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Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice
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We investigate the stability of dark solitons~DSs! in an effectively one-dimensional Bose-Einstein conden-
sate in the presence of the magnetic parabolic trap and an optical lattice~OL!. The analysis is based on both the
full Gross-Pitaevskii equation and its tight-binding approximation counterpart~discrete nonlinear Schro¨dinger
equation!. We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the
period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by
quasiperiodic oscillations of the DS about the minimum of the parabolic trap.
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The experimental creation and great advancement in
theoretical understanding of Bose-Einstein condens
~BECs! @1# have stimulated a lot of interest in nonlinear ma
ter waves, including dark@2# and bright @3# solitons. The
dynamics of dark solitons~DSs! in the presence of the exte
nal magnetic trap has been extensively studied@4#, including
thermal @5# and dynamical@6# instabilities. More recently,
apart from the rectilinear DSs, ring-shaped counterparts w
predicted in BECs@7#.

The study of nonlinear excitations is particularly releva
for BECs trapped in optical lattices~OLs! generated by in-
terference patterns from laser beams illuminating the c
densate@8–13#. The controllable character of the OL allow
for the observation of numerous phenomena, such as B
oscillations@10,14# and Zener tunneling@8# ~in the presence
of an additional linear external potential!, or classical@15#
and quantum@13# superfluid-insulator transitions.

Apart from the mean-field description via the Gros
Pitaevskii~GP! equation@8–13#, a BEC trapped in a strong
OL may be described, in the tight-binding limit, by the di
crete nonlinear Schro¨dinger ~DNLS! equation@16#. This ap-
proximation is not always accurate, but its applicability c
be systematically examined@17,18#. In cases where such
reduction is possible~e.g., when the chemical potential
much lower than the height of the potential barriers induc
by the OL!, the DNLS model is particularly relevant and h
been successfully applied in many instances~for a recent
review on DNLS, see, e.g., Ref.@19# and references therein!.

In this paper, we study DSs in repulsive BECs~i.e.,
positive-scattering-length collisions! in the presence of OLs
We use both the continuous-GP and DNLS equations. In
ticular, we assume a cigar-shaped BEC~transverse directions
smaller than the healing length@1#!, which can be described
by the normalized quasi-one-dimensional GP equa
@1,20,21#

iut52uxx1uuu2u1@kx21V0cos2~2px/l!#u. ~1!
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Here,u(x,t) is the mean-field wave function, while the term
in the square brackets represent the external magnetic
and the OL potential, respectively, with the strengthsk and
V0, while l is the wavelength of the interference patte
created by the laser beams.

To study the dynamics of a DS in the framework of E
~1!, we consider an initial condition similar to an ansatz pr
posed for the description of DSs in BECs in Ref.@22#,

u0~x!5uTF~x!tanh~x2x0!, ~2!

whereuTF5Amax(0,m2kx2) is the Thomas-Fermi~TF! ex-
pression for the background wave-function distribution@1#
(m is the chemical potential! andx0 is the initial location of
the DS’s center. In most cases, we setx050, i.e., the dark
soliton is placed at the bottom of the magnetic trap. T
choice for a TF background is motivated by the fact that i
a good approximation for the steady-state atomic den
whenV050 @1#.

In the tight-binding limit, Eq.~1! reduces to the following
DNLS equation@16#,

i u̇n52C~un111un2122un!1uunu2un1kn2un , ~3!

where the dot denotes time derivative,n is the lattice-site
index, andC is the coupling constant~see, e.g., Refs.@16–
18# for exact expressions and relevant estimates!. An initial
condition for a DS in the case of Eq.~3! can be given by a
straightforward discretization of the continuum ansatz~2!.
Typically, simulations were run for a lattice with 200 site
and free boundary conditions for both the continuum a
discrete models. In fact, it has been verified that the res
are insensitive to the choice of boundary conditions. N
that DSs in discrete lattices~in the absence of parabolic trap!
were already studied in the framework of the DNLS equat
@23#, revealing that they are subject to oscillatory instabiliti
@24#.

Stationary solutions to Eq.~3! are sought for in the form
un5exp(2imt)vn , where m is the chemical potential@1#,
which leads to the steady-state equation
©2003 The American Physical Society02-1
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2C~vn111vn2122vn!1~ uvnu21kn22m!vn50 ~4!

for a discrete functionvn . Once a solution of Eq.~4! is
found, linear stability analysis is performed by looking f
perturbed solutions of the form

un5e2 imt@vn1eaneivt1ebne2 iv* t#, ~5!

where the asterisk denotes complex conjugation. The ens
eigenvalue problem, for the eigenfrequency-eigenfunct
pair $v,$an ,bn* %%, is then solved numerically withv5v r

1 iv i ~where the subscripts denote the real and imagin
parts!. In what follows, since Eqs.~1! and ~3! admit an ad-
ditional rescaling, the chemical potential has been fixed
m51.

We first consider the DNLS model with a fixed couplin
constantC51 while the strengthk of the parabolic trap is
varied. In this case, it is found that the assumed configu
tion, in the form of a DS on top of the TF background, exi
only up to a critical value ofkcr'0.12, as is seen from th
top left panel of Fig. 1, which complies with the well-know
fact that the DS cannot have a width essentially smaller t
the healing length@1#, and thus cannot exist in a very narro
trap.

This solution family is quantified by the top panels of Fi
1. The normN[uuvnuu2

25(nvn
2 ~number of atomsN) as a

function of k is depicted in the top left panel. The depe
dence of the largest instability growth ratev i on k, which is
shown, for the same discrete-DS solution, in the top ri
panel of Fig. 1, reveals a narrow stability window close
k50 ~for 0.002<k<0.004). At larger values ofk, the DS is
always subject to an oscillatory instability similar to th
found for regular dark optical solitons@24#. Nevertheless,

FIG. 1. The left and right top panels show, respectively,
~square root of the! number of atoms in the condensateN and the
largest unstable eigenfrequencyv i for the discrete dark soliton as
function ofk for C51. The profile of the~exact! solution is shown,
for k50.001 andk50.119 ~just prior to the termination of the
branch!, in the left middle and bottom panels, respectively. T
right middle and bottom panels show the spectral plane (v r ,v i) of
the corresponding eigenfrequencies, the subscripts standing fo
real and imaginary parts.
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this instability is characterized by asmallgrowth rate, whose
maximum value isv i'0.04 ~at k'0.024).

An example of the weakly unstable DS fork50.001 can
be seen in the middle panels of Fig. 1, and an example c
to the termination of the branch~at k50.119) is shown in the
bottom panels. Note that the instability is manifested by
presence of a nonzero imaginary part of the eigenfrequ
cies.

Next, we consider the case where the strength of the p
bolic trap is kept fixed,k50.001, while the coupling con
stantC is varied in the interval 0<C<1. In this case, the DS
configuration on top of the TF background has been obtai
for every value ofC, see Fig. 2, down toC50 correspond-
ing to the so-called anticontinuum limit. The norm of th
solution~top left panel of Fig. 2! is a slowly~almost linearly!
decreasing function ofC, which can be easily understood
Indeed, since the effective size of the TF distribution is ke
constant~the trap strengthk is fixed!, the DS placed at the
center of the condensate expands to a larger number of la
sites asC increases, hence a bigger internal part of the B
cloud is effectively devoid of atoms. The dependence of
largest unstable eigenfrequencyv i on C, shown in the top
right panel of Fig. 2, reveals that there exist a critical va
Ccr'0.076 at which a Hamiltonian-Hopf bifurcation occur
as two pairs of eigenvalues with oppositeKrein signatures
@25# collide and bifurcate into a complex quartet.

Notice the proximity of the critical value observed here
and the one found in Ref.@24# for optical DSs~without the
parabolic trap!. This observation suggests that the prese
of the parabolic trap does not significantly affect the thre
old of the oscillatory instability.

It is noteworthy that, at larger values ofC ~see the top
right panel of Fig. 2!, there are windows on theC axis ~e.g.,
0.895<C<0.935 for the 200-site lattice! where the DS is
stable. Examples of unstable~for C50.25) and stable DSs
~for C50.01), as well as the respective spectral plan
(v r ,v i) of the eigenfrequencies, are shown in the midd

e

the

FIG. 2. The top panels in Fig. 2 are equivalent to those in Fig
but now the strength of the trapping potential is fixed,k50.001,
while the coupling constantC is varied. The middle and bottom
panels show, respectively, examples of the spatial profiles
eigenfrequency spectral planes of unstable~for C50.25) and stable
~for C50.01) DSs.
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and bottom panels of Fig. 2. As noted in Ref.@24#, the sta-
bility windows result from the finiteness of the lattice.

As the DNLS of Eq.~3! is only a tight-binding approxi-
mation of the full continuum model, i.e., the GP equation~1!,
it is necessary to investigate whether and how the weak
stability of the DSs, demonstrated above in the discrete l
iting case, manifests itself in the full GP equation. To th
end, we first consider the case where the OL potentia
fixed ~an analog of the case whereC is fixed in the discrete
model!, with strengthV051.5 and wavelengthl55.

Similar to what we find for the discrete case, the DS
the TF background exists, in the continuum GP equat
only up to a critical value of the trap strength,kcr'0.01. This
is demonstrated in the top left panel of Fig. 3, where
number of atoms, which is now defined asN5uuvuu2

2

[*2`
1`uv(x)u2dx, is shown versusk. Furthermore, the eigen

value computation shows that this family of continuum D
is always unstable~although in other cases DSs in the co
tinuum model may be stable, see below!. However, the in-
stability is extremely weak, as its largest growth rate
max(vi)'0.015 ~at k'0.024). The shape of typical con
tinuum DSs are shown in the middle and bottom panels
Fig. 3 together with the corresponding spectral planes.

Next, we consider the case where the strength of the m
netic trap, in the continuum GP equation, is fixed atk
50.001, while the wavelengthl of the OL is varied~the
strength of the OL is againV051.5). In this case, the DS o
the TF background exists for every value ofl in an interval
3<l<5, which is chosen to display the present case.
particular, the top left panel in Fig. 4 shows the number
atoms in the DS as a function ofl. Furthermore, the depen
dence of the largest instability growth ratev i on l ~top right
panel in Fig. 4! reveals that a Hamiltonian-Hopf bifurcatio
occurs at a critical point,lcr

(1)'4, so that the DSs are stab

FIG. 3. The top panels show the number of atoms rescaled~for
convenience! by a factor of 1021/4 ~left! and the maximum of the
instability growth ratev i ~right! for the dark soliton vs the para
bolic trap strengthk, as found from the continuum Gross-Pitaevs
equation~1! with V051.5 andl55. The middle and bottom panel
display the spatial profiles for the dark solitons withk50.024 and
k50.01 ~left! and the respective stability spectral planes~right!.
(k50.01 being very close to the termination point of the branch!
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for l,lcr
(1) and unstable otherwise. Examples of stable a

unstable DSs forl53 andl55 are shown in the middle
and bottom panels in Fig. 4, together with their respect
spectral planes. We have verified that forl,3 the DS re-
tains its stability, while forl.5 it remains unstable up to
l,lcr

(2)'5.45 and restabilizes for larger values ofl. After
running simulations at many other parameter values, we h
concluded that the OL periodicityl is a crucial factor in
determining the stability of the DS in the continuum G
equation, while the strength of the parabolic trapk plays a
lesser role.

Finally, an additional factor of relevance in determinin
stability is the amplitudeV0 of the optical lattice. We have
found ~data not shown! that variation ofV0 results in the
presence of windows of stability for a fixed value ofl. For
instance, forl55, the soliton is stable in the absence of t
optical lattice~i.e., for V050) as well as, e.g., in the inter
valsV0P@0.04,0.13# or V0P@1.17,1.38#, while it is unstable
for intermediate values.

In the case where solitons are unstable, it is desirabl
directly simulate the full nonlinear equation, in order to o
serve the evolution of the soliton under the effect of t
instability. We find that the instability sets in at large time
on the order ofO(100), and manifests itself as follows: th
DS, which is initially placed at the bottom of the compos
potential~magnetic trap and OL!, performs small-amplitude
oscillations inside the respective small well of the OL pote
tial. Then, as time passes, the soliton starts to emit sm
amounts of radiation, and as a result, it gains enough kin
energy to perform larger-amplitude quasiperiodic oscillatio
around the center of the condensate. This behavior is d
onstrated in the left panel of Fig. 5, where two snapshots
the density profile of the DS are shown att50 andt5700
for the unstable DS of the bottom panel of Fig. 4. To trigg
the onset of instability, a uniformly distributed random pe

FIG. 4. The top panels show the number of atoms in the c
tinuum dark soliton~rescaled by the factor 1021/4; left! and the
largest instability growth ratev i ~right! vs the OL wavelengthl for
the GP equation withV051.5 andk50.001. The middle and bot
tom panels show the spatial profile of the dark solitons forl53
andl55 ~left! and their respective spectral planes~right!.
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turbation of amplitude 0.01 is added to the initial configu
tion. It can be clearly observed that, in the final state, the
has shifted its position from the center of the condensatex
50). Quasiperiodic oscillations of the density at the po
x50, induced by the instability, are shown in the right pan
of Fig. 5.

In conclusion, we investigate the existence and stability
stationary DSs in repulsive BECs, trapped in an OL. T
consideration is performed in the framework of both the c

FIG. 5. Left: the profile of the dark soliton att50 ~dashed line!
and t5700 ~solid line!. Right: time evolution of the density
uu(x,t)u2, at the central pointx50. V051.5, l55, and k
50.001.
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tinuous GP equation and its discrete tight-binding dynamic
lattice counterpart, taking into regard the effect of the ext
nal magnetic trap and OL. We find that in the discrete mo
the DSs are, generally, subject to aweakoscillatory instabil-
ity. In the full GP equation, DSs may be stable and the s
bility is chiefly determined by the period and amplitude
the OL. If the oscillatory instability is present, it sets in
large times, which attests to the robustness of DSs. The
stability eventually manifests itself as a shift of the DS fro
the center of the condensate, which is accompanied by q
siperiodic oscillations. This work can be naturally extend
for two-dimensional vortices. First steps in that directi
were made in Refs.@26# and @27#.
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