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In this brief review we summarize a number of recent developments in the study of
vortices in Bose–Einstein condensates, a topic of considerable theoretical and experi-
mental interest in the past few years. We examine the generation of vortices by means of
phase imprinting, as well as via dynamical instabilities. Their stability is subsequently
examined in the presence of purely magnetic trapping, and in the combined presence of
magnetic and optical trapping. We then study pairs of vortices and their interactions, il-
lustrating a reduced description in terms of ordinary differential equations for the vortex
centers. In the realm of two vortices we also consider the existence of stable dipole clus-

ters for two-component condensates. Last but not least, we discuss mesoscopic patterns
formed by vortices, the so-called vortex lattices and analyze some of their intriguing
dynamical features. A number of interesting future directions are highlighted.
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1. Abbreviations

◦ BEC: Bose–Einstein condensate ◦ OL: Optical lattice

◦ GP: Gross–Pitaevskii (Equation) ◦ PR: Parrinello–Rahman

◦ MD: Molecular dynamics ◦ TF: Thomas–Fermi

◦ MT: Magnetic trap ◦ NLS: Nonlinear Schrödinger (Equation)

2. Overview

Bose–Einstein condensation (BEC) was theoretically predicted by Bose and

Einstein in 1924.1–3,a It consists of the macroscopic occupation of the ground state

of a gas of bosons, below a critical transition temperature Tc, i.e. a quantum phase

transition. However, this prediction was only experimentally verified after 70 years,

by an amazing series of experiments in 1995 in dilute atomic vapors, namely of

rubidium4 and sodium.5 In the same year, first signatures of the occurrence of

BECs were also reported in vapors of lithium6 (and were later more systematically

confirmed). The ability to controllably cool alkali atoms (currently over 35 groups

around the world can routinely produce BECs) at sufficiently low temperatures and

confine them via a combination of magnetic and optical techniques (for a review

see Ref. 7), has been instrumental in this major feat whose significance has already

been acknowledged through the 2001 Nobel prize in Physics.

This development is of particular interest also from a theoretical/mathematical

standpoint. On the one hand, there is a detailed experimental control over the

produced BECs. On the other, equally importantly, there is a very good model

partial differential equation (PDE) that can describe, at the mean-field level, the

behavior of the condensates. This model (which, at heart, approximates a quantum

many-body interaction with a classical, but nonlinear self-interaction) is the well

known Gross–Pitaevskii equation,8,9 a variant of the famous Nonlinear Schrödinger

equation (NLS)10 that reads:

i~Ψt = − ~
2

2m
∆Ψ + g|Ψ|2Ψ + Vext(r)Ψ, (1)

where Ψ is the mean-field condensate wavefunction (the atom density is n =

|Ψ(x, t)|2), ∆ is the Laplacian, m is the atomic mass, and the nonlinearity coef-

ficient g (arising from the interatomic interactions) is proportional to the atomic

scattering length.7 This coefficient is positive (e.g. for rubidium and sodium) or

negative (e.g. for lithium) for repulsive or attractive interatomic interactions re-

spectively, corresponding to defocusing or focusing cubic (Kerr) nonlinearities in

the context of nonlinear optics.10 Notice, however, that experimental “wizardry”

can even manipulate the scattering length (and thus, the nonlinearity coefficient

g) using the so-called Feshbach resonances11 to achieve any positive or negative

aWe should mention that part of this overview section has significant overlap with the earlier
review of two of the present authors on “Pattern Forming Dynamical Instabilities of Bose–Einstein
Condensates” (Ref. 51 herein); it is included, however, here for reasons of completeness.
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value of the scattering length at will [i.e. nonlinearity strength in Eq. (1)]. More-

over, the external potential Vext can assume different forms. For the “standard”

magnetic trap (MT) usually implemented to confine the condensate, this potential

has a typical harmonic form:

VMT =
1

2
m

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, (2)

where, in general, the trap frequencies ωx, ωy, ωz along the three directions are dif-

ferent. As a result, in recent experiments, the shape of the trap (and hence, the form

of the condensate itself) can range from isotropic to the so-called cigar-shaped traps

(see example Ref. 7), to quasi-two-dimensional,12 or even quasi-one-dimensional

forms.13 Moreover, linear ramps of (gravitational) potential Vext = mgz have also

been experimentally used.14 Another prominent example of an experimentally fea-

sible potential is imposed by a pair of laser beams forming a standing wave which

generates a periodic optical potential, the so-called optical lattice (OL),15–18 of the

form:

VOL = V0

[

cos2
(

2πx

λx
+ φx

)

+ cos2
(

2πy

λy
+ φy

)

+ cos2
(

2πz

λz
+ φz

)]

, (3)

where λx,y,z = λlaser sin(θx,y,z/2)/2, in which λlaser is the laser wavelength, θ is the

angle between the laser beams,19 and φx,y,z is a phase detuning factor (both the

latter are potentially variable). Such potentials have been realized in one,15,16 two

(the so-called egg-carton potential)20 and three dimensions.12,21

Moreover, present experimental realizations render feasible/controllable the adi-

abatic or abrupt displacement of the magnetic or optical lattice trap19,22,23 (induc-

ing motion of the condensates), the “stirring” of the condensates providing angular

momentum and creating excitations with topological charge such as vortices24–26

and vortex lattices thereof.27–29 Additionally, phase engineering of the condensates

is also feasible experimentally,30 and this technique has been used in order to pro-

duce nonlinear matter-waves, such as dark solitons31,32 in repulsive BECs. Note

that more recently, bright solitons have been generated as well33,34 in attractive

BECs, and both types are currently being studied extensively.

Among these coherent structures, of particular interest are the nonlinear waves

of nonvanishing vorticity. Vortices are worth studying not only due to their sig-

nificance as a fundamental type of coherent nonlinear excitations but also because

they play a dominant role in the breakdown of superflow in Bose fluids.35–37 The

theoretical description of vortices in BECs can be carried out in a much more ef-

ficient way than in liquid He (see Ref. 38) due to the weakness of the interactions

in the former case. These advantages explain a large volume of work regarding the

behavior of vortices in BECs, some of which have been summarized in Ref. 39.

It is interesting to note in this connection that the description of such topologi-

cally charged nonlinear waves and their surprisingly ordered and robust lattices,

as well as their role in phenomena as rich and profound as superconductivity and
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superfluidity were connected to the theme of the recent Nobel prize in Physics in

2003.

It is around this exciting frontier of theoretical and experimental studies between

atomic physics, soft condensed matter physics and nonlinear dynamics that this

brief review is going to revolve. Our aim is to report some recent developments

in the study of vortices in the context of mean-field theory (i.e. employing the

GP equation). We consider various external potentials relevant to the trapping of

the condensates, examining the existence, generation and dynamical stability of

such coherent structures. It should be noted, however, that all the perturbations

considered herein will preserve the Hamiltonian structure of the system. We will

discuss these notions at various levels of increasing complexity, starting from that

of a single vortex (in Sec. 3), proceeding to that of a few vortices and using the two-

vortex system as a characteristic example (in Sec. 4), while in Sec. 5, we will address

the behavior of large clusters of vortices, the so-called vortex lattices. Section 6

summarizes our findings and presents some interesting directions for future studies.

3. Single Vortex

3.1. Generation

It is well known that if a superfluid is subjected to rotational motion, vortices will

be generated in it. Such a situation also occurs in dilute BECs, where quantized

vortices can be described in the framework of the GP equation. Thus, in this context,

a vortex can typically be created upon “stirring” the condensate. In particular,

beyond a critical angular velocity Ωc, the energy functional associated with the GP

equation (incorporating the centrifugal term due to rotation), namely

E =

∫

dr

[

−1

2
Ψ?∆Ψ + Vext|Ψ|2 +

g

2
|Ψ|4 − ΩzΨ

?LzΨ

]

, (4)

is minimized by a single vortex configuration,40 resulting in the generation of such

a structure, observed also experimentally.25 Note that in Eq. (4), Ωz > Ωc is the

angular velocity and Lz = i(x∂y − y∂x) represents the angular momentum along

the z-axis (? stands for complex conjugate).

However, vortices can be spontaneously produced in a number of alternative

ways, some of which we examine in what follows. More specifically:

(1) they can spontaneously emerge as the pattern forming outcome of dynamical

instabilities, or

(2) they may be imprinted on the condensate via appropriate modulation of its

phase.

One instability that can be exploited as a method of producing vortex patterns

is the so-called transverse or (“snaking”) instability of rectilinear dark solitons. This

instability, which has been studied extensively in the context of nonlinear optics



February 1, 2005 15:56 WSPC/147-MPLB 00796

Vortices in Bose–Einstein Condensates 1485

(see examples Refs. 41 and 42 for a review), forces a dark soliton to undergo trans-

verse modulations that cause the nodal plane to decay into vortex pairs. The snake

instability is known to occur in trapped BECs as well (see Ref. 32 for its exper-

imental observation and Ref. 43 for relevant analytical and numerical results). In

this context, dark solitons are placed on top of an inhomogeneous background, the

so-called Thomas–Fermi (TF) cloud, which approximately yields the ground state

wavefunction in the case of repulsive condensates (g > 0),7 and can be expressed

as

ΨTF = exp(−iµt)
√

max{µ− Vext, 0}
g

, (5)

where µ is the condensate’s chemical potential. The snake instability of dark solitons

in trapped BECs sets in whenever the soliton motion is subject to a strong cou-

pling between the longitudinal and transverse degrees of freedom, i.e. far from 1D

geometries. A relevant discussion demonstrating how the snaking instability mani-

fests itself as the transverse confinement becomes weak, giving rise to the formation

of vortices can be found in the recent work of Ref. 44.

To quantify better the above, we follow Ref. 45 to analyze the transverse in-

stability via length-scale competition arguments. In particular, we first consider

the following dimensionless 2D version (relevant for a quasi-two-dimensional, or

“pancake” BEC lying on the x− y plane) of the original GP equation,

iΨt = −1

2
∆⊥Ψ + |Ψ|2Ψ + Vext(r)Ψ , (6)

in which length is scaled in units of the fluid healing length ξ = ~/
√
n0gm (n0 is the

peak density of the gas in the radial direction), t in units of ξ/c (where c =
√

n0g/m

is the Bogoliubov speed of sound), and the atomic density is rescaled by the peak

density n0; finally, the external potential is Vext(r) = (1/2)Ω2r2, where r2 = x2 +

y2 and the parameter Ω =
√

ω⊥/ωz(4πal⊥n0)
−1 (where l⊥ =

√

~/mω⊥ is the

transverse harmonic oscillator length, ω⊥ being the transverse confining frequency)

express the dimensionless effective magnetic trap strength. In the context of Eq. (6),

and in the absence of the potential, the transverse instability occurs for perturbation

wavenumbers

k < kcr ≡
{

2

√

sin4 φ+ cos2 φ− [1 + sin2(φ)]
}1/2

, (7)

where cosφ is the dark-soliton amplitude (depth) and sinφ is its velocity.41 In the

case of stationary (black) solitons cosφ = 1, hence kcr = 1. On the other hand, in

the presence of the potential, the characteristic length scale of the BEC (i.e. the

diameter of the cloud in the TF approximation) is RBEC = 23/2µ
1/2
0 /Ω, where µ0 is

the dimensionless chemical potential. Then, one can argue that the criterion for the

suppression of the transverse instability is that the scale of the BEC be shorter than



February 1, 2005 15:56 WSPC/147-MPLB 00796

1486 P. G. Kevrekidis et al.

the minimal one necessary for the onset of the instability, leading to the condition

Ω >

√
2µ0

π
. (8)

If inequality (8) is not satisfied, the transverse instability should develop, resulting

in the breakup of the dipole configurations (resulting from a dark soliton, truncated

by the Thomas–Fermi state) into vortex–antivortex pairs. It is relevant to note

that similar to the case of rectilinear solitons, the snake instability of the ring dark

solitons can also be responsible for the creation of vortices and vortex arrays as well.

In particular, as far as the ring dark solitons are concerned, they were previously

predicted in the context of nonlinear optics,46 where their properties were studied

both theoretically47 and experimentally.48 These entities were also found to exist in

the context of BECs49 (see also the relevant recent work50). In the latter context,

and in the case of sufficiently large initial soliton amplitudes, ring dark solitons

were observed to be dynamically unstable towards azimuthal perturbations that

led to (snaking and) their breakup into vortex–antivortex pairs, as well as robust

vortex arrays, the so-called “vortex necklaces”. The latter consist of four vortex-

pair patterns, with their shape alternating between an “X” and a cross (for details,

see Figs. 3 and 4 of Ref. 49). We do not discuss these instabilities further, as they

were analyzed in some detail in the recent review of Ref. 51.

A context similar to that of pattern forming instabilities, and one which may be

loosely related to the Landau instability of superflows, involves the interaction of the

condensate with an impurity in a recently proposed dynamical experiment52 (which

bears resemblances to the phenomenon of vortex trailing in fluids, see e.g. Ref. 53).

In particular, in Ref. 52 [and in the framework of the dimensionless GP Eq. (6)],

the magnetic trap originally trapping the condensate at (0, 0), was proposed to

be displaced by a displacement of x0, but also in the presence of an additional

anisotropic impurity potential of the form Vimp = V0 sech2
(√

(x/rx)2 + (y/ry)2
)

with V0 = 0.5, ry = 10 and rx = 5. If the displacement (which was giving rise

to an oscillating motion of the condensate) was subcritical, then it was observed

that it did not lead to the formation of “coherent structure radiation.” For super-

critical displacements, it was observed to give rise to the formation of vortex pairs,

as shown in the results of Fig. 1. The critical speed (proportional to the critical

displacement) acquired by the condensate upon “impact” with the impurity was

numerically observed in Ref. 52 to closely match an effective speed of sound in the

inhomogeneous medium (i.e. in the presence of the parabolic potential), indicating

the possibility to attribute the vortex production in this context to a Landau-type

instability.54,55

Let us conclude this section by briefly discussing one of the standard techniques

that have been implemented to create dark solitons and vortices in trapped BECs,

namely the so-called phase imprinting or phase engineering technique. According

to the latter, a dark soliton can be generated upon imprinting a phase difference of

π along the condensate.30–32 On the other hand, in the case of vortices, imprinting
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Fig. 1. Comparison of a subcritical case for x0 = 10 with a supercritical one for x0 = 15. The 2
subplots on the left show different time snapshots of the evolution of the two-dimensional contour
plot of the wavefunction square modulus for x0 = 10. The 4 subplots on the right show the
corresponding snapshots for x0 = 15 in the unstable case, leading to the emission of a vortex pair.
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Fig. 2. Phase imprinting of vortices inside the combined magnetic and optical trap (left: for
vortices of charge S = 1) and solely in the magnetic trap (middle and right: for S = 2 and S = 3,
respectively). The top and bottom row depict, respectively, the atomic density and phase. Left to
right: vortices of increasing topological charge of one, two and three. In all cases, a radial magnetic
trap frequency of Ω = 0.1 has been used, while for the left panel the optical has been chosen with
λx = λy = 4π, and φx = φy = 0, while V0 = 0.25.

(through an appropriate “phase mask”) of a phase difference of 2π around a contour

can generate vortex structures (which carry topological charge). In fact, this method

was proposed as a means of preparing vortex states in 2D BECs in Ref. 56 and was
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subsequently used in the laboratory in the experiments of Ref. 24. Some of the

advantages that this technique has over the previous ones are that:

1. It is very robust in the presence of even strong perturbations (i.e. it works equally

well in the cases of combined potentials such as magnetic and optical ones); see

left panels in Fig. 2.

2. It can be straightforwardly generalized to produce vortices of higher charge.

These vortices may also be observed (for appropriate parameter values) to be

dynamically stable for very long times and hence should, in principle, be exper-

imentally observable; see middle and right panels in Fig. 2.

3.2. Dynamical stability

3.2.1. Continuum models

Let us now address the question of stability of vortices trapped in a combined MT

and OL as described in Ref. 57. Consider a quasi-two-dimensional12 condensate

where a single vortex has been generated at the center of the combined potential

Vext(x, y) = VMT(x, y) + VOL(x, y), (9)

where the contributions to the MT and OL, are given by the 2D equivalents of (2)

and (3), respectively. As mentioned in the previous section, the effective 2D GP

equation [cf. Eq. (6)] applies to situations where the condensate has a nearly planar

(“pancake”) shape (see for example Ref. 58 and references therein). Accordingly,

vortex states considered below are not subject to 3D instabilities (corrugation of

the vortex axis39) as the transverse dimension is effectively suppressed.

The stability of the vortex at the center of the trap can be qualitatively un-

derstood in terms of an effective potential obtained by means of a variational

approximation.59 As in Ref. 60, we use the following ansatz to approximate the

position r0(t) = (x0(t), y0(t)) of vortex near the trap center

Ψ(x, y, t) = B(t) ||r0(t)|| exp[−||r0(t)||2/b(t)]eiϕ0(t) , (10)

where ϕ0(t) ≡ tan−1[(y − y0(t))/(x − x0(t))] denotes the 2-norm of the vector r0.

Similarly to the calculations in Refs. 61 and 62, or upon employing the conservation

of norm, it is straightforward to show that, to leading order, B(t) = B(0) and

b(t) = b(0) are approximately constant. Then, assuming the same detuning and

periodicity in all directions (i.e. φx = φy = φ and λx = λy = λ), the substitution

of the ansatz (10) into the Lagrangian form of the GP equation (6) leads to a

quasiparticle description of the vortex center through the Newton-type equations

of motion

ẍ0 = −d Veff(x0, y0)

d x0
and ÿ0 = −d Veff(x0, y0)

d y0
, (11)

where the effective potential is given by

Veff (x, y) = Q(φ)

[

cos

(

4πx

λ

)

+ cos

(

4πy

λ

)]

+
1

4
Ω2

(

x2 + y2
)

, (12)
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Fig. 3. Vortex stability inside a combined magnetic and optical trap. The MT and OL parameters
are ω2

x = ω2
y = 0.002, V0 = 0.5 and λ = λx = λy = 2π. Left: the vortex is stable at the bottom

of a cosinusoidal OL [φ = 0 in Eq. (3)]. The top panel shows the contour plot of the density at
t = 100 (138 ms). The bottom left panel is a cut of the same density profile along x = 0, while
the bottom right one shows the motion of the vortex center for 0 ≤ t ≤ 100, the initial position
being marked by a star. Notice the scale (10−3, or 1 nm in physical units) of very weak motion
of the vortex, which thus stays practically immobile at the origin. Right: same as left panels but
with a sinusoidal OL [φ = π/2] and for a larger time of t = 250 (346 ms). The bottom right panel
depicts the motion of the vortex center for 0 ≤ t ≤ 250 [positions of the vortex center at t = 100
(138 ms) and t = 200 (276 ms), respectively, are indicated by the star and circle].

and Q(φ) is given by a rather cumbersome expression. In our case of interest we

will only need the following values

Q(0) =
V0

4

(

2bπ2

λ2
− 1

)

exp

(−2bπ2

λ2

)

, and Q
(π

2

)

= −Q(0) . (13)

Equations (11) and (12) indicate that the coordinates of the vortex center are

prescribed by two uncoupled nonlinear oscillators (see also Ref. 63 for a similar

result in the context of optics). The above, generalizes the well known result64

that the center of a dark soliton (the 1D “sibling” of the vortex) behaves like a

Newtonian particle in the presence of the external potential (see relevant work for

dark matter-wave solitons in optical lattices in Ref. 65). Figure 3 depicts the vortex

stability for the two detuning cases in (13). For λ = 2π, V0 = 0.5 > 0 and b = 1

(by fitting ansatz to numerical solution), we have that Q(φ = 0) = −V0/8 < 0 and

Q(φ = π/2) = −Q(0) = V0/8 > 0. Therefore, a cosinusoidal OL (φ = 0) produces

a stable vortex (see left panels of Fig. 3) while a sinusoidal OL (φ = π/2) induces

an instability (see right panels of Fig. 3). Note that, recently, relevant results have

been obtained using different approaches.66

It is worth mentioning that the variational approach outlined above, although

capable of capturing the stability of the vortex at the center of the trap, fails to

reproduce the correct dynamics. More specifically, as shown in Fig. 3, the vortex

center follows an outward spiraling motion. This spiral motion is the combination of

the unstable behavior captured by the Hamiltonian dynamics of Eqs. (11) and (12)
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together with the well known precession of vortices inside the MT.67 The precession,

not captured by our approximation, predicts that, close to the trap center, a vortex

rotates with an angular frequency given by67

ωprec =
−3ωxωy

4µ
ln

(

RBEC

ξ

)

, (14)

where µ is the chemical potential, RBEC is the mean transverse dimension of the

condensate and ξ is the width of the vortex core, which, in fact, is the same as the

healing length of the condensate.7

3.2.2. Discrete models

An interesting situation arises for strong optical lattices (V0 � µ) where the con-

densate is effectively transformed into a collection of “droplets” (in each lattice well)

that can be described by the spatially discrete analogue of the NLS.15,17,18,21,68 In

this case, it is possible to describe the evolution of the condensate wavefunction

by the discrete nonlinear Schrödinger equation (DNLS) as can be seen through a

Wannier function decomposition.69,70 In nondimensional units, the DNLS reads

i
d

dt
φη + C∆

(d)
2 φη + |φη |2 φη = 0 , (15)

where φη is the condensate wavefunction localized at the OL trough with coordi-

nates η = (m,n) and η = (l,m, n), for the 2D and 3D cases respectively, C is the

coupling constant, and ∆
(d)
2 stands for the discrete Laplacian in d dimensions:

∆
(2)
2 φm,n = φm+1,n + φm,n+1 + φm,n−1 + φm−1,n − 4φm,n

and

∆
(3)
2 φl,m,n = φl+1,m,n + φl,m+1,n + φl,m,n+1 + φl−1,m,n

+φl,m−1,n−1 + φl,m,n−1 − 6φl,m,n .

In Refs. 71, 72 and 73 stationary solutions of (15) are sought by considering φη =

exp(−iµ0t)uη, where µ0 is the dimensionless chemical potential of the condensate,

that yields to the time-independent equation:

−µ0uη = C∆
(d)
2 uη + |uη|2uη , (16)

where |uη|2 is proportional to the atomic density at the ηth trough. Since Eq. (16)

has a scale invariance, µ can be fixed arbitrarily. As in Refs. 71, 72 and 73, by

using an appropriate initial discrete vortex ansatz, it is possible to find numerical

solutions to Eq. (16). Then, by applying continuation-type methods, together with

linear stability computations, the branches of existence and stability for discrete

vortices of different charges in two- (d = 2) and three-dimensional (d = 3) settings

can be obtained.

The stability results presented in Refs. 71 and 73, for vortices of charge S (e.g.

for dimensionless chemical potential µ0 = −4), can be summarized in the following

stability table:
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d S = 0 S = 1 S = 3 S = 2

2 C . C
(2,0)
cr ≈ 4 C . C

(2,1)
cr ≈ 1.6 C . C

(2,3)
cr ≈ 0.398 U

where the approximate region for stability is indicated (the letter “U” denotes

unstable for all values of C). As indicated, no stable vortices with S = 2 were

obtained.74 Nonetheless, Eq. (16) admits real stationary solutions — generated

by the real part of the corresponding genuine vortex (which is complex) — that

are stable for sufficiently weak coupling. These real solutions, the so-called quasi-

vortices, correspond to quadrupoles (S = 2) and octupoles (S = 4).71,73 Similar

results were found also for the three-dimensional case in Ref. 72. In Fig. 4 we

depict a few examples of discrete vortices for different vorticities in two and three

dimensions.

It is important to mention that the discreteness is responsible for inducing the

stability of vortices in three-dimensional settings that otherwise (in the continuum

model) are strongly unstable. A natural question that arises is the fate of unstable

solutions. For example, we have observed that, in two dimensions, a vortex with

S = 3 and C = 0.618 > C
(2,3)
cr may decay into a configuration consisting of a

combination of a stable soliton (S = 0) and a stable S = 1 vortex (here C < C
(2,0)
cr

and C < C
(2,1)
cr ). On the other hand, we have observed a striking effect where,

in three dimensions, an unstable S = 2 vortex decays into a stable S = 3 vortex

(for C = 0.01 < C
(3,3)
cr ), thereby increasing the total topological charge instead of

decaying to a combination of lower order (S = 0, 1) vortices. It should be noted that

this change of vorticity is possible in the discrete lattice model, in which the angular

momentum is not a dynamical invariant. Another noteworthy vortex solution also

found in Ref. 72 consists of a complex of two mutually orthogonal S = 1 vortices

(one in each component) in the discrete version of a two-component condensate (cf.

Sec. 4.2).

4. Two Vortices

4.1. One-component BEC: interactions

Up to this point we have dealt with the generation and stability of vortices. Let

us now focus on the important issue of vortex–vortex interactions. As is the case

also for fluid vortices, two BEC vortices of opposite charge travel parallel to each

other at constant speed c, while vortices of same charge rotate at constant angular

speed α.75,76 From direct numerical integration of Eq. (6) we have been able to

characterize the dynamics of interacting vortices in the absence of any trapping

potential (Ω = 0). With an appropriate initial phase mask (see Sec. 3.1) we seeded

two vortices, with respective vorticities S1 and S2, at a desired distance from each

other. Then, we fitted a Padé approximation77 to find the vortex centers during
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evolution, and numerically extracted the linear (angular) velocities for vortices of

opposite (equal) charge as a function of their separation distance ρ (see left panel in

Fig. 5). We performed our experiments for same and opposite charge vortices with

vorticities |S1| = |S2| = 1 and |S1| = |S2| = 2. The angular and linear velocities of

interacting vortices seem to nicely obey power-laws for a wide range of separations

(10 < ρ < 50): c(ρ) ∼ ρ−1 and α(ρ) ∼ ρ−2 (see left panel of Fig. 5).

The next step to describe the dynamics of interacting vortices consists on iden-

tifying an appropriate Lagrangian that gives rise to the correct dynamics. In order

to achieve this, it is crucial to note that BEC vortices are known to obey first or-

der, kinematic equations,39 contrary to what is known for the Newtonian (second

order) equations describing other types of solitary wave center of mass dynamics.59

To circumvent this obstacle, we need to construct an interaction Lagrangian that

gives the “correct” vortex dynamics through its Euler–Lagrange equations. Such a

Lagrangian for two vortices, with same vorticity S = Sm = Sn, may be given in

the form

Lm,n ∼ det(ṙn, rm) + det(ṙm, rn) −AS ln(ρ) (17)

where rm = (xm, ym)T is the position vector of vortex m and A is a constant.

For vortices of opposite charge one needs to multiply the velocities for each vortex

by their respective charge. This is equivalent to including the vortex charge in the

definition of the Poisson brackets for the vortex interaction Hamiltonian (cf. Ref. 78

and references therein).

Let us explicitly write the equations of motion for same charge vortices. In this

case, the pairwise Lagrangian (17) gives rise to the well known equations of motion

for two (fluid) point vortices centered at rn = (xn, yn)T and rm = (xm, ym)T :

ẋm = −AS ym − yn

2ρ2

ẏm = +AS
xm − xn

2ρ2
,

(18)

where ρ =
√

(xm − xn)2 + (ym − yn)2 is inter-vortex distance and A = A1 ≈ 3.96

for S = 1 and A = A2 ≈ 7.80 for S = 2 is a constant determined from the numerics

(cf. left panel in Fig. 5). As expected we have 2A1 = 7.92 ≈ A2, namely, the effects

of an S = 2 vortex are equivalent to the superposition of the effects of two nearby

S = 1 vortices. For opposite charge vortices traveling parallel to each other at

constant speed c, our numerics predict that c(ρ) = Bρ−1 with B = B1 ≈ 2.15

and B = B2 ≈ 4.43 for singly- (|S| = 1) and doubly-charged (|S| = 2) vortices

respectively. As for same charge vortices, the relationship 2B1 = 4.30 ≈ B2 holds

approximately.

Approximation (18) treats vortex pairs as quasiparticles with interacting poten-

tials. It is important to mention that this approximation to the dynamics deterio-

rates when the vortices get too close to each other. Nonetheless, we have checked

that the approximation remains valid down to separation distances of the order of
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the healing length (i.e. the width of the vortices) for |S| = 1 vortices. For |S| = 2,

the two vortices tend to split into two pairs of S = 1 vortices79 when the separation

distance was decreased below approximatively ρ = 10.

In the middle and right panel of Fig. 5 we present two examples with three

interacting vortices. The solid line represents the actual orbits obtained from direct

numerical integration of Eq. (1), while the dashed line depicts the orbits using

the quasiparticle approximation (18). As it can be observed from the figure, the

superposition of all the interactions, given by (18), for the three vortices is in good

agreement with the full model. It is worth mentioning that the case depicted in the

right panel of the figure corresponds to an orbit with an initial condition close to

an unstable configuration. This explains the larger discrepancy for this case when

compared to the middle panel.

We note in passing that a more general approach towards computing vortex

interactions may involve the use of a Lagrange multiplier at the level of the PDE

(initialized with two vortices) which maintains the distance between the vortices

fixed. Then, the force associated with the relevant multiplier is what is needed to

balance the interaction force between the vortices and hence can also be used to

infer the interaction potential.

4.2. Two-component BECs: dipole bound states

A very relevant generalization of the class of physical systems that we have dis-

cussed so far, and of the solitary waves they can support, concerns the case of

coupled multi-component BECs. There has recently been a considerable volume of

work relevant to the properties of coupled BECs ranging from the study of ground

state solutions80,81 to small-amplitude excitations.82 Furthermore, the formation

of various structures such as domain-walls,83–86 bound dark-dark,86 dark-bright,87

dark-antidark, dark-gray, bright-antidark and bright-gray soliton complexes,88 as

well as spatially periodic states89 was also predicted. On the other hand, experi-

mental results have been reported for mixtures of different spin states of 87Rb (see

Ref. 90) and mixed condensates.91,92 It is relevant to also mention the efforts to-

wards the realization of two-component BECs from different atomic species, such

as 41K–87Rb (see Ref. 93) and 7Li–133Cs (see Ref. 94).

Typically, the generalized mean-field model for two coupled BECs involves two

nonlinearly coupled GP equations. However, in experiments with a radio-frequency

(or an electric field) coupling two separate hyperfine states,90 the relevant model

also involves a linear coupling between the wavefunctions. The governing normalized

equations are then of the form:

iψ1t =

[

−1

2
∆ + V + g11|ψ1|2 + g12|ψ2|2

]

ψ1 + αψ2, (19)

iψ2t =

[

−1

2
∆ + V + g12|ψ1|2 + g22|ψ2|2

]

ψ2 + αψ1, (20)

where the intra- and interspecies interactions are characterized by the coefficients
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Fig. 6. Left panels: Contour plots of |ψ1|2 for two coupled vortices, initially placed at x = ±5,
for (a) t = 0, (b) T/4, (c) T/2 and (d) 3T/4, with T = π/α ≈ 15.7 (α = 0.2); Ω = 0.045,
∆ ≡ g11g22 − g2

12
= −9 × 10−4 (87Rb). The vortices “interchange locations” (in a structure

resembling a spiral wave). Right panels: Same as the left but for ∆ = −3 (g = 1, h = 2). The
configuration breaks up forming spiral patterns.

gjj (j = 1, 2) and g12 respectively, while α denotes the strength of the radio-

frequency (or electric field) coupling. In the recent work of Ref. 95, the special case

of g11 = g22 = g12 ≡ g was examined. The latter can be written in a vector form

as:

iψt − αPψ = −1

2
∆ψ + (ψ†Gψ)ψ + V (x)ψ, (21)

where

P =

(

0 1

1 0

)

(22)

and G = gI, with I being the unit matrix. In that case, as was also previously

known in optics,96 one can make a unitary transformation:

ψ = U(t)ψ0 = e−iαPtψ0 =

(

cos(αt) −i sin(αt)

−i sin(αt) cos(αt)

)

ψ0. (23)

Then the original set of equations is transformed into:

iψ0t = −1

2
∆ψ0 + (ψ†

0Gψ0)ψ0 + V (x)ψ0, (24)

i.e. the linear coupling can be completely eliminated from the equations. Notice that

this special case of approximately equal scattering length coefficients is relevant

to the experiments performed with two spin states of 87Rb (see Ref. 91), where

g11 : g12 : g22 = 1.03 : 1 : 0.97.

In the system of nonlinearly coupled GP equations for ψ0, one can construct a

dipole configuration with a pair of vortex structures, see Fig. 6. This configuration

was obtained in the figure, by means of imaginary time integration in the absence

of linear coupling, starting with one component having a vortex centered at (5, 0),

while the other having a vortex at (−5, 0). After the configuration relaxes to the
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stationary vortex pair solution of Eqs. (19) and (20), one can turn on the linear

coupling and obtain a spiral rotation between the vortices resembling a spiral wave.

While this solution is exact for h ≡ g12/g11 = 1 (assuming g11 = g22), it also

persists for non-unit values of h. In particular, the spiral structure persists for h <

hc = 1.32 beyond which the regularity of the Rabi oscillations of matter between

the components is destroyed. In this case, the breakup leads to the formation of

spiral patterns in the condensate.95

5. Vortex Lattices

We now turn to a “thermodynamic limit” level which is also, however, particularly

relevant to BEC experiments. Rapid rotation of 2D BECs induces the generation

of many vortices39,97,98 that typically settle into ordered lattices.25–29,99,100 Par-

ticularly enticing in this respect are the available pictures of such lattices and

their (practically perfect) triangular patterns.101 These are the so-called Abrikosov

lattices,102 that were long ago predicted in the theory of superconductivity (and

that are cited as the prediction that earned their discoverer the Nobel prize in

Physics in 2003). In the context of type-II superconductors, free energy arguments

can be used to demonstrate that the triangular lattice is the most energetically

favorable (ground-state) configuration.103

It is quite interesting in this context, to study vortex lattices in the framework

of Eq. (6) both in the presence of the external magnetic trap (MT), as well as in the

one of the optical lattice (OL). Naturally, it is relevant to perform direct simulations

of such lattices for different (external potential) parameter values. However, a quite

relevant alternative tool in order to study the ground states of such configurations

and their structural transitions is the use of molecular dynamics (MD) techniques

such as the Parrinello–Rahman (PR) method.104 In the PR dynamics, not only are

the positions of the vortices (viz. particles) evolved in time, but so are the coordinate

vectors of the box in which the coherent structures are located. In particular, if the

system of coordinates consists of the vectors a = (ax, ay) and b = (bx, by), then the

metric tensor becomes (in 2D) G = hTh, where h is the coordinate transformation

matrix with a, b as its rows [(xm, ym)T = h·(ξn, ηn)T ]. Then the Lagrangian for the

fictitious coupled dynamics of the “particle”-lattice and the MD box reads104,105:

L =
1

2

∑

n

M(G11ξ̇
2
n + 2G12ξ̇nν̇n +G22ν̇

2
n)

+
1

2
W (ȧ2

x + ȧ2
y + ḃ2x + ḃ2y) −

∑

m,n

Vmn (25)

where M,W are the particle and box mass respectively, (ξn, νn) are the coordi-

nates of the nth particle in the “box frame”, Vmn is the interaction potential

between quasiparticles m and n, and the summations are over the total number

of vortices Nv . Then, one can perform PR-MD by solving the ensuing dynami-

cal equations,104,105 to obtain the coordinate system evolution (along with that of
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the “particle” positions). More specifically, from (25) one obtains the dynamics for

each of the 4Nv + 8 degrees of freedom, say qn and q̇n, via the Euler–Lagrange

equations d/dt(∂L/∂q̇n) = ∂L/∂qn. In order to emulate the thermodynamic limit

of the system (large number of vortices), the minimal image convention can be

employed where the box is periodically repeated for all of its 8 neighbors and, for

each vortex, the Nv largest contributions, from all the 9 boxes, are taken into ac-

count. The results obtained in Ref. 106 indicate that, interacting spiral vortices in a

Ginzburg–Landau field-theoretic context107 (which, in fact, is a dissipative version

of the GP equation — see also Ref. 108), typically settle, for sufficiently large num-

ber of vortices, to configurations similar to the experimentally observed triangular

configuration (see Fig. 7). Note that similar results can be applied to pulses where

the topological charge is zero.

In order to specifically apply the PR-MD simulation to a gas of vortices in the

BEC model (1), one needs to recast the MD Lagrangian (25) using the realistic

vortex-vortex Lagrangian (17).109 The form of the Lagrangian (25) allows for a

direct incorporation of the effects induced by the MT and OL. It is also possible to

study the configuration changes in the presence of quadrupolar excitations or other

symmetry stresses exerted on the vortex lattice (motivated by the experiments of

Refs. 29, 99 and 100). We should note that the external imposition, in the box
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containing the vortices, of shear stresses of different symmetry is quite feasible

experimentally. It can be implemented through a rotating laser manipulating the

boundary of the box (in this case, the periphery of the Thomas–Fermi cloud).110

The PR-MD approach is therefore a powerful tool that can be used to identify

the conditions for which the triangular state persists as the ground state configu-

ration (for such conditions, see for example Ref. 111). It can also be used to obtain

the structural transition points (obtained through direct simulations, e.g. in the

presence of the optical lattice in Ref. 112) to other states such as rhomboidal or

star-like patterns (see for example Fig. 8). The approach consists of analyzing the

dynamically obtained PR-MD states through stability computations, standard con-

tinuation and bifurcation theory tools to explore the structural phase transitions

and to obtain the instability eigenvectors that lead to phase transformations. An al-

ternative dynamical scenario, very relevant to recent experimental settings, involves

the annihilation of a central chunk of vortex lattice matter, through a localized

laser heating,100 that results in the remaining vortex lattice exhibiting oscillatory

modes, known as Tkachenko oscillations. Such modes may also be identified109 as

limit-cycle, time-periodic solutions of the PR-MD numerical procedure.

6. Summary and Outlook

While there is a large volume of work on the waves of topological charge in Bose–

Einstein condensates (a large fraction of which is summarized in Ref. 39, as well as

in the present brief review), there are still numerous open problems regarding the

vortex state that this experimentally and theoretically tractable context may allow

us to explore.

Clearly, a prominent position among such open problems (in the context of

isolated vortices) is the question of a mathematical understanding of the detailed

dynamical stability picture of vortices of various topological charges (S ≥ 1) in

the presence of the combined magnetic and optical trappings. A first step in that

direction is offered by the work of Ref. 113; however there are still many open

questions concerning the effect of the trapping potentials.

Another subject that apparently has received very little attention and whose

theoretical understanding is still to a large extent incomplete (in the context of

few vortices) is the behavior of vortex dipoles. Such configurations have been now

obtained for two-component BECs in the work of Refs. 95 and 114, however topics

such as the interaction of such dipoles and the ensuing dynamics are still unex-

plored. From the mathematical point of view, a first attempt at obtaining reduced

equations that adequately describe dipole dynamics has been given in Ref. 115. The

applicability of such an approach in the context of BECs would be of particular

interest.

There are also numerous interesting open questions regarding vortex lattices.

The dynamical imposition/time dependence of external potentials in conjunction

with possible interaction between multiple condensate components may produce
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interesting effects of frustration that may induce structural phase transitions such

as the ones discussed in Ref. 112 (e.g. a reshaping from a triangular lattice to

a square one; see for example Ref. 116). The PR-MD setup is straightforwardly

amenable to the inclusion of such external effects. By properly incorporating a 2D

OL, we expect to induce a locally attractive (or locally repulsive) energy landscape

for each vortex at any required location. This should enable us to engineer a rich va-

riety of “target” lattice configurations —provided that their energy is not far from

a local minimum. Applications of these (as well as statistical mechanics) techniques

to understand the ground state of vortex lattices under external perturbations or

multi-component interactions are bound to provide interesting conclusions for the

non-equilibrium thermodynamics of such multi-vortex patterns. Notice that some

of these tasks (such as identifying stationary vortex lattice states and computing

the corresponding eigenvalues of linearization around them) can be performed by

methods that have been developed in matrix-free numerical linear algebra.117 This

can be done by using appropriately initialized short bursts of time evolution simu-

lations instead of the very expensive large Jacobian eigenvalue computations.

These are only some among the many questions/topics that are now starting to

be addressed (for instance, one can ask the same questions at finite temperature

and try to understand the interaction of the vortex condensate with the gas in that

case). We hope that this intriguing journey still hides, as Cavafy says in his Ithaca,

a lot of “ports seen for the first time . . . ”
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Note Added in Proof

Another recent work that tackles the effects of external potentials (such as an

optical lattice) on a vortex lattice is that of Ref. 118. Pinning type phenomena are

observed as a function of the system parameters and the relevant phase diagrams

are obtained.
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79. M. Möttönen, T. Mizushima, T. Isoshima, M. M. Salomaa and K. Machida, Phys.

Rev. A68 (2003) 023611.
80. T.-L. Ho and V. B. Shenoy, Phys. Rev. Lett. 77 (1996) 3276; H. Pu and N. P. Bigelow,

ibid. 80 (1998) 1130.
81. B. D. Esry et al., Phys. Rev. Lett. 78 (1997) 3594.
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