simulations at many other parameter values, we have
iting case, manifests itself in the full GP equation. To thisconcluded that the OL periodicity is a crucial factor in
end, we first consider the case where the OL potential igletermining the stability of the DS in the continuum GP
fixed (an analog of the case whegeis fixed in the discrete equation, while the strength of the parabolic tiaplays a
mode), with strengthVy=1.5 and wavelength =5. lesser role.

Similar to what we find for the discrete case, the DS on  Finally, an additional factor of relevance in determining
the TF background exists, in the continuum GP equationstability is the amplitude/, of the optical lattice. We have
only up to a critical value of the trap strengy,~0.01. This  found (data not shownthat variation ofV, results in the
is demonstrated in the top left panel of Fig. 3, where thepresence of windows of stability for a fixed valueof For
number of atoms, which is now defined a¢=|[v[|2  instance, fon =5, the soliton is stable in the absence of the
=/ ZZlv(x)|?dx, is shown versuk. Furthermore, the eigen- optical lattice(i.e., for Vo=0) as well as, e.g., in the inter-
value computation shows that this family of continuum DSsyalsV,e[0.04,0.13 or Voe[1.17,1.38, while it is unstable
is always unstabléalthough in other cases DSs in the con-fgor intermediate values.
tinuum model may be stable, see beJowowever, the in- In the case where solitons are unstable, it is desirable to
stability is extremely weak as its largest growth rate directly simulate the full nonlinear equation, in order to ob-
max(w;)~0.015 (at k~0.024). The shape of typical con- serve the evolution of the soliton under the effect of the
tinuum DSs are shown in the middle and bottom panels ofnstability. We find that the instability sets in at large times,
Fig. 3 together with the corresponding spectral planes.  on the order 0f0(100), and manifests itself as follows: the

Next, we consider the case where the strength of the magss, which is initially placed at the bottom of the composite
netic trap, in the continuum GP equation, is fixedkat potential(magnetic trap and Ol performs small-amplitude
=0.001, while the wavelength of the OL is varied(the  oscillations inside the respective small well of the OL poten-
strength of the OL is agai¥,=1.5). In this case, the DS on tial. Then, as time passes, the soliton starts to emit small
the TF background exists for every value)oin an interval  amounts of radiation, and as a result, it gains enough kinetic
3<\=5, which is chosen to display the present case. Irenergy to perform larger-amplitude quasiperiodic oscillations
particular, the top left panel in Fig. 4 shows the number ofaround the center of the condensate. This behavior is dem-
atoms in the DS as a function af Furthermore, the depen- onstrated in the left panel of Fig. 5, where two snapshots of
dence of the largest instability growth ratg on \ (top right  the density profile of the DS are showntat0 andt=700
panel in Fig. 4 reveals that a Hamiltonian-Hopf bifurcation for the unstable DS of the bottom panel of Fig. 4. To trigger
occurs at a critical poinm£}>~4, so that the DSs are stable the onset of instability, a uniformly distributed random per-

FIG. 4. The top panels show the number of atoms in the con-

and bottom panels of Fig. 2. As noted in RE14], the sta-
bility windows result from the finiteness of the lattice.
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FIG. 5. Left: the profile of the dark soliton &0 (dashed ling

and t=700 (solid ling). Right: time evolution of the density,

lu(x,t)|?, at the central pointx=0. V,=1.5, A=5, and k
=0.001.
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tinuous GP equation and its discrete tight-binding dynamical-
lattice counterpart, taking into regard the effect of the exter-
nal magnetic trap and OL. We find that in the discrete model
the DSs are, generally, subject tavaakoscillatory instabil-

ity. In the full GP equation, DSs may be stable and the sta-
bility is chiefly determined by the period and amplitude of
the OL. If the oscillatory instability is present, it sets in at
large times, which attests to the robustness of DSs. The in-
stability eventually manifests itself as a shift of the DS from
the center of the condensate, which is accompanied by qua-
siperiodic oscillations. This work can be naturally extended
for two-dimensional vortices. First steps in that direction
were made in Refd26] and[27].

turbation of amplitude 0.01 is added to the initial configura-

tion. It can be clearly observed that, in the final state, the DS This work was supported by a UMass FRG and NSF-
has shifted its position from the center of the condensate (DMS-0204585P.G.K), the Special Research Account of the
=0). Quasiperiodic oscillations of the density at the pointUniversity of Athens(G.T., D.J.R, the Binational (US-
x=0, induced by the instability, are shown in the right panellsrae) Science FoundatioiGrant No. 1999459 the San

of Fig. 5.

Diego State University FoundationR.C.G), and a

In conclusion, we investigate the existence and stability ofVindows-on-Science grant from the European Office of
stationary DSs in repulsive BECs, trapped in an OL. TheAerospace Research and Development of the US Air Force
consideration is performed in the framework of both the con{B.A.M.).
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