
Chapter 11
A Map Approach to Stationary Solutions
of the DNLS Equation

Ricardo Carretero-González

11.1 Introduction

In this chapter we discuss the well-established map approach for obtaining station-
ary solutions to the one-dimensional (1D) discrete nonlinear Schrödinger (DNLS)
equation. The method relies on casting the ensuing stationary problem in the form
of a recurrence relationship that can in turn be cast into a two-dimensional (2D) map
[1–5]. Within this description, any orbit for this 2D map will correspond to a steady
state solution of the original DNLS equation.

The map approach is extremely useful in finding localized solutions such as
bright and dark solitons. As we will see in what follows, this method allows for
a global understanding of the types of solutions that are present in the system and
their respective bifurcations.

This chapter is structured as follows. In Sect. 11.2 we introduce the map approach
to describe steady states for general 1D nonlinear lattices with nearest-neighbor cou-
pling. In Sect. 11.3 we present some of the basic properties of the 2D map generated
by the 1D DNLS lattice and how these properties, in turn, translate into properties
for the steady-state solutions to the DNLS. We also give an exhaustive account
of the possible orbits that can be generated using the map approach. Specifically,
we describe in detail the families of extended steady-state solutions (homogeneous,
periodic, quasi-periodic, and spatially chaotic) as well as spatially localized steady
states (bright and dark solitons and multibreather solutions). In Sect. 11.4 we study
the limiting cases of small and large couplings. We briefly describe the bifurcation
process that is responsible for the mutual annihilation of localized solutions through
a series of bifurcations. For a more detailed account of the bifurcation scenaria for
the DNLS using the map approach, see [3].
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11.2 The 2D Map Approach for 1D Nonlinear Lattices

The 2D map approach that we present can be used in general for any 1D nonlinear
lattice as long as the coupling between lattice sites is restricted to nearest neighbors.
The most common form of such coupling scheme is the discrete Laplacian �un =
un−1− 2un + un+1. In order to describe the map approach in its more general form,
let us consider a generic nonlinear lattice of the form

u̇n = G(un−1, un, un+1)+ F(un), (11.1)

where G is the nearest-neighbor coupling function and F corresponds to the on-site
nonlinearity. The case of the DNLS with the standard cubic nonlinearity is obtained
by choosing G = (ε/ i )� (� will be used to denote the discrete Laplacian) and
F(u) = (β/ i )|u|2u, where ε ≥ 0 is the coupling constant and β = ±1 corresponds
to defocusing and focusing nonlinearities, respectively. For the map approach to
be directly applicable we need to rewrite the steady-state solution of Eq. (11.1) as
a recurrence relationship. Therefore, the only requirement for the map approach to
work in the general case of the system (11.1) is that the coupling function needs to
be invertible with respect to un+1 such that G(un−1, un, un+1) = G0 can be explic-
itly rewritten as un+1 = G−1(un−1, un,G0). In particular, this is the case for any
coupling function defined as a linear combination of nearest neighbors (which is
the case of the discrete Laplacian). For the sake of definitiveness, let us concentrate
on the DNLS with cubic nonlinearity but keeping in mind that the technique can
be applied in more general scenaria (for example, in [4] and [6] unstaggered and
staggered solutions of the cubic-quintic DNLS are studied in detail).

Let us then start with the 1D DNLS with cubic on-site nonlinear term

i u̇n = −ε�un + β|un|2un . (11.2)

It can be shown [7] that any steady-state solution of Eq. (11.2) must be obtained
by separating space and time as un = exp(i�t)vn , where � is the frequency of the
solution, which yields the steady-state equation for the real amplitudes vn :

�vn = ε(vn−1 − 2vn + vn+1)− βv3
n . (11.3)

It is worth noting at this point that in the 1D case the stationary state is deter-
mined, without loss of generality, by the real amplitude vn . In higher dimensions,
for topologically charged solutions such as discrete vortices and supervortices in
2D [8–12], discrete diamonds and vortices in 3D [13, 14], and discrete skyrmion-
type solutions [15], it is necessary to consider a complex steady-state amplitude vn .
Nonetheless, it is crucial to stress that the 2D map approach is only applicable for
1D lattices since the steady-state problem for higher dimensional dynamical lattices
cannot be reduced to a recurrence relationship as it is the case (see below) for the
1D lattice.
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The steady-state equation described by Eq. (11.3) can now be rewritten as the
recurrence relationship

vn+1 = R(vn, vn−1) ≡ 1

ε

[
(�+ 2ε)vn − εvn−1 + βv3

n

]
, (11.4)

which in turn can be cast as the 2D map

(
vn+1

wn+1

)
= M

(
vn

wn

)
, M :

{
vn+1 = R(vn, wn)

wn+1 = vn
, (11.5)

where the second equation defines the intermediate variable wn ≡ vn−1. It is im-
portant to stress that, by construction, any orbit of the 2D map (11.5) will corre-
spond to a steady-state solution of the DNLS (11.2). In particular, any given ini-
tial condition P0 = (v0, w0)T for the 2D map will generate the orbit described
by the doubly infinite sequence of points (. . . , P−2, P−1, P0, P1, P2, . . . ) where
Pn+1 = M(Pn) and negative subindexes correspond to backward iterates of the 2D
map [Pn−1 = M−1(Pn)]. This 2D orbit will in turn correspond to the steady state
{. . . , w−2, w−1, w0, w1, w2, . . . }, where wn = [Mn(P0)]y is the y-coordinate (pro-
jection) of the nth iterate of P0 through M . Alternatively, one could also obtain the
steady state as {vn}∞n=−∞, where vn = [Mn+1(P0)]x is the x-coordinate (projection)
of the (n + 1)th iterate of P0.

It is also important to mention that the 2D map approach, although helpful in
describing/finding steady-state solutions of the associated nonlinear lattice, does
not give any information about the stability of the steady states themselves. This
is a consequence of separating time from the steady state where one loses all the
temporal information (including stability properties). Nonetheless, the 2D map ap-
proach does indicate the genericity or parametric/structural stability of certain types
of orbits. Specifically, if the type of steady state that is been considered corresponds
to a 2D map orbit (including fixed points, periodic orbits, and quasi-periodic orbits)
that is isolated (i.e., away in physical and parameter space) from a bifurcation point,
then this orbit will still exist in the presence of, small, generic parametric and exter-
nal perturbations. This genericity property might be useful in realistic applications
where the presence of (a) small errors in the determination of the parameters of the
system and (b) external noise is ubiquitous. Note, however, that if the steady state is
unstable to start with, the parametric perturbation will not modify its existence but
it will remain unstable.

11.3 Orbit Properties and Diversity in the DNLS

Now that we have established the equivalence between a steady state of the DNLS
(11.2) and orbits of the 2D map (11.5), let us discuss the different types of orbits
that can be generated using the 2D map approach, their bifurcations and some of
their basic properties.



224 R. Carretero-González

11.3.1 Symmetries and Properties of the Cubic DNLS Steady States

All symmetries and properties inherent to the 2D map (11.5) generate respective
symmetries and properties for the steady-state solutions to the DNLS. In particu-
lar, for the cubic DNLS (cf. Eq. (11.4)), we have the following symmetries and
properties:

(a) The inverse map M−1: M−1(vn, wn)T = (vn−1, wn−1)T is identical to M after
exchanging v ↔ w. Therefore any forward orbit of the 2D map will have a
symmetric backward orbit that is symmetric with respect to the identity line.

(b) Exchanging vn → (−1)nvn andwn → (−1)nwn transforms the 2D map M onto
(−1)n M with �→ −�− 4ε and β → −β. This corresponds to the so-called
staggering transformation where every solution to the focusing (β = −1) cubic
DNLS has a corresponding solution to the defocusing (β = +1) cubic DNLS
with adjacent sites alternating signs (and after a rescaling of the frequency).

(c) The 2D map is area preserving and, as a consequence, the steady-state solutions
to the DNLS have the following properties. (i) Linear centers of the 2D map
are also nonlinear centers and thus there will be periodic and quasi-periodic
orbits around (linearly) neutrally stable fixed points. These 2D map orbits cor-
respond, respectively, to spatially periodic and quasi-periodic steady state solu-
tions to the DNLS (see below). (ii) Saddle fixed points of the 2D map will have
stable and unstable manifold with the same exponential rates of convergence.
Thus, localized steady state solutions of the DNLS will have symmetric tails at
n→±∞.

11.3.2 Homogeneous, Periodic, Modulated, and Spatially Chaotic
Steady States

In this section we concentrate on describing steady states that are spatially extended
(i.e., not localized in space). These correspond to (a) fixed points, (b) periodic orbits,
(c) quasi-periodic orbits, and (d) chaotic orbits of the 2D map M .

11.3.2.1 Homogeneous Steady States

The most straightforward orbit that can be described by the 2D map approach
is a fixed point. Suppose that P∗ = (v∗, w∗)T is a fixed point of M , namely
M(P∗) = P∗. This trivial orbit generates the homogeneous steady solution vn = v∗.
Note that, by construction, all fixed points of M must satisfy v∗ = w∗. For the DNLS
case under consideration, the 2D map fixed point equation (� + βv2)v = 0 has
three fixed points v∗ = {0,±√−�/β}, that in turn correspond to the two spatially
homogeneous solutions un(t) = 0 and un(t) = √−�/β exp(i�t).
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11.3.2.2 Periodic Steady States

Let us now consider a periodic orbit of the 2D map. Suppose that {P0, P1, ..., Pp−1}
is a period-p orbit of M (i.e., M(Pp−1) = P0). This periodic orbit for M will gener-
ate a spatially periodic steady-state solution for the DNLS, where vn = [Pn mod(p)]y .
A particular case of this spatially periodic steady state stems from period-2 orbits
{T0, T1}. There are at most three such period-2 solutions depending on the (ε,�, β)-
parameter values. One of these solutions has the form T0 = −T1 = (+a,−a)T

where a = √−(�+ 4ε)/β. This symmetric period-2 orbit is a consequence of the
symmetry of the 2D map under consideration where the transformations v ↔ −v
andw↔−w leave the equations invariant. This symmetric period-2 orbit generates
an oscillatory steady-state profile of the form vn = (...,−a,+a,−a,+a, ...). In
general a period-p orbit of the 2D map generates an spatially periodic steady state
with spatial wavelength (period) of p.

11.3.2.3 Quasi-Periodic Steady States

An interesting steady-state solution is generated when one considers quasi-periodic
solutions of the 2D map. For example, the origin is a nonlinear center for −4ε <
� < 0 in both the focusing and defocusing case. Around this center point the
2D map exhibits an infinite family of quasi-periodic solutions rotating about the
origin (cf. Fig. 11.1). These 2D map orbits correspond to steady-state modulated
waves about the fixed point (in this case the origin) for the DNLS. An example of
such an orbit is depicted in Fig. 11.1. In the left panel of the figure we depict with
circles the quasi-periodic orbit around the origin, while in the right panel we depict
(also with circles) its corresponding steady-state solution to the DNLS. The spatial
periodicity of these modulated waves is approximately determined by the argument
of the eigenvalues of the Jacobian at the fixed point.
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Fig. 11.1 Periodic, quasi-periodic and chaotic orbits of the 2D map (left). The right panel depicts
the corresponding steady-state solutions to the DNLS. Circles (squares) correspond to a quasi-
periodic (chaotic) orbit. Parameter values correspond to: � = −0.1, β = −1, and ε = 1
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11.3.2.4 Spatially Chaotic Steady States

As a last example of a non-localized steady state let us consider the next level of
complexity for a 2D orbit: a chaotic orbit. Chaotic orbits will be a common occur-
rence in nonlinear maps. For the case under consideration, the 2D map induced by
the DNLS becomes chaotic close to the separatrix between higher periodic orbits. In
Fig. 11.1 we depict such a chaotic region around the separatrix of a pair of period-7
orbits (see outer orbits). Such a chaotic orbit naturally generates a steady-state solu-
tion (see squares in the right panel) that resembles a period-7 orbit that is chaotically
modulated. It is important to mention that, typically, these chaotic orbits exhibit
“stickiness” close to the separatrix (see [16] and references therein for more details
on chaotic transport) and thus will stay close to a periodic orbit for some time.
However, the chaotic orbit is eventually expelled (both in forward and backward
time) and therefore the steady state becomes unbounded at n → ±∞. See [17] for
a discussion of the relationship between these chaotic orbits and the transmission
properties in nonlinear Schrödinger-type lattices.

11.3.3 Spatially Localized Solutions: Solitons and Multibreathers

Undoubtedly, the most interesting steady-state solutions are generated by homo-
clinic and heteroclinic orbits of the 2D map. These orbits correspond, respectively,
to bright and dark solitons of the DNLS.

11.3.3.1 Homoclinic Orbits

Let us concentrate our attention on homoclinic orbits emanating from the origin.
A homoclinic orbit corresponds to an orbit that connects, in forward and backward
time, a fixed point with itself. In turn, this corresponds to a non-trivial steady-state
solution that decays to the fixed point for n → ±∞. This is the so-called bright
soliton solution. A sufficient condition for the existence of a homoclinic orbit for
a 2D map is that the stable (W s ) and unstable (W u) manifolds of the fixed point
intersect. Thus, a necessary condition for the existence of these manifolds is that
the fixed point must be a saddle. This latter condition, in turn, translates into a
necessary (but not sufficient) condition on the parameters of the system. For ex-
ample, in the � < 0 case, one needs a coupling constants ε < −�/4 to ensure
the origin is a saddle point (for � > 0 the origin is always a saddle point). It is
important to stress that the existence of a saddle does not guarantee the existence of
a homoclinic connection since the stable and unstable manifolds might not intersect
at all. It is possible to formally establish the existence of homoclinic orbits of nearly
integrable 2D maps through the Mel’nikov approach [18]. This method has been
successfully applied to the single DNLS chain [1] as well as to systems of coupled
DNLS equations [19] by means of a higher dimensional Mel’nikov approach [20].
Another approach to establish the existence of the homoclinic orbit is to expand
them in a power series using a center manifold reduction [1, 7, 21, 22]. This has the
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advantage that one is able to extract an approximation for the homoclinic orbits and
thus be able to approximate their bifurcations [23]. See [21] for a comprehensive
list of different techniques to approximate the homoclinic connections arising from
the DNLS system.

Any intersection between the stable and unstable manifolds (a so-called homo-
clinic point) will generate a localized steady-state solution for the DNLS. Generi-
cally, the stable and unstable manifolds cross transversally giving rise to a so-called
homoclinic tangle (see left panel of Fig. 11.2 for a typical example). The transver-
sality of the intersection of the manifolds establishes the parametric stability for
the existence of homoclinic points and thus localized solutions. This property is
extremely important for applications since it guarantees that, despite inaccuracies
in the model parameters and external perturbations, localized solutions will still
survive. This, for example, allows for approximate dynamical reductions to the in-
teractions of continuous chains of bright solitons to be able to perform localized
oscillations [24]. Two examples of soliton solutions generated by a homoclinic point
of the focusing (β = −1) 2D map are depicted in Fig. 11.2 and they correspond to
bond-centered (circles) and site-centered (squares) solutions. These two families
are generated by the odd and even crossing of the stable and unstable manifolds
starting at the points labeled by the points Q0 and P0 in the left panel. In general,
the 2D map approach not only establishes the existence of bright soliton solutions
(as well as dark soliton solutions, see below) but also determines their decay rate.
Specifically, the eigenvalues λ± (λ− < 1 < λ+) for the saddle fixed point support-
ing the homoclinic orbit (the origin in the case under consideration) determine the
exponential decay λ|n|− = λ

−|n|
+ for n → ±∞ (λ− = λ−1

+ is a consequence of the
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Fig. 11.2 Homoclinic connection of the 2D map (left). Stable and unstable manifolds are depicted
by solid and dashed lines, respectively. The right panel depicts the corresponding bright soliton
steady-state solutions to the DNLS. Circles (squares) correspond to a bond (site) centered bright
soliton solution generated by the initial condition depicted in the left panel by P0 (Q0). Parameter
values correspond to: � = 0.75, β = −1, and ε = 1
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Fig. 11.3 Homoclinic and heteroclinic connections of the 2D map (left). Stable and unstable mani-
folds are depicted by solid and dashed lines, respectively. The right panel depicts the corresponding
dark soliton (squares) and staggered bright soliton (circles) steady state solutions to the DNLS
generated by the initial conditions depicted in the left panel by Q0 and P0, respectively. Parameter
values correspond to: � = −4.5, β = 1, and ε = 1

properties described in Sect. 11.3.1). In our case the eigenvalues at the origin are
given by 2ελ± = �+ 2ε ±

√
�(�+ 4ε).

The staggering transformation generated by the symmetry described in
Sect. 11.3.1.(b) establishes the existence of a staggered companion to the above
described bright soliton. In Fig. 11.3 we depict with circles such a staggered bright
soliton emanating from the initial condition labeled with P0 in the left panel. The de-
caying properties for the staggered bright soliton are the same as for its unstaggered
sibling.

11.3.3.2 Heteroclinic Orbits

Instead of considering connections involving a single fixed point, consider the sta-
ble manifold W s (x∗1 ) emanating from the fixed point x∗1 and the unstable manifold
W u(x∗2 ) emanating from the fixed point x∗2 (x∗1 
= x∗2 ). If these manifolds intersect
then it is possible to induce an orbit that connects, in forward time, x∗1 with, in
backward time, x∗2 . This is a so-called heteroclinic connection and it corresponds
to a steady state that connects to distinct homogeneous steady states (x∗1 and x∗2 ),
namely a dark soliton (or front).

Two examples of dark solitons generated by heteroclinic orbits of the 2D map
are depicted in Figs. 11.4 and 11.3. Figure 11.4 depicts a dark soliton in the focus-
ing case which has staggered tails, while Fig. 11.3 depicts (see orbit depicted with
squares emanating from the initial condition labeled by Q0) a standard dark soliton
for the defocusing case.

The decaying properties for the tails of the dark soliton can be obtained, as in
the case of the bright soliton, by the appropriate eigenvalues of the fixed points
supporting the solution.
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Fig. 11.4 Heteroclinic connection of the 2D map (left). Stable and unstable manifolds are depicted
by solid and dashed lines, respectively. The right panel depicts the corresponding staggered dark
soliton steady-state solution to the DNLS generated by the initial condition depicted in the left
panel by P0. Parameter values correspond to: � = 3, β = −1, and ε = 1

11.3.3.3 Multibreathers

By following higher order intersections of the homoclinic connections it is pos-
sible to construct localized solutions with more than one localized hump [2, 3].
These solutions are usually referred to as multibreathers. In Fig. 11.5 we depict
three examples of bright multibreathers for the same parameters but starting at dif-
ferent intersections on the homoclinic tangle. For a detailed classification of these
multibreather solutions see [2] and [3]. Naturally, multibreather solutions are also
possible in the defocusing case in the form of dark multisolitons (several contiguous
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Fig. 11.5 Higher order homoclinic connections corresponding to multibreather solutions. The
three multibreather solutions correspond to: (a) symmetric two-hump multibreather generated by
the initial condition P0 (see circles), (b) asymmetric two-hump multibreather generated by the ini-
tial condition Q0 (see squares), and (c) three-hump multibreather generated by the initial condition
R0 (see triangles). Parameter values correspond to: � = 0.75, β = −1, and ε = 1
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troughs asymptotic to the constant homogeneous steady-state background) [25, 26].
It is worth mentioning that all the multibreather structures described herein are
genuinely discrete solutions and are not related to the multisoliton solutions of the
continuous nonlinear Schrödinger equation that can be generated from the single
soliton solution by using the inverse scattering theory [27].

11.4 Bifurcations: The Road from the Anti-Continuous
to the Continuous Limit

One of the most appealing aspects of the map approach to study steady states of
nonlinear lattices is not only the elucidation of the extremely rich variety of struc-
tures that can be described but, perhaps more importantly, its usefulness in fully
characterizing their bifurcations. The idea is to start at the so-called anti-continuous
[28] (uncoupled) limit, ε = 0, where any solution vn ∈ {0,±

√−�/β} is valid. It
is known that all possible solutions for ε = 0 can be continued to finite coupling
ε∗ > 0 [28]. In fact, several works have been devoted to finding bounds for ε∗

(threshold for coupling below which any solution can be found) and they range
from ε∗ > 1/(10+ 4

√
2) ≈ 0.0639 to ε∗ > (3

√
3 − 1)/52 = 0.0807 [3, 7, 29]. In

terms of the 2D map description, the existence of any solution vn ∈ {0,±
√−�/β}

is a consequence of the fractal structure of the homoclinic tangle for small coupling.
In fact, for small ε the homoclinic tangles tend to accumulate close to the basic nine
points (x, y) with x, y ∈ {0,±√−�/β} allowing orbits consisting of any combi-
nation of states vn ≈ {0,±

√−�/β} to be possible [3]. This effect can be clearly
seen in panel (a) of Fig. 11.6 that corresponds to a very weak coupling ε = 0.05
that is below the critical coupling ε∗ and thus any orbit connecting any possible
combination of neighboring basic points is valid.

As the coupling parameter ε is increased from the anti-continuous limit, solutions
start to dissappear through mutual collisions in saddle node and pitchfork bifurca-
tions. A detailed description of this scenario pertaining to the DNLS can be found
in [3]. This work was in turn inspired by a similar analysis performed on the Hénon
map [30]. In both [30] and [3] it is conjectured (the so-called no-bubbles-conjecture)
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Fig. 11.6 Homoclinic tangle progression as the coupling parameter is increased from the anti-
continuous limit toward the continuous limit. The coupling for each panel corresponds, from left
to right, to ε = 0.05, 0.2, 0.6, 1, and 1.5. In panel (a) the nine black circles correspond to the areas
of the 2D map points giving rise to any possible combination vn ≈ {0,±

√−�/β} close to the
anti-continuous limit. The other parameter values correspond to: � = 0.75 and β = −1
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that, as the coupling ε grows, only annihilation of solutions (through saddle node
and pitchfork bifurcations) occurs and that no new solutions emerge. In Fig. 11.6
we show the progression of the homoclinic tangle of the origin as the coupling
parameter is increased from the anti-continuous limit toward the continuous limit.
As it is clearly suggested by the figure, the amount of crossings between the different
stable/unstable manifolds is greatly reduced as ε is increased. The disappearance of
these crossings is accounted by a series of saddle node and pitchfork bifurcations –
the saddle node being the most common one. By following the number of different
possible homoclinic connections as the coupling is increased one would obtain a
Devil (fractal) staircase [31–33] as it is evidenced in Fig. 14 of [3].

In the limit ε → ∞ (the continuous limit), the homoclinic tangle of the ori-
gin gets thinner and asymptotically tends towards a simple homoclinic connection
where the stable and unstable manifolds coincide exactly and correspond to a simple
loop as it can be observed from panel (e) of Fig. 11.6. In this continuous limit both,
the bond-centered and the site-centered solutions, coalesce into the bright soliton
solution to the standard continuum nonlinear Schrödinger equation.

11.5 Summary and Future Challenges

In this chapter we presented a review of the so-called map approach whereby the
steady-state problem for general nonlinear dynamical lattices, with nearest-neighbor
coupling, can be cast as a second-order recurrence equation that, in turn, generates
a 2D map. Within this framework, any orbit of this 2D map generates a corre-
sponding steady-state solution for the nonlinear lattice. Concentrating on the 2D
map generated by the DNLS equation, we first described some generic properties of
the steady solutions that are straightforward consequences of the underlying sym-
metries of the 2D map. Then, we comprehensively studied the diversity of DNLS
steady-state solutions that can be generated using this map approach. We partition
the possible solutions into spatially extended and localized steady states. Spatially
extended states correspond to homogeneous, periodic, modulated, and spatially
chaotic steady states of the DNLS and are generated, respectively, by fixed points,
periodic orbits, quasi-periodic orbits, and chaotic orbits of the 2D map. The more
interesting case of spatially localized steady states is generated by homoclinic or
heteroclinic connections of the 2D map that in turn generate, respectively, bright
and dark soliton steady-state solutions of the DNLS. We also elaborated on the
staggered (oscillating) and multibreather variants thereof. We also briefly described
the bifurcation road whereby the extremely rich diversity of solutions generated at
the anti-continuum limit (zero coupling) is reduced through a series of saddle node
and pitchfork bifurcations to a single solution (the standard bright or dark soliton)
at the continuum limit.

Some future challenges related to the map approach would include the corrobo-
ration of the the so-called no-bubbles-conjecture, originally put forward by Sterling
et al. for the Hénon map [30] and then re-stated for the DNLS 2D map by Alfimov
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et al. [3], whereby it is noted that as the coupling parameter is increased only
annihilation of solutions occurs (through saddle node and pitchfork bifurcations)
and thus no “birth” of new solutions may occur. Another topic that has not yet
been fully explored is the use of the Mel’nikov approach for higher dimensional
maps [20, 34–36] for more complex coupling schemes. In particular, this higher
dimensional Mel’nikov approach has been successfully applied to a 1D nonlinear
double Ablowitz–Ladik chain [37, 38] (see also Sect. 2.1 in Chap. 2) in [39]. It
would be interesting to explore this higher dimensional approach in 1D lattices
with higher order neighboring couplings (i.e., not only nearest neighbors) that will
naturally generate higher order recurrence relationships between successive lattice
sites and therefore higher dimensional maps. Finally, the direct application of the
map approach for higher dimensional lattices is not possible because the recurrence
relationship equivalent to Eq. (11.4) would involve two and three indices for the
2D and 3D cases, respectively. Nonetheless, it should be in principle possible to
treat, for example, a 2D lattice chain as an infinite array of 1D coupled chains and
apply the higher dimensional Mel’nikov approach mentioned above for the double
Ablowitz–Ladik chain [39]. However, such a scheme is anticipated to be extremely
cumbersome and involve complicated numerical methods to evaluate the Mel’nikov
approach in high dimensions.
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39. Bülow, A., Hennig, D., Gabriel, H.: Phys. Rev. E 59, 2380 (1999) 232


	11  A Map Approach to Stationary Solutions of the DNLS Equation
	 Introduction
	 The 2D Map Approach for 1D Nonlinear Lattices
	 Orbit Properties and Diversity in the DNLS
	 Symmetries and Properties of the Cubic DNLS Steady States
	 Homogeneous, Periodic, Modulated, and Spatially Chaotic Steady States
	 Spatially Localized Solutions: Solitonsand Multibreathers

	 Bifurcations: The Road from the Anti-Continuous to the Continuous Limit
	 Summary and Future Challenges
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




