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Solitary waves in a quantum droplet-bearing system
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We unravel the existence and stability properties of dark soliton solutions as they extend from the regime
of trapped quantum droplets towards the Thomas-Fermi limit in homonuclear symmetric Bose mixtures.
Leveraging a phase-plane analysis, we identify the regimes of existence of different types of quantum droplets
and subsequently examine the possibility of black and gray solitons and kink-type structures in this system.
Moreover, we employ the Landau dynamics approach to extract an analytical estimate of the oscillation
frequency of a single dark soliton in the relevant extended Gross—Pitaevskii model. Within this framework,
we also find that the single soliton immersed in a droplet is stable, while multisoliton configurations exhibit
parametric windows of oscillatory instabilities. Our results pave the way for studying dynamical features of
nonlinear multisoliton excitations in a droplet environment in contemporary experimental settings.
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I. INTRODUCTION

Multicomponent cold atom macroscopic systems provide
the possibility to assess quantum fluctuation phenomena
within the weakly interacting regime [1-4]. A recent intrigu-
ing manifestation consists of the formation of self-bound
quantum droplets owing to the presence of the first-order
quantum Lee-Huang-Yang (LHY) correction term [5] act-
ing repulsively in higher than one dimension to prevent the
collapse potentially favored by the mean-field interactions.
Such states of matter have been originally observed in dipolar
gases [6] and afterwards in relevant mixtures [4]. Recently,
they were also realized in short-range attractively interacting
two-component, both homonuclear [7-9] and heteronuclear
[10,11] bosonic mixtures. Other proposals also suggest the
existence of these states in Bose-Fermi mixtures [12,13] un-
der the presence of three-body interactions [14—16], optical
lattices [17] and spin-orbit coupling [18,19]. Besides atomic
platforms, droplet configurations can also be generated, e.g.,
in photonic systems [20], vapors [21,22], and liquid Helium
[23,24], further promoting their broader relevance.

The theoretical modeling of droplets in atomic systems
is achieved through an extended Gross—Pitaevskii (eGPE)
framework [1,25] which has been utilized to probe a plethora
of their properties. In short-range bosonic mixtures that we
investigate herein, these include, but are not limited to, their
inelastic collisions [26,27], structural deformations from a
Gaussian-shape to a flat-top profile [27], the behavior of
their collective modes [27-32], the triggering of modula-
tional instability events [33] and their statistical mechanics
[34], as well as the effects of thermal instabilities [35-37].
Beyond-LHY correlation effects have also been discussed by
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considering self-consistently higher-order corrections [38—42]
revealing, for instance, slight alterations in the breathing fre-
quency or an enhancement of the expansion velocity.

The focus of the vast majority of the above investigations
was on the ground-state properties, collective excitations, and
dynamical response of droplets. Yet it is natural, motivated
also from corresponding analysis of simpler, mean-field-
driven dynamical settings [43], to examine excited states and
their dynamical stability in such mixtures. This concerns
in particular, the existence of nonlinearity-driven coherent
structures, in the form of dark solitons [18,44] and vortices
[45-50], as well as vortex rings [51] embedded in these
self-bound states, a topic which has been touched upon only
very recently. For instance, in the one-dimensional (1D) ge-
ometry which is the central focus of the present study, the
crossover from dark solitons at weak repulsive couplings to
dark quantum droplets at attractive interactions in free space
was discussed in Ref. [44]. However, it remains elusive under
which conditions dark soliton states persist in the presence of
the external trap, a common feature of relevant experiments
[7,9,10], and importantly whether additional solutions, e.g.,
gray solitons [45,52] occur as it was argued recently for dipo-
lar as well as in spin-orbit coupled [53] condensates in the
presence of the LHY correction [54]. Additionally, an ana-
lytical prediction regarding the dark soliton in-trap oscillation
frequency similar to the one known in repulsive condensates
[55,56] constitutes a central question.

Another intriguing aspect that we tackle herein concerns
the existence, stability, and dynamics of relevant multisoliton
configurations, especially so due to the presence of beyond-
mean-field nonlinearities in the mixture setting. On a different
note, we remark that recently there is renewed interest in

©2023 American Physical Society
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FIG. 1. Schematic representation of the underlying bifurcation diagram of the particle number N () as a function of the chemical potential
w for the droplet ground state as well as the single-, two-, and three-droplet dark solitons for § = 1. Vertical dashed lines indicate the turning
point w., and the corresponding linear limit wy;,, = (n + 1/2)Q of the adimensionalized model, where 2 = 0.1 denotes the trap frequency.
The solution (Hermite-Gauss state) departs from the linear limit and for decreasing chemical potential acquires a droplet background since
the LHY dominates until it reaches p.,. Afterward, the configuration gradually deforms from a Gaussian-type backdrop towards a TF-type
backdrop bearing one or more strongly localized dark soliton(s) for increasing ;« where the cubic nonlinearity prevails. Characteristic density
profiles of the ensuing localized waveforms at specific chemical potentials (see ellipse markers) are also provided. The latter correspond to 1
= —0.175 and 0.115 for the ground states, .« = —0.06 and 0.2 for the single, © = 0.02 and 0.25 for the two, and . = 0.17 and 0.3 for the
three dark soliton solutions, respectively. Note that for visualization purposes the curves are slightly shifted upwards from N = 0. Namely, all

the lower curves asymptote to N = 0 as u — 0.

the experimental realization of a diverse array of solitonic
structures in repulsive condensates [57-61] which is expected
to lead to interesting extensions for self-bound droplet envi-
ronments.

To address the questions posed above we leverage a va-
riety of theoretical and numerical tools. These include (i) a
phase-plane analysis of the ensuing dynamical system, (ii) a
computational analysis of its excitation spectrum deploying
the eGPE framework exploring the regime from the quan-
tum droplet, low-density limit, to the Thomas-Fermi (TF),
large-density limit, and (iii) direct numerical simulations in
the context of dynamically unstable solutions. Specifically, we
consider a homonuclear symmetric bosonic mixture showcas-
ing the existence of various localized solutions in free space.
We go beyond the well-studied conventional bright droplets
[2,3] and the largely unexplored dark quantum droplets (re-
ferred to as bubbles hereafter) [44], examining black [44] and
gray solitons [45]. Notice that, while the existence of a frac-
tion of these nonlinear structures has been recently discussed
in Refs. [44,45], here we unravel their origin from a com-
pletely different perspective. Namely, we rely on solutions of
the dynamical system but also expose their persistence in the
presence of the trap, as well as investigate their spectrum. The
coexistence of multiple of the aforementioned waveforms is
elucidated, as are their dynamical properties and the regimes
where quantum fluctuations are central to their persistence.

Moreover, utilizing the Landau dynamics approach [62],
the LHY-dependent oscillation frequency for a single dark
soliton is extracted, recovering the standard mean-field predic-
tion in the appropriate large-density limit [63—-65]. Exploring
the underlying excitation spectrum reveals that single dark
solitons are stable structures for varying chemical potential,
trap, and LHY strengths. Strikingly, the interplay between the

attractive in 1D LHY term (dominating for small chemical
potentials) and the repulsive cubic nonlinearity (prevailing
for large chemical potentials) is central for understanding the
behavior of solitonic branches. For instance, a dark soliton in
this setting bifurcates from the linear limit (either from the
band edge in the absence of the trap, or from the first-excited
state in its presence) and tends to a “soliton-inside-a-droplet”
state for decreasing chemical potentials before turning around
so as to acquire a TF-type background for larger chemical po-
tentials. Along these transitions, the dark soliton experiences
modifications in its intensity and thus its core size. A summary
of the bifurcation structure for the multisoliton configurations
is depicted in Fig. 1. It is found that the aforementioned
turning point which is a direct imprint of quantum fluctuations
depends on the strengths of the LHY term and the trap but
also on the soliton number. Turning to the largely unexplored,
in this context, multisoliton solutions, we showcase that
their turning points are shifted and, importantly, these states
experience parametric windows of oscillatory instabilities.
These manifest through the amplification of their out-of-
phase vibration accompanied by a breathing of the entire
configuration.

The content of this work unfolds as follows: Section II in-
troduces the model under investigation and the relevant theory
framework based on the eGPE and its hydrodynamic form.
Section III unveils the phase-plane analysis of the underlying
dynamical system enabling, among others, to identify their
in-trap oscillation frequency. In Sec. IV we discuss in detail
the excitation spectrum, existence, and stability properties of
the single soliton with respect to variations of the chemical
potential, the strength of the LHY, and the trap frequency.
Section V elaborates on the persistence of multisoliton config-
urations and unveils their parametric windows of instability.
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Finally, in Sec. VI we summarize our results and offer future
perspectives and challenges.

II. ATTRACTIVE BOSE MIXTURE
AND ITS HYDRODYNAMIC FORMULATION

We consider a harmonically trapped homonuclear Bose-
Bose mixture with equal masses (m; = m; =m) and in-
traspecies repulsive interactions (g;; = g2 = g). The inter-
component couplings lie in the attractive regime (g, < 0),
such that droplet configurations are generated depending on
the value of the chemical potential. Due to these symmetry
considerations it has been argued that the description of the
genuine two-component system reduces to an effective single-
component system [1,25,27], so that the two components are
described by the same wave function, i.e., ¥ = Y, = V.
Such a setting has been suggested as accessible to experi-
mental realizations via the utilization of two hyperfine states,
|F, mg), of ¥K, e.g., |1, —1) and |1,0) as it was done in
Refs. [7-9]. Nevertheless, we should mention that, although
this setting has been considered experimentally in the above
works for three-dimensional quantum droplets, we are not
presently aware of a genuine 1D experimental realization in
the realm of the above model. This remains an important
outstanding challenge for the current experimental state of the
art.

The corresponding dimensional effective eGPE describ-
ing droplet configurations and including the first-order LHY
quantum correction [25] has the following form [29]:

Ry g+ Vi
wh

(D
where the subscripts denote partial derivatives, 6g = g1» + &
quantifies the deviation from the mean-field balance point
8g = 0 (see the Supplemental material of Ref. [7] for the de-
pendence and controllability of §g based on external magnetic
fields), and Vi (x) is the (usually parabolic) external trapping
potential. The results to be presented in all the figures be-
low are provided in dimensional units in order to be directly
comparable with current state-of-the-art experiments. How-
ever, for ease of exposition, all the theoretical analysis will
be provided using the corresponding adimensional 1D eGPE
[25,45]:

i = =30 + W1 — Sy + Ve (Y. )

Here, energy, time, space, and interaction strength are respec-
tively measured in units of & = hiwy, w]', (h/(mw,))"?,
and (A*w, /m)"/?. The atomic mass is m, and w | refers to the
confinement frequency in the transversal direction which can
be experimentally tuned with the aid of confinement induced
resonances [66]. Importantly, the parameter § (with § > 0)
describes the “strength” of the LHY contribution [25,45] and

is given by
5 i[i}” )
7L+l

It is evident that § depends on the involved interaction
strengths (which can be routinely adjusted in the experiment
through Fano-Feshbach resonances [7,8,67]) and also on the

, 2 88, .
lhIptZ_ wxx"'_hb' 1ﬁ—
2m 2

transverse confinement via &. It is a main focus of this work
to expose the impact of the LHY “strength” on the solitonic
solutions, see for instance Sec. IV. Notice that, for § = 0,
the eGPE reduces to the common Gross—Pitaevskii equa-
tion [64,65]. Moreover, we chose a standard parabolic external
trapping potential Vi (x) = (1/2)Q%x?, with Q = hwy/&, and
wy is the trap frequency in the longitudinal direction. To re-
strict the atomic motion in a 1D geometry, where transversal
excitations do not play any role, we employ parametric varia-
tions in the interval 0 < < 0.1.

To begin our analysis, we first employ the Madelung
transformation [64,68], ¥ = ,/p exp(i¢), where p(x,t) and
¢(x, t) denote, respectively, the 1D density and phase of the
gas. This way, Eq. (2) is expressed in the following hydrody-
namic form:

o + (pdx)x =0, (42)
¢+ 3¢5+ =810 = 57 20" + Vue(x) = 0.
(4b)

The above coupled system of equations can be used for the
derivation of stationary states of the system in free space
[Vie(x) = 0], as well as its ground state in the presence of the
trap [V (x) # O].

II1. PHASE-PLANE ANALYSIS

A. Stationary states in free space

Assuming that the potential V;;(x) can be ignored in order
to assess the model properties in free space, we may seek
stationary solutions of the form p = p(x) and ¢(x, 1) = ¢(x)
for the system of Egs. (4). In such a case, integrating Eq. (4a)
leads to ¢, = C;/p, where C; is a to-be-determined constant.
It is important to note at this stage that the Madelung trans-
formation allows us to identify the gradient of the phase, ¢,
as the velocity of the traveling stationary states under con-
sideration. Therefore, configurations with C; = 0 correspond
to fixed (nontraveling) steady states while the case C; # 0
corresponds to co-traveling configurations.

The equation for ¢, in conjunction with Eq. (4b) leads to
the following expression for the phase:

idx — ut + 6, %)
p(x)

where p plays the role of the chemical potential and 6 is an
integration constant. From this expression it becomes evident
that the phase of the solution can be determined by the form
of p(x) (and the constants Cy, u, and 6). The density p(x), on
the other hand, can be found from Eq. (4b), upon substituting
the expression (5). Indeed, introducing the auxiliary field g =
072, Eq. (4b) takes the form'

Plx, 1) =

C2
Gux +21q + 281qlq — 247 — q—; =0, (6)

'This substitution seems to suggest that ¢ > 0. Yet, a careful in-
spection of the original model leads to the conclusion that g simply
needs to be assumed to be real.
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which can be viewed as the equation of motion of a unit mass
particle in the presence of the effective potential

V@) = + 2alal  2q + o )
O =ng+ 3l =30+ 55
Notice that integration of Eq. (6) leads to the equation

1@ +V(g=E,

where E is the total energy of the system. This equation can
be readily integrated, resulting in the implicit solution

| v
==X X,
2[E—-V(g)]

where x is an integration constant. In what follows, we pro-
vide a systematic study of the structure of the phase plane
(g, q) associated with the dynamical system of Eq. (6) focus-
ing, in particular, on localized waveforms g(x) corresponding
to homoclinic [i.e., tending asymptotically to the same steady
state from the Greek “kAtvw” (to tend) and “opoto” (same)]
or heteroclinic orbits [from “,xAivw” and “etepo” (different),
i.e., tending asymptotically to different steady states] in the
(4. gx) plane.

Let us initially, for simplicity, consider the case of nontrav-
eling configurations, C; = 0. The co-traveling case for C; # 0
is considered for completeness in the Appendix. For C; = 0,
the extrema of the potential, that set the fixed points of the sys-
tem, are determined by dV/dg = 0, i.e., by qg(—¢*> + 8|q| +
n) = 0. To solve this equation, it is necessary to distinguish
the cases with ¢ > 0 and ¢ < 0, and with u < 0 and u > 0.
In particular, for ¢ > 0 and p < 0, the fixed points are given
by

=0, qi=306%8—4ul. @®)

This implies that there exist
(a) one fixed point, at g = 0, for 6 < 4|u|,
(b) two fixed points, at g = 0 and g = §/2, for 8% = 4|/,
(c) three fixed points, at ¢g=0 and g¢g= %(5 +
(8% — 4|u))'’?), for 8 > 4|pul,
while for g > 0 and n > 0 there exist two fixed points corre-
sponding to

g=0, g=1306+/8+4p).

Finally, in the case of ¢ < 0, and due to the fact that the
potential is an even function of ¢, the fixed points are mirror
symmetric to those above, namely a fixed point gg, for g > 0
maps to —gy, for g < 0.

The structure of the effective potential and its asso-
ciated phase plane become particularly interesting when
w = p, = —282/9. For this value, 8> > 4|u.|, and hence
there exist five fixed points, namely three saddle points
(associated with potential-energy maxima) and two centers
(associated with potential-energy minima) at the ordinary dif-
ferential equation level. The effective potential in this case

faCtOI 1Z€S as

and the fixed points share the same energy E = 0. The rele-
vant form of the potential (exhibiting two wells at g = +6/3)

and the associated phase plane are depicted in Fig. 2(b)
for § = 1. Therefore, for © = u, there exists a quartet of
heteroclinic orbits, which correspond to kink-type shapes
of g(x); see the relevant wave function depicted in red in
the bottom panel of Fig. 2(b) and in Fig. 3(b). All these
heteroclinic orbits can be found by direct integration, in
an explicit analytical form (see, e.g., also Refs. [27,33]),
namely,

Gxink (X) = :|:§|:1 =+ tanh (gx)i| ©)]

Notice that, inside the eight-shaped pattern that is formed by
the quartet of the heteroclinic orbits, periodic solutions are
present (that can be expressed in terms of the Jacobi elliptic
functions [33]), while outside of this region all trajectories
are unbounded. We remark that in the case of u < —8%/4
for our setting of § = 1, a straightforward analysis shows
that all emergent trajectories g(x) are unbounded for either
X — 400 or —oo, or both, since there is only a potential-
energy maximum at the origin. For —82/4 < u < u,, the
situation is akin to the one presented in Fig. 2(a). In this
case, that merits separate investigation, there exist homoclinic
solutions. However, rather than these being homoclinic to
the vanishing background, as the well-studied case of bright
droplets, these are homoclinic to the potential maxima at ¢,
hence representing so-called bubble solutions [69]. Further-
more, even though both bubbles and dark solitons exist on top
of a finite background, bubbles do not feature a phase jump
(and an accompanying sign change) as dark solitons do. In
fact, bubbles are states which commence and return to the
same nontrivial equilibrium state (either g, or —¢g.) and as
such are homoclinic; see the red curve in Fig. 2(a) and also
Fig. 3(a). On the other hand, dark solitons commence from
one of the nontrivial fixed points (say ¢g;) and end on the
other (in this example, —q4, or vice versa starting at —gq
and ending at ¢ ) and, thus, correspond to heteroclinic orbits;
see red curves in Figs. 2(c) and 2(d) and also Figs. 3(d) and
3(e). Bubble configurations and their (in)stability will be the
subject of a separate study. Indeed, here, as concerns droplets,
we will examine solely the bright ones present for u, <
© < 0 and the dark solitonic excitations potentially present
therein.

Turning to © > u,, the value of the two maxima of the
potential on either side of ¢ = 0 increases as u increases
while the central peak at ¢ = 0 remains unchanged. Precisely
at © = u, the two side peaks have the same height as the
central peak creating the quartet of heteroclinic orbits men-
tioned above [see Fig. 2(b)]. For larger values of u, the central
peak becomes shallower than the side peaks, resulting in the
emergence of a pair of homoclinic orbits to the origin, i.e.,
the well-recognized bright quantum droplets [27,29,33] [see
light blue curves in Fig. 2(c)]. These can be found as exact
analytical solutions:

3u 1

O 14 1+ 2 cosh(v=2px)

with the — and + signs corresponding to the homoclinic
orbit with ¢ > 0 and g < 0, respectively, in line with what
was reported, e.g., in Refs. [27,29,33] for § = 1. Notice that,

eroplet(x) =+ , (10)
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FIG. 2. Potential V (q) (top panels), respective phase planes (middle panels), and bounded orbits (bottom panels) for C; = 0 and § = 1 for
which u, = —2/9. The different columns of panels correspond to representative cases, for the values of p indicated, for all the qualitative
different scenarios that produce bounded orbits. Bounded (unbounded) orbits are depicted with solid (dashed) lines in the middle panels.
For clarity of exposition, when symmetric (¢ <> —¢q) solutions exist, only positive bounded orbits are shown in the lower panels. Case
(a) corresponds to —82/4 < < p, which gives rise to homoclinic orbits supported by a nonzero background. Case (b) corresponds to i
= u, where the two homoclinic orbits of case (a) collide and give rise to heteroclinic orbits connecting zero and nonzero backgrounds. Case
(c) corresponds to p, < u < 0 where the heteroclinic orbits of case (b) merge into heteroclinic orbits connecting nonzero backgrounds. Case
(d) corresponds to p > 0 where the homoclinic orbits of case (c) disappear. Note that, in order to better relate our results to experimental
conditions, we opt to display in this figure (as it is the case for all subsequent figures) all of the relevant quantities in full dimensional units as

indicated in the labels.

as mentioned above, bright droplets exist within the interval
te = —(2/9)8% < 1 < 0. A characteristic example of the
bright-droplet solution [Eq. (10)] is depicted in Fig. 3(c) [see
also the orbit depicted in light blue in Fig. 2(c)]. Obviously,
the presence of the LHY term in our extended mean-field
model is essential for the existence of such bright droplet
waveforms.

Finally, let us focus on the dark soliton solutions. In gen-
eral, for u, < p (still for C; = 0), the potential V (q) features
two outer extrema +¢, associated with a pair of saddle fixed
points on either side of ¢ = 0 [top panels in Figs. 2(c) and
2(d)]. These outermost saddle fixed points are connected by
a pair of heteroclinic orbits producing dark soliton structures,
see red curves in the middle and bottom panels of Figs. 2(c)
and 2(d). However, as long as ;< 0 there exists also a saddle
point at the origin. Due to the presence of this saddle point
at ¢ = 0, the relevant pair of heteroclinic orbits exhibits a
local minimum in g,. As a result, the corresponding dark
solitons do not have a tanh-shaped profile as is the case of the
usual dark solitons of the defocusing nonlinear Schrédinger
equation (NLS) [56], but change their slope in the vicinity
of the origin. In fact, due to the bottleneck induced by the
effective potential maximum at ¢ = 0, the width of the dark
soliton may be rendered arbitrarily large in the limit u —
[44]. A dark soliton profile with an enlarged core is depicted
in Fig. 3(d) for © = —0.222, which should be contrasted
with the case when the maximum of the effective potential
at g = 0 is absent, namely for u > 0. In this latter case [see,

e.g., Fig. 3(e) for u = 0], the dark (black) soliton has a profile
closer to the familiar tanh-shaped one (with minimum density
equal to zero) yet not precisely the same due to the presence
of the LHY correction term; see Eq. (11).

Even though the profiles of these dark soliton states are far
more complex than the standard NLS dark solitons [56], they
can still be obtained analytically for § = 1 by the following
formula:

—B(w) + /B (1) — 4A()C(1)
2A(w)

Gdark(X) = g4 + , (1D

where A(n) = B* —4A tanh? [vVA ()], B =
4ABsech® [v/A(x)], and C(u) = 4A%sech’[v/A(x)], with
A=4p+(1+T+4p) and B=2(; + /T+4n). The
expression of Eq. (11) is valid for x such that g(x) > 0, while
the other “half” of the solution [when g(x) < 0] is obtained
by antisymmetrizing the wave’s profile past the point of
its zero crossing. In the above expression, g is given by
Eq. (8), while it should be noted that for all the solutions
discussed in the absence of the trap [cf. also the kinks of
Eq. (9) and droplets of Eq. (10)], their invariance with respect
to translation allows us to center them at any position x, even
though in the above analytical expressions we have implicitly
assumed that they are centered at xo = 0. Note also that,
despite the similarity between the kink structure of Fig. 3(b)
and the dark soliton of Fig. 3(e) at the wave function level,
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FIG. 3. “Zoo” of nonlinear waves in the crossover from the droplet to the TF regime. Top and bottom sets of panels depict, respectively, the
wave function, ¢, and the relevant density profiles, |g|>. (a) Bubble wave function for ;1 = —0.23 referring to a homoclinic solution anchored
at ¢.. Bubbles are found within the interval —82/4 < u < u, where g, exists and V(0) > V(Zq, ), see also Fig. 2(a). (b) Kink solution
corresponding to a heteroclinic connection between 0 and g, (or —g.), occurring solely for u = u, = —282/9. Here, the maxima of the
effective potential have the same height (energy), i.e., V(0) = V(£q,) [see Fig. 2(b)]. (c) Bright droplet for = —0.2. These states form
for u, < u < 0 when V(0) < V(£q, ) and are homoclinic solutions at ¢ = 0 [see also Fig. 2(c)]. (d) [(e)] Dark soliton configuration for
= —0.222 (u = 0) being a heteroclinic orbit connecting —q, and g, . These structures arise when u > u, and, as u — u;, they become
wider due to the bottleneck induced by the potential maximum at ¢ = 0 as evinced in panel (d). In all cases, C; =0 and § = 1.

the former solution exists only for u = u, and, additionally,
the two states have well distinguished asymptotics.

Summarizing, the systematic analysis of the behavior of
the dynamical system associated with the stationary solutions
of the eGPE of Eq. (2) for Vi:(x) = 0 reveals a wealth of lo-
calized stationary states. These include bubbles, kinks, bright
quantum droplets, dark (black) solitons, and (as discussed in
the Appendix) gray solitons. The kink-like structures, bub-
bles, as well as the bright quantum droplets can only be
supported in the system due to the presence of the LHY
quadratic nonlinearity term. Notice that periodic nonlinear
waves, such as the sn-, cn- and dn-type Jacobi elliptic func-
tions, also exist but are not the focus of this work (see
oscillatory, periodic, solutions in the bottom panels of Fig. 2).
Moreover, it is particularly relevant to investigate interactions
among the above-discussed entities in order to understand
their character and whether they bear similarities with inter-
acting solitons. This is discussed in detail in a forthcoming
work [70].

B. The ground state of the trapped system

Let us now consider the ground state of the system in the
presence of the external trapping potential Vi (x) # 0. Within
the large-density TF limit, we seek solutions of Egs. (4)
having the form p = po(x), ¢; = —u, and ¢, = 0. In this
regime, the quantum pressure term (1/2)p~/2(p'/?),, can
be neglected, and the pertinent ground state is obtained upon
solving the reduced Eq. (4b) for ,oé/ 2, Namely,
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which is the only relevant solution since p — Vi (x) > 0.
Notice that, in the absence of the LHY term (5§ = 0), the
well-known form of the TF cloud [64,65] is retrieved. A
careful inspection of the solution (12) for the ground state
in the large-density limit unveils that it has to vanish for

x| > (8%/2 4+ 2u1)"/?/Q2. An intriguing mathematical ques-
tion concerns the decay of the trapped state for large pu > 0
towards zero. To address this question, one needs to carefully
consider the turning point region where u — Vj;(x) = 0. A lin-
ear approximation thereof is expected to lead to a variation of
the Painlevé-II equation [71] that should be leveraged in order
to identify the decay towards vanishing amplitudes. While this
is an avenue that we do not pursue herein, we recognize this as
a fruitful direction for further mathematical studies associated
with the relevant ground state.

Below we focus on the large density limit, investigating
the stability spectrum of the ground state since our aim is to
embed dark solitons on top of such a background. The stability
can be checked upon considering small-amplitude perturba-
tions on the ground-state density po(x) by substituting in
Egs. (4) the ansatz p(x,t) = po(x) + €p1(x, ) and p(x,1) =
—ut 4+ €¢i(x, t) where 0 < € < 1 is a formally small pertur-
bation parameter. In this sense, keeping terms of order O(e)
the following linear equation for p; (x, ¢) is derived:

2 1
Pl — C Pl xx + Zpl,xxxx =0.

The above equation admits plane-wave solutions o exp[i(kx
— wt)], where the wave number k and frequency w obey the
Bogoliubov dispersion relation

o® =k + 1KY, (13)

while ¢?(x) = pé/z(x)[p(i/z(x) — 8/2] is the square of the lo-
cal speed of sound [72]. This reveals how the local speed
of sound depends on the “strength” of the first-order quan-
tum correction. Note also that the relevant expression is in
line with earlier ones for this setting; see, e.g., Eq. (10)
of Ref. [51], upon accounting for the density expression of
Eq. (12). Therefore, by measuring the speed of sound, it is
possible to quantify the presence of quantum fluctuations.
Additionally, as dictated by Eq. (13), the frequency is always
real for every wave number and thus, as should be expected,
the ground state is always stable in the TF limit.
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As a final remark regarding the pertinent trapped ground
state, it is also of interest to consider its low-density limit
in the vicinity of negative chemical potentials, in connection
with the relevant continuation illustrated in the bifurcation
diagram of Fig. 1. Here, in line with earlier works [45], we
see that the trapped ground-state branch does not bifurcate
from p = 0 as in the pure cubic NLS model, but rather starts,
as one might expect, from the ground state of the quantum
harmonic oscillator at yu = €2/2. The effective focusing nature
of the model for small or intermediate intensities (due to the
dominance for such amplitudes of the quadratically nonlinear
term) leads to the formation of a droplet-like state. The latter
is strongly reminiscent of the analytically obtained one in
Refs. [27,33], yet it is “compressed” in comparison (i.e., nar-
rower) due to the effect of the trapping potential. The resulting
branch of solutions accordingly does not have a termination
point at & = —282/9. Rather, the corresponding solutions
encounter a turning point . > W, and subsequently turn and
head towards the TF limit discussed above. Indeed, one can
identify this turning point as the parametric threshold where
the cubic nonlinearity term takes over, eventually leading (for
higher values of the chemical potential) to the asymptotic
large density regime.

C. Landau dynamics of dark solitons

In the homogeneous case of Vi:(x) = 0 and in the absence
of the LHY correction, the setting at hand reduces to the com-
pletely integrable NLS equation, characterized by the energy

+0o0
H=/ el + (1 — 1y 1) dx. (14)

Furthermore, the NLS equation possesses the following exact
analytical dark soliton solution [73]

Y(x, 1) = {v/p — v?tanh[y/p — v2(x — Xp)] + iv}e M,
15)
where X, is the soliton center and dX,/dt = v denotes its
velocity [43,56]. The energy of the dark soliton can be found
upon substituting Eq. (15) into Eq. (14), leading to

Eps = 3(c* —v*)?, (16)

where ¢? = p in this limit.

Let us now consider the dynamics of the dark soliton in
the TF limit, in the presence of both the LHY term and the
external potential. For this purpose, we treat the LHY term
as a small perturbation and we assume the potential to be
slowly varying on the soliton scale. In such a case, we may
employ the so-called Landau dynamics approach [62] (see
also Ref. [74]), according to which the soliton energy (14)
is treated as an adiabatic invariant in the presence of pertur-
bations. Namely, the background density u will be slowly
varying according to u — p — Vi (x), while ¢> — ¢*(x) =
,oé/ 2 (x)[,oé/ 2(x) — §/2] accounting for the LHY contribution.

Then, assuming the adiabatic invariance of the soliton en-
ergy in Eq. (16), ie., c*(x) — v?> = [(3/4)Eps]*? ~ const.,
using v = dXp/dt = X, and considering a parabolic trap
with strength Q, namely, Vi, (x) = (1/2)Q2x?, we derive the
following nonlinear evolution equation for the dark soliton

position:

Lo 582 1 12
Xo+7 1+Z|:Z+M_EQZX02:| X, =0.

Supposing that the soliton motion takes place in the vicinity
of the trap center, we extract the oscillation frequency 24 of
the dark soliton in the presence of quantum fluctuations as

172
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Notice that, in the absence of the LHY contribution (i.e.,
6 — 0), as well as in the large-density limit (with 4 — +00),
the oscillation frequency of the dark soliton retrieves the well-
known value Q4. = 2/ V2 [43,56]. As we will explicate later
on, this analytical estimate correctly captures the trend of 2,
in terms of p as predicted from the numerical solution of the
eGPE. However, deviations occur, especially as p decreases
and as we depart from the TF regime. Indeed, as expected, the
relevant frequency in the low-density, near-linear limit tends
to Qosc = €2, with the anomalous mode (see the discussion
below) interpolating between these two distinctive limits of
small and large w.

Q

IV. EXCITATION SPECTRUM OF SINGLE DARK
SOLITON SOLUTIONS

Having identified through the aforementioned phase-space
analysis a plethora of localized solutions that exist in the setup
at hand, let us now study stationary single and multiple (see
Sec. V) dark soliton solutions in the presence of parabolic
confinement [43]. The incorporation of the external trapping
potential is of relevance for contemporary experiments [7-9]
dealing with homonuclear BEC mixtures. In practice, we
obtain the relevant trapped solutions by solving the time-
independent version of the eGPE (2) using a fixed point
iterative scheme of the Newton type [75].> Specifically, sta-
tionary states are found upon varying the chemical potential
1, addressing both the small- and large-density (TF) limit for
different strengths of the LHY contribution § spanning low,
intermediate, and comparable to the standard cubic nonlinear-
ity interactions. Characteristic density profiles of the droplet
ground state as well as the different single and multiple dark
soliton configurations are depicted as insets in Fig. 1.

To address the stability of the above obtained solutions,
the following ansatz is introduced in the time-independent
eGPE (2):

W(x, 1) = {Yo(x) + ela(x)e " + p*(x)e™ e, (18)

where Y (x) is the iteratively found equilibrium solution and
€ denotes a small amplitude (formal) perturbation parameter.

For the results presented throughout this work we use a spatial
discretization of dx = 10™* with a second-order (cross-checked with
the outcome of a fourth-order) finite-difference scheme in space and
a fourth-order Runge-Kutta method for the dynamical evolution of
the system with temporal discretization dt = 1075,
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FIG. 4. (a), (c) Bifurcation diagram of the particle number N for the single dark soliton solutions as a function of the chemical potential
for different values of the LHY correction as indicated. (b), (d) Corresponding dependence of the internal (anomalous) mode of eigenfrequency
Qose/S2 vs w. Notice that, in addition to the dipolar mode of frequency $2,./S2 = 1 (see the horizontal black line), the anomalous mode starts
from the linear limit w;, = (3/2)S2. As N is increased, for small enough & values (see the cases of § = 0.01 and § = 0.1), the anomalous
mode decreases and then asymptotes to Q4. /2 =1/ /2 for large p values [see the horizontal dashed black line in panel (d)]. The inset in
panel (d) corresponds to a magnification at small chemical potentials where also the difference from the prediction of Eq. (17) is maximal. In
contrast, for large enough values of § (see the cases of § = 0.5 and § = 1), the anomalous mode frequency first increases and then decreases
as N increases while the chemical potential also reaches a turning point for a minimal critical value of u at e (e = —0.085 for 6 = 1 and
fer = 0.091 for § = 0.5). The trapping strength for all cases is fixed at Q2 = 0.1.

Additionally, €. are the eigenfrequencies and (a(x), b* )’
the eigenfunctions of the eigenvalue problem, which to O(e)

reads
Q al L11 L12 a
*lb| ™~ |-L}, —Ln bl

where (-)* denotes complex conjugation. Here, the block ma-
trix elements are [29]

19)

Ly = =337 + Vie — 1+ 2190l — 28190l
Li> = [Yol* — 181l.

Notice that the latter expression for L, notably hinges on the
fact that the solution v is real.

Recall, that in the absence of beyond mean-field correc-
tions (i.e., for § = 0), the dark solitons of the cubic NLS
are well known to interpolate between the linear limit of the
first-excited state [76,77], with energy E = u = Q(n+ 1/2)
for n = 1 and the TF limit of large density for large values of
the chemical potential . Similarly to the ground state of the
system (see Sec. III B), the relevant waveform is dynamically
stable for all values of . However, contrary to what is the
case for the ground state, the linearization around such a
waveform bears a negative energy (negative Krein signature)
[78,79] mode that interpolates between the linear limit of
frequency Qqc = €2 and the highly nonlinear TF limit of
Qose = 2/ NG) [80]. The Krein signature for the eGPE model
under consideration is defined as K = Qs [ dx(lal* — |b]?).
It constitutes a key quantity of the Bogoliubov—de Gennes
stability analysis since it identifies the energy contribution of

each mode to the unperturbed system. Specifically, depending
on the eigenvectors (a, b) such a mode can have a positive
frequency 2, but a negative energy K < 0 or negative Krein
signature. It is these modes that, in what follows, are called
anomalous modes (alias negative energy modes).

A natural question here concerns how the relevant bifur-
cation structure may change in the presence of the quadratic
nonlinearity of the LHY term. Indeed, Figs. 4(a) and 4(b)
illustrate that the picture is drastically different when the LHY
strength is present. Contrary to the defocusing (repulsive)
cubic nonlinearity case, which induces a bifurcation towards
values of u > E (i.e., to the right of the linear eigenvalue of
the quantum harmonic oscillator) [43], in the 1D geometry
at hand, the focusing (attractive) nature of the LHY [2,42]
correction is the dominant one for small intensities. The cor-
responding bifurcation diagram of the particle number, N =
f [ (x)|?dx, as a function of w is depicted in Fig. 4(a) for
a pair of values of the LHY correction and a fixed trapping
strength © = 0.1. As can be seen, for increasing N, eventu-
ally, the defocusing nature of the large amplitude solutions
“takes over” and leads to the emergence of a turning point,
for 6 = 1, at u = per = —0.085. After this turning point, the
dependence of N on p becomes monotonically increasing, as
is representative of a defocusing nonlinearity [43,77]. Interest-
ingly, the relevant critical point when concerning the ground
state of the droplet is shifted to more negative values of p as
compared with the dark droplet soliton solution [see Fig. 1].
Naturally, as the trap strength tends to vanish, accordingly
both the starting point of the branch and its ., shift to the
left approaching the homogeneous limit values.
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FIG. 5. Critical value of the chemical potential u. versus the LHY strength § for (a) single dark soliton solutions and different trap
frequencies €2 (see legend) and (b) distinct dark soliton complexes ranging from one to three (see legend) and for 2 = 0.1. Evidently, for fixed
§ the turning point gets shifted to lower chemical potentials, either by decreasing the trap frequency or the soliton number. In all cases larger &
reduces p... The dashed horizontal line at ;. = 0 is added as a guide to the eye.

It is also relevant to follow the dependence of the cor-
responding “anomalous” (negative energy or negative Krein
sign) spectral mode; see Fig. 4(b). The relevant (rescaled)
eigenfrequency, at the linear limit bifurcates from the value of
Qose/2 =1 when 1 = i = (3/2)R2. Initially, once again,
the effective focusing nature of the nonlinearity leads to larger
values of Q24./€2, but eventually the defocusing character of
the large amplitude (high nonlinearity) limit leads 2,5 /€2 to
turn around and start decreasing as shown in Fig. 4(b). In the
large-u (TF) limit, the corresponding eigenfrequency asymp-
totes towards the constant value Q4. /2 = 1/ /2. In this latter
case, the solution is largely reminiscent of the corresponding
cubic problem, while near the linear limit of low density, the
solution resembles a first-excited Hermite-Gauss eigenmode;
see the relevant profiles in Fig. 1. Indeed, residing on the upper
(lower) branch, the soliton core widens for smaller (larger)
W since the atom number is significantly reduced. The same
overall phenomenology occurs also for intermediate strengths
of the LHY term as depicted also in Figs. 4(a) and 4(b)
for § = 0.5. Notice however, that for smaller values of the
parameter &, the turning point, appearing at e = 0.091 for
6 = 0.5, is shifted towards more positive values.

The significance of the LHY contribution on the stabil-
ity properties of a single dark soliton is further elucidated
by treating this term as a (weak) perturbative one. Namely,
when considering significantly lower values of the relevant
interaction coefficient such as § = 0.1 and 0.01; see Figs. 4(c)
and 4(d). Evidently, since repulsion prevails in both cases,
N(w) is a monotonically increasing function as w increases
from the linear limit of u = 3€2/2; see Fig. 4(c). This mono-
tonicity for small § is also present in the relevant dependence
of the anomalous mode for each of the distinct values of §;
see Fig. 4(d). In cases of higher §, as shown in Fig. 4 [see,
e.g., Fig. 4(b)], the asymptotics of the relevant anomalous
mode still approach the same (scaled) limit of 1/4/2 [as
is also predicted by Eq. (17)] for large n. Yet, they do so
through a multivalued u dependence, reflecting in this way the
corresponding N (u) curve. Finally, Fig. 4(d) also depicts the
results for the prediction of the dark soliton oscillation fre-
quency using the Landau dynamics approach as per Eq. (17).
As the figure suggests, the Landau prediction correctly

captures the qualitative tendency of the oscillation frequency
for increasingly larger values of p albeit with a noticeable
discrepancy for small u values as depicted in the inset. In
that vein, it is relevant to recall that the relevant prediction
is expected to be asymptotically valid in the limit of large
chemical potential.

Next, we aim to determine the impact of the LHY strength
on the location of the critical point of the bifurcation diagram
N(w) for distinct trap frequencies and soliton numbers. To
this end, we initially obtain dark soliton solutions upon vary-
ing & in the interval [0, 1] covering in this way the small-,
intermediate-, and large-density limits and identifying the rel-
evant turning point 4 = [. Focusing on the single soliton
case, the behavior of u in terms of § is depicted in Fig. 5(a)
not only for = 0.1 that is typically utilized herein, but also
upon varying the trapping frequency. It becomes apparent that,
irrespective of the trap strength, ., decreases for increasing
8. Additionally, for fixed €2, ., is shifted to more positive
values as § — 0 while for looser traps pe, — —0.2 for§ — 1,
approaching this way the value of u, = —2/9 found in our
previous phase-plane analysis in free space. Furthermore, it is
possible to infer from which strength of the LHY contribution
onward, N(u) features one instead of two (i.e., lower and
upper) branches. For instance, when 2 = 0.1 and § ~ 0.2,
Mer & piin = 0.15, and thus for § < 0.2 the bifurcation dia-
gram consists only of the upper branch. A similar behavior of
1er(8) takes place for higher soliton numbers, see in particular
Fig. 5(b). As can also be seen, p, is larger for fixed (€2, §)
when increasing the number of solitons; see also the relevant
discussion of such solutions in the next section. We remark
that, in the absence of a soliton, the respective critical point of
the emergent droplet occurs at lower u, e.g., when § = 1 then
Uer &~ —0.183; see leftmost curve in Fig. 1.

Since dark solitons and bright quantum droplets can
coexist, in what follows we explicitly depict in Figs. 6(a) and
6(b) representative droplet-dark soliton density profiles for
different  values upon considering variations of the trapping
frequency for § = 1. In all cases, we have verified the spectral
stability of these solutions as the homogeneous limit is
approached. In line with our previous findings, solutions
bearing smaller p values, such as u = —0.15, persist for
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FIG. 6. Selected density profiles of the droplet dark soliton for (a) © = —0.15 and (b) « = 0.2 and distinct 2 values (see legends) in the
case of § = 1. Reducing the trap strength leads to a flat-top droplet dark configuration. Panel (c) and its inset depict different magnifications of
the density profile of panel (a) for 2 = 0.0004 illustrating the spatial resolution used.

trap frequencies ~10~* but they cease to exist for Q ~ 1072,
While traversing the relevant branch, the density profiles
gradually alter their shape from a configuration proximal to
the first-excited Hermite-Gauss eigenstate to a progressively
wider dark droplet configuration; see Figs. 6(a) and 6(b).
Furthermore, looser traps lead to droplet-dark configurations
with a wider flat-top portion, being more pronounced for
smaller values of w. Notice that the droplet background is
modified [see Figs. 6(a) and 6(b)] when compared with the
homogeneous case [29,44] due to the presence of the trap
as has been also observed for dipolar bosons in Ref. [81].
Furthermore, a sharp decay of the density, with respect to
the size of the condensate, can be observed at the edge of
the cloud. This sharp transition, when compared with the
entire domain, forces the numerical characterization of the
corresponding solutions to contain a large number of mesh
points in order to keep a fine enough discretization to resolve
the solution over the entire domain as depicted in the zoomed
panel of Fig. 6(c). It is exactly in this turning point region
where an analysis tantamount to that of Ref. [71] is relevant
to perform, a topic of interest for future mathematical studies.

V. MULTISOLITON SOLUTIONS AND THEIR DYNAMICS

Let us now consider a homonuclear harmonically confined
BEC mixture, in which the LHY contribution is taken on equal
footing with the cubic nonlinearity (i.e., § = 1), and offer
a generalization of our findings of the preceding section to
multisoliton complexes; see Fig. 1. Note here that, although
we restrict ourselves to configurations consisting of two and
three dark solitons, our results can be generalized to N -dark
soliton states. Starting with a general qualitative remark, we
note that higher-order dark solitons (2 solitons, 3 solitons,
etc.) are progressively higher excited states of the system; see
the relevant discussion of Ref. [82] for the cubic nonlinearity
case. As such, each of them bears a progressively higher num-
ber of negative Krein-sign eigenvalues. As has been proved
in the work of Ref. [83], the number of such negative Krein-
sign modes is equal to the number of the solitons in the
configuration. While this does not a priori render the state
dynamically unstable, it renders it far more prone to so-
called oscillatory instabilities arising from the collisions of
such modes with the rest of the excitation spectrum. The
latter, asymptotically, resembles that of the ground-state

configuration. In short, an N -dark-soliton state bears A
“excitation modes” (pertaining structurally to in-phase, out-
of-phase, and mixed-phase motions of the dark solitons)
which may contribute to its potential instability.

The stability analysis outcome of the identified multi-
soliton solutions is showcased in Fig. 7. Similarly to the
bifurcation diagram of Fig. 4, also here, the dominant at-
tractive role of the LHY term for small @ values and the
repulsive nature of the cubic term for large ones lead to
the appearance of a turning point in N(u) both for the
two- and the three-dark soliton configurations. This turn-
ing point appears at p = 0.014 for the two-soliton states
while it occurs at ue, = 0.115 for the three-soliton complexes.
However, in contrast with the single dark soliton case, the
corresponding spectrum of these higher soliton complexes
is more involved as can be seen by inspecting the behav-
ior of the anomalous modes shown in Fig. 7. Here, the
lowest-lying anomalous mode (designated by AM;) for these
multisoliton configurations follows a similar trend as the one
found in the single dark scenario. This is natural to expect
as this mode pertains to the in-phase motion of the dark
solitons (see, e.g., Ref. [84]). In this case, the distance be-
tween the solitons does not change and hence the oscillation
frequency is tantamount to that of the motion of a single
soliton in the trap, i.e., effectively of the center of mass. The
lowest lying spectral modes depart from the linear limit of
Qosc/2 =1 when u = i = 52/2 and pu = g = 72/2
for the two- and three-dark soliton solutions respectively.
Additionally, the two and all three anomalous modes turn
simultaneously at each of the aforementioned critical points;
notice the relevant “loops” present for the second (AM;)
and the second and the third (AM3) modes for the two- and
the three-dark solitons, respectively. In particular, the higher
modes for both two- and three-soliton configurations, bearing
negative Krein signature (K < 0), undergo collisions with
the background modes that are characterized by a positive
Krein signature (K > 0). Such collision events give rise to
complex eigenfrequency quartets signaling the presence of
an oscillatory instability [79] for the ensuing configuration;
see also the discussion in Refs. [43,82,84]. The relevant
instability windows for the two-soliton states appear for u €
[0.037,0.249] and u € [0.482,0.636] whereas they occur
for u € [0.129, 0.349] and n € [0.650, 0.925] for the three-
soliton states.
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FIG. 7. Dependence of the anomalous mode, 2,./€2, for (a) two and (b) three dark soliton solutions as a function of x for § = 1. The
relevant turning points, being shifted to more positive p values for higher soliton complexes, appear at . = 0.014 and u., = 0.115. In both
cases the collision of the second anomalous mode (green and purple lines) with the background ones (black lines) signals the occurrence of an

oscillatory instability.

Dynamical evolution of the steady states perturbed by the
anomalous modes is showcased in Fig. 8. Specifically, the sys-
tem is initialized with a perturbed density |W(x, t)am, |> Where,
as per Eq. (18), the initial condition is given by W(x, 0)am, =
Yo(x) + €la;(x) + b} (x)] with the subscript i indicating the
anomalous mode number and € = 0.3 is chosen so as to
observe the ensuing oscillations already at an early stage
within the dynamical simulation. The dynamics of the ensuing
anomalous mode perturbations for i = 1, 2, 3 of the different
multisoliton configurations depicted in Fig. 8 confirms the
above stability analysis results, while exposing the internal
type of motion that each of the modes induces. Particularly, for
both two- and three-soliton states, the lowest lying anomalous
eigenfrequency (AM,) leads, once activated, i.e., upon adding
to the stationary solution the eigenvector associated with it, to
the in-phase vibration of these entities. This is illustrated in
Fig. 8(a) [Fig. 8(b)] when u =1 (u = 1.5) and § = 1 for the
two-soliton (three-soliton) configuration. On the other hand,
AM, triggers the out-of-phase oscillation of the two-soliton
solution [Fig. 8(c)]. The same type of motion but in a pair-
wise fashion is activated when exciting the three-soliton state
through AM; [Fig. 8(d)]. The remaining anomalous mode,
AM), in the three-soliton case produces an out-of-phase mo-
tion of the outermost dark solitons while the central one is
unaffected throughout the evolution (results not shown here).
Note that for the stable configurations in Fig. 8, we verified
that the evolution remained coherent up to times ¢ ~ 3 x 103

Finally, let us briefly describe the typical dynamics ensuing
from the instabilities of multisoliton configurations. Specif-
ically, for parameter values residing in the above-discussed
instability windows, we find that, irrespectively of which
mode is added to the initially stationary two- and three-
soliton configuration, the resonant (unstable) second mode is
eventually excited. The activation of this mode is depicted
in Figs. 8(e) and 8(f), respectively, for two and three dark
soliton solutions and for chemical potentials corresponding to
the maximum instability growth rate. Namely, for u = 0.08
and p = 0.2 having an imaginary part Im(2./2) ~ 0.013
and Im(Q0s./2) ~ 0.048, respectively. In both cases, the

amplification of the out-of-phase vibration is triggered and
progressively leads to an overall breathing of the entire con-
figuration. This overall breathing pattern of the background
is more transparent in the three dark soliton state, when
compared with the two-soliton one, with the central wave re-
maining nearly unaffected. The impact of this breathing is also
reflected on the occurrence of “beats” present, for instance,
at the contraction intervals around ¢ ~ 700 or ¢t = 1650 in
Fig. 8(e). These beats stem from resonances between the
anomalous modes of dark solitons and those associated with
the background state (on which these solitons are placed).
This is a fundamental feature pertaining to such oscillatory
instabilities [43].

VI. CONCLUSIONS AND PERSPECTIVES

We have investigated the existence and stability properties
of single- and multisolitonic configurations in the presence
of quantum fluctuations as captured by the LHY contribution
both in free space and under the influence of a harmonic trap
in one spatial dimension. Our analysis covers the regime from
the quantum droplet (low density) to the TF (large density)
limit. The hydrodynamic formulation of the eGPE describing
a homonuclear symmetric bosonic mixture is utilized deliv-
ering insights on the existence of localized solutions of the
underlying dynamical system.

In free space, the respective phase-plane analysis reveals a
variety of localized waveforms such as black and gray soli-
tons, kink-type structures, as well as bright droplets, and the
most recently found bubbles. These are identified in the rele-
vant phase portraits as either homoclinic or heteroclinic orbits
and analytical solutions for the kinks, the bright droplets, and
the dark solitons are discussed. It should be emphasized that
kink, bright quantum droplet, and bubble configurations arise
exclusively due to the presence of the LHY term.

For harmonically trapped configurations, the so-called
Landau dynamics approach which treats the soliton energy as
an adiabatic invariant, is employed to obtain a generalized,
LHY-dependent, internal oscillation frequency of the dark
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FIG. 8. Density evolution of anomalous modes [W(x, 7)am, |*. In each case, the steady state is perturbed with the corresponding anomalous
modes initialized with an amplitude of € = 0.3 and then allowed to evolve in time. Panels (a) and (c) [(b) and (d)] correspond to stable
modes while panel (e) [(f)] pertains to the unstable mode for the two- [three-] soliton configuration. The anomalous modes in panels (a) and
(b) represent in-phase oscillations while panels (c) and (d) correspond to out-of-phase oscillations. The unstable cases depicted in panels
(e) and (f) for two and three solitons, respectively, showcase the destabilization of the second anomalous mode (AM,) through a complex
eigenfrequency quartet. It is observed that the dynamical evolution of this instability is manifested as amplified out-of-phase vibrations that

eventually saturate and are subsequently subject to recurrence.

soliton. This altered frequency bears the imprint of quantum
fluctuations and can be traced back to the already modified
local speed of sound, which can be used to diagnose beyond
mean-field effects.

The validity of the aforementioned theory is compared
with the numerical evaluation of the corresponding eGPE
excitation spectrum. In particular, the stability analysis unveils
that single dark solitons are stable configurations upon chem-
ical potential and trap variations for different strengths of the
LHY interaction parameter. Importantly, the interplay of the
LHY (dominating for small chemical potentials) and the cubic
nonlinearity (prevailing for large chemical potentials) leads to
the existence of a turning point as the number of particles is
increased. This turning point is associated with the structural
deformation of the configuration from a Hermite-Gauss linear
state to a TF-like dark soliton solution, and depends on both
the LHY and the trap strength, as well as the soliton number.
As such, the presence of the LHY term alters the structure
of the dark soliton spectrum as compared with the mean-field
outcome providing another imprint of quantum fluctuations.
Furthermore, spectral stability is retained for different chemi-
cal potentials independently of the trap strength. Multisoliton
solutions feature a similar phenomenology as the single dark
soliton ones, but with their respective turning points shifted
towards more positive chemical potentials for increasing num-
ber of solitons in the complexes. Interestingly, multisoliton
configurations experience parametric windows of oscillatory
instabilities displaying a gradually amplified out-of-phase mo-
tion of the individual entities leading to a periodic overall
breathing of the entire entity.

There is a plethora of future research directions which can
be pursued based on our findings. For instance, a direct exten-
sion would be to study in further detail the involvement and
influence of dark-droplet states in more practical applications
as, e.g., in scattering problems since they are expected to act
as material barriers or absorbers. A further understanding of
the difference between the analytical prediction of the dark

soliton oscillation frequency compared with the eGPE numer-
ical prediction might be fruitful using other perturbation or
analytical schemes. It still remains an open question whether
the presence of the trap impacts the Bogoliubov modes and
thus the LHY term or to what extent higher-order quantum
corrections will play a crucial role as argued in Ref. [85]; see
also the review of Ref. [42]. Also, it is particularly relevant to
extend the present considerations to higher-dimensional set-
tings, e.g., for configurations bearing solitonic stripes where
transverse excitations can play a crucial role and induce fur-
ther instabilities. Certainly, the investigation of soliton and
vortex structures and interactions thereof in higher dimensions
is of interest. Moreover, the generalization of our results to
heteronuclear mixtures where more complex nonlinear struc-
tures such as dark-bright and dark-antidark solitons can be
formed is another intriguing aspect.
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APPENDIX: TRAVELING CONFIGURATIONS
IN FREE SPACE

To complement the study of nontraveling configurations
for C; = 0 in Sec. IIT A, here we turn our attention to the case
of traveling configurations corresponding to C; # 0 (still in
free space, i.e., Vi = 0). In this case, the fixed point at ¢ = 0
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(b) (u = —0.2018) there exist bounded periodic and homoclinic orbits. For example, for (c) u = —0.15 and (d) u = 0.5 there exist homoclinic
orbits corresponding, respectively, to a shallow and a deep (almost black) gray soliton solution; see the relevant solid red curves in each case.

disappears due to the emergent singularity: in particular, V (gq)
diverges in the vicinity of ¢ = 0; see the top panels in Fig. 9.
In this parameter regime, the dynamical system can have zero,
two, or four fixed points, depending on the values of u, §,
and C;.

Since analytical solutions are not straightforward to obtain,
we will proceed by providing representative examples corre-
sponding to different values of u, for fixed § =1 and C; =
0.1. We have checked that other choices of the aforementioned
parameters lead to qualitatively similar results. For these pa-
rameter values, we find that in the interval pu < —0.2018,
all trajectories are unbounded for |x| — oo; a pertinent
example is given in Fig. 9(a) for u = —0.5 while the thresh-
old case for © = —0.2018 is depicted in Fig. 9(b). On the
other hand, for larger values of w, see for instance Figs. 9(c)

and 9(d) (corresponding, respectively, to u = —0.15 and
u =0.5), center and saddle fixed points on either side of
q = 0 emerge.

Importantly, in these cases, such an arrangement of fixed
points allows for the appearance of homoclinic orbits, with
the absolute maximum of g(x) occurring closer to the origin
as u is increased. The relevant forms of g(x) resemble gray
solitons of the usual defocusing NLS equation, which are
characterized by a nonzero density minimum. Accordingly,
the gray soliton corresponding to the homoclinic orbit for p
= —0.15 depicted in Fig. 9(c) is a shallow one, while the soli-
ton corresponding to u = 0.5, depicted in Fig. 9(d) is almost
black. A detailed study of these gray solitons, including their
stability, falls outside of the scope of this work and will be
presented elsewhere.
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