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The nonlinear dynamics of an optoelectronic negative feedback switching circuit is studied. The
circuit, composed of a bulb, a photoresistor, a thyristor and a linear resistor, corresponds to
a nightlight device whose light is looped back into its light sensor. Periodic bifurcations and
deterministic chaos are obtained by the feedback loop created when the thyristor switches on
the bulb in the absence of light being detected by the photoresistor and the bulb light is then
looped back into the nightlight to switch it off. The experimental signal is analyzed using tools of
delay-embedding reconstruction that yield a reconstructed attractor with fractional dimension
and positive Lyapunov exponent suggesting chaotic behavior for some parameter values. We
construct a simple circuit model reproducing experimental results that qualitatively matches
the different dynamical regimes of the experimental apparatus. In particular, we observe an
order-chaos-order transition as the strength of the feedback is varied corresponding to varying
the distance between the nightlight bulb and its photo-detector. A two-dimensional parameter
diagram of the model reveals that the order-chaos-order transition is generic for this system.
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1. Introduction

Optoelectronic devices find diverse applications in
telecommunications, military services, the medical
field, and automatic control systems [Cuomo &
Oppenheim, 1993; Almehmadi & Chatterjee, 2015].
In particular, sophisticated chaos-based communi-
cation systems have grown in popularity in recent
years and are used to encrypt highly sensitive sig-
nals via chaos control techniques before their trans-
mission over telecommunication channels [Aposto-
los et al., 2005; VanWiggeren & Roy, 1998]. Due to
the wide range of applications, chaotic signal phe-
nomena have been extensively studied by employing
various generation techniques such as propagation
delay and feedback [Romeira et al., 2014; Kouomou
et al., 2005]. In this paper, we study the generation
of optoelectronic chaos via a nightlight subjected
to negative feedback. First, even though optoelec-
tronic devices have a wide relevance in science and
technology there are few basic laboratory systems
for which their complexity can be readily studied
[Larger & Dudley, 2010]. Secondly, several of the
chaos generation schemes in the literature above
use large optical fiber feedback lines and sophisti-
cated modulation devices to generate complex sig-
nals. We show through experiment and numerical
analysis that the nightlight chaotic dynamics only
depends on short feedback distances and circuit sen-
sitivity allowing for easy control and prediction of
its complex nature. These qualities demonstrate a
basic light activated circuit which can be a viable
system to employ in the generation and study of
chaotic optoelectronic signals.

We chose to study a common household light
activated nightlight manufactured by Meridian
Electric Company (model 10400). As illustrated in
Fig. 1, a feedback loop produces flickering as the
bulb’s light is detected by the internal CdS pho-
toresistor and is fed back to redrive the nonlinear
modulation of the wall mains input signal. Although
nightlight flicker was noted in [James, 1996] the
examination of the dynamics of the system did
not go further than a few observations and mea-
surements. This paper will be dedicated to a more
in-depth study of the optoelectronic phenomena in
this system and will be structured as follows. In
Sec. 2, we provide experimental results of the chaotic
dynamics of the nightlight system motivating our
study. Section 3 presents the nightlight model
including models for the tungsten bulb, CdS pho-
toresistor and thyristor along with their parameter

fitting. Also in this section, we present results of
numerical simulations mapping the devices param-
eter space and examination of its deterministic
nature. The paper concludes with a summary of
results and possible avenues for further research.

2. Experimental Setup and Results

Figure 1 shows a sketch of the laboratory setup
used to observe the nightlight feedback dynamics.
To closely study the effects of the distance between
the CdS photoresistor and the bulb, wire extensions
are soldered between the photoresistor and its nodal
connections to the nightlight circuit, which will be
described in detail later. An AC voltage is fed to
the nightlight from the wall mains and the light
emitted from the tungsten bulb is captured using
a photodiode. The photodiode is connected to an
Rigol DS2000 digital oscilloscope which was used to
observe and record the various output waveforms of
the system.

2.1. Delay-embedding
reconstruction

From the experimental data, it is in principle pos-
sible to reconstruct the dynamics of the system
by time-delay embedding reconstruction [Kantz &
Schreiber, 2003]. The selection of an appropriate
time delay, τ , plays a critical role in correctly com-
puting a systems correlation dimension from its
time series. Time-delayed mutual information was
suggested by [Fraser & Swinney, 1986] and applied
in [Paula & Savi, 2015] as a tool to determine a rea-
sonable τ and is given by the first minimum of the
mutual information function

I = −
N∑
ij

pij log
pij(τ)
pipj

. (1)

In the above equation, for some partition on the
real numbers, pi is the probability to find a time
series value in the ith interval, and pij(τ) is the joint
probability that an observation falls into the ith

Fig. 1. Setup of the experimental nightlight system.
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Fig. 2. Mutual information of the data corresponding to the
nonperiodic dynamics depicted in Fig. 5(c).

interval and the observation time τ later falls into
the jth. Figure 2 shows that the first minimum of
mutual information of the experimental data com-
puted with Eq. (1) occurs around τ = 3.7ms.

The correlation dimension D of the attrac-
tor corresponding to the nonperiodic dynamics
depicted in Fig. 5(c) is computed using [Alligood
et al., 1996]

D = lim
r→0

logC(r)
log r

,

where C(r) is the correlation integral with respect
to an arbitrary distance r and is given by

C(r) =
1
N2
s

Ns∑
i,j=1

H(r − |xi − xj|) ∼ rD,

whereH is the Heaviside function, xi,j are points on
the attractor andNs is the number of sample points.
As shown in Fig. 3, D was obtained by increasing
the embedding dimension, De, until D converged to
the intrinsic dimension of the attractor which was
found to be D = 1.46. The fractal dimension of the
attractor is a indicator of chaos.

As shown in Fig. 3(b), the correlation dimen-
sion begins to plateau at De = 3 which implies
an embedding of the orbit into a three-dimensional
state space {P (t), P (t + τ), P (t + 2τ)}. Figure 4
displays the reconstructed attractor from the exper-
imental time series depicted in Fig. 5(c) and shows
the feedback system does not converge to a closed
orbit but instead into a “strange attractor”.

2.2. Chaotic behavior

Figure 5 demonstrates how the bulb’s output
waveform and power spectra evolve as nonlinear

−4 −3 −2 −1
−8

−6

−4

−2

Distance: log
2
(ε)

C
o
r
.
 
I
n
t
e
g
r
a
l
:
 
l
o
g
2
C
(

ε)

De=1

slope=1.46=DDe=9

De=7

De=5

De=3

C(ε)~ε1.46 

(a)

2 4 6 8

1

2

3

Embedding Dimension: De

C
o
r
.
 
D
i
m
.
 
=
 
D

White Noise 
(example)

D=1.46

Nightlight Chaos 
(experimental)

(b)

Fig. 3. Calculation of (a) correlation integral C(r) and (b)
correlation dimension D from the state corresponding to
Fig. 5(c).

feedback is introduced into the system by point-
ing the CdS photoresistor at the tungsten bulb at
various distances, d, from the bulb. In Figs. 5(a)
and 5(b), as d is decreased from 4.5 cm to 4.25 cm

P(t)
P(t+τ)

P
(
t
+
2

τ)

Fig. 4. Reconstruction of the attractor from the state in
Fig. 5(c) using delay coordinates depicted as embedded in
three-dimensional phase space (τ = 3.7 ms).
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(a) Period 3T d = 4.5 cm
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(b) Period 6T d = 4.25 cm
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(c) Chaos d = 4.0 cm
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Fig. 5. Waveforms from the nightlight experiment. The left panels show the output waveforms when feedback is introduced
to the system at various distances between approximately 4.5 cm to 4.0 cm. The right panels display the corresponding power
spectra depicting a period-doubling route to chaos.
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Fig. 6. Average exponential growth computed from the
experimental time series corresponding to the state in
Fig. 5(c), namely, when d = 4 cm. The linear fit to the first
portion of the data gives an estimated Lyapunov exponent
of λ ≈ +0.577. Note that for longer times the separation dis-
tance saturates as the attractor has finite size. Time has been
rescaled by the frequency of the wall mains f = 60 Hz.

the left panels show the waveforms initial period
of 3T , where T = 1/f is the period of the wall
mains, bifurcates to a period of 6T . The f/3 and
f/6 frequency components are clearly seen in the
corresponding power spectra in the right panels. As
shown in Fig. 5(c), at d = 4.0 cm the feedback sys-
tem transitions to a state with more complex wave-
forms and appear to lose periodicity. The power
spectrum is wide, suggesting the system behaves
chaotically in this regime. Finally, Fig. 5(d) shows
that the output signal transitions back into a regu-
lar periodic state of period 2T . This suggests an
order-chaos-order transition as the distance d is
varied (see below for further details).

In order to verify the system’s chaotic dynam-
ics, the largest Lyapunov exponent λ for the time
series was estimated using a method well suited for
small data sets [Rosenstein et al., 1993]. Figure 6
shows a least-squares fit to the averaged linear rela-
tionship defined by

y(i) =
1

∆t
〈log dj(i)〉,

where ∆t is the sampling period, dj(i) is the dis-
tance between the jth pair of nearest neighbors
after i discrete-time steps and 〈·〉 denotes the aver-
age over all values of j. Figure 6 depicts the aver-
age growth of 〈log dj(i)〉 for the experimental data
corresponding to d = 4 cm [see Fig. 5(c)]. As it
is clear from the figure, the growth is, for short
times, approximately linear which yields an esti-
mated value for the largest Lyapunov exponent of
λ ≈ +0.577 where time has been rescaled to the

natural frequency of the system given by the fre-
quency of the wall mains (f = 60 Hz) that drive
(force) the circuit. This result gives a clearly pos-
itive value for λ which is characteristic of chaotic
dynamics. This further supports the results above
that also suggested that the experimental circuit is
chaotic for d = 4 cm.

3. Numerical Model and Results

3.1. Model

Upon disassembling the nightlight one can observe
the circuit layout depicted in Fig. 7. The device is
driven by the household mains, labeled Vin, with a
root mean square (rms) voltage of 110 V and a 60 Hz
frequency. The tungsten bulb, B, has a 4 W power
rating and is triggered on in the dark and is trig-
gered off when light is sensed by the CdS photocell
denoted as Rph. The circuit also contains a thyristor
along with a linear resistor, R, which determines the
circuit’s sensitivity to light. Let us now model the
different components included in the nightlight cir-
cuit: the bulb, the photoresistor, and the thyristor.

3.1.1. Source: Tungsten bulb

In [Hu & Lucyszyn, 2015; Clauss et al., 2001]
tungsten bulb models were analyzed both experi-
mentally and numerically based on the Stephan–
Boltzmann law and assuming the filament input
power must be equal to its radiated output power
in thermal equilibrium. Similarly, taking the bulb
electrical voltage to be, vB , over time, t, the model

Fig. 7. The nightlight circuit. The circuit is composed of a
light bulb B, a thyristor, a linear resistor R and the photore-
sistance Rph. The system is connected to a sinusoidal voltage
source Vin of amplitude A and frequency f .
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we use for the bulb is

MC(T )
dT

dt
=

v2
B(t)

Rf (T )
− σ(T 4 − T 4

0). (2)

The variable T represents the filament tempera-
ture in degrees Kelvin, C(T ) is the heat capacity
of tungsten and Rf (T ) is the filament temperature
dependent resistance. The parameters M and σ are
used to fit the model to an ideal 4W light-bulb and
represent the filament’s effective mass and constant
of proportionality between radiative intensity and
temperature.

In [Forsythe & Worthing, 1925] the resistance
and temperature of a tungsten filament are shown
to be related by the following expression

Rf (T ) = R0

(
T

T0

)1.2

, (3)

where R0 is the resistance of tungsten at room tem-
perature and T0 is room temperature in degrees
Kelvin. We measured the value for R0 using an
ohmmeter. A modeling value for σ was determined
by assuming an average electromagnetic radia-
tive power output of 4W in thermal equilibrium
(dT/dt = 0) with an average applied voltage of
V (t) = 110 V.

Manufacturing specifications gives the tungsten
bulb’s operating temperature to be ≈ 2200◦K. The
parametrization of the heat capacity for tungsten in
the temperature range of 0–3000◦K is taken to be

C(T ) = 3Rg

(
1 − Θ2

D

20T 2

)
+ 2aT + 4bT 3,

where Rg is the gas constant, ΘD is the Debye
temperature, a = 4.5549 × 10−3 and b = 5.77874 ×
10−10, [Yih & Wang, 1979]. The linear term a
represents the contribution from electronic specific
heat and b reflects the influence of any anharmonic
vibrations within the tungsten compound [Hoch &
Vernardakis, 1975].

3.1.2. Passive nonlinearity : Photoresistor

The photoresistor is a semiconductor device that
converts light into an electrical signal, such as volt-
age or current, which is precisely the feedback con-
trol at the heart of the nightlight device. Recent
computer-assisted experiments show photoresistors
are sensitive and exhibit a fast, nonlinear response
to light signals [Kraftmakher, 2012]. For the current
project we describe the photoresistor’s transient

carrier density, N , by [Pierret & Neudeck, 1988]

dN

dt
= RIwave(t) − N

τe
, (4)

where τe is the semiconductor carrier recombination
lifetime and R is its sensitivity to the incident opti-
cal power; Iwave(t). The main property of the pho-
toresistor is expressed by its resistance under illu-
mination as Rph ∝ I−1

wave [Saleh & Teich, 1991]. We
introduce the scaling N = Rn to simplify Eq. (4)
and express our photoresistor model compactly as

dn

dt
= Iwave(t) − n

τe
, (5)

Rph =
c

nψ
. (6)

The parameters c and ψ were determined by tak-
ing measurements of resistance of the photoresistor
while varying the distance, d, between the tungsten
bulb and the photoresistor and is shown in Fig. 8.

3.1.3. Active nonlinearity : Thyristor

A thyristor conducts current only in the forward
direction, can block voltage in both directions, turns
on when a firing pulse is provided and turns off
when the thyristor current becomes zero. A phys-
ically accurate, but computationally stiff, lumped
diode model of the thyristor was designed in [Chua
et al., 1987] and implemented in [Hoh & Yasuda,
1994] with static (IA, VAK) characteristics approxi-
mated by a piecewise-linear function. Similarly, our
modeling approach is to form approximate expres-
sions for the bulb and photoresistor voltages based
on an approximate model of the thyristor.
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Fig. 8. The CdS photoresistor response to incident light.
Depicted is the log–log plot of the photoresistor resistance
versus the distance to a 4W light source.
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By assuming the thyristor produces a rectified
wave conducting the lower half cycles of the supply
voltage across its pn junction diodes and the upper
half cycle across the bulb, vB can be modeled as

vB =
Vin + vf − |Vin − vf |

2
.

Using the above expression for vB, a nodal analysis
of the circuit diagram in Fig. 7 allows its switch-
ing dynamics to be conveniently described in the
following algorithm:

Algorithm: CIRCUIT STATE (vph, Ih)

if vph > vt (Thyristor on)

vB =
Vin + vf − |Vin − vf |

2
,

v = Vin − vB ,

vph =
v Rph

Rph +R
.

else if Ih > 0

vB =
Vin + vf − |Vin − vf |

2
,

v = Vin − vB ,

vph =
v Rph

Rph +R
.

else (Thyristor off)

vB = 0,

v =
VinRph
Rph +R

,

vph = v.

return vB vph

The PCR606J data-sheet gives the thyristor gate
triggering voltage as vt = 0.8V, the holding current
as Ih = 5.0mA and the forward voltage as vf =
1.0V. In order to test the robustness of our thyristor
model a low voltage replica of the nightlight circuit
was constructed and data collected on the thyristor
voltage, vak, with the photoresistor under two states
of illumination. The results are displayed in Fig. 9
which show good agreement between the data and
the model.
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Fig. 9. Simulation versus data of the thyristor when the
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the thyristor has a small conduction angle, θD, relative to
θI when under illumination. Right: The thyristor represen-
tative (i–v) curve depicts distinct regions of negative differ-
ential conductivity under illumination (Illum) and darkness
(Dark).

3.2. Simulation

Feedback is introduced into the model by setting
Iwave = σ(T 4−T 4

0)/d
2 (power/distance2) and simu-

lations are accomplished by numerically integrating
the system:

MC(T )
dT

dt
=
vB(t)2

Rf (T )
− σ(T 4 − T 4

0),

dn

dt
= Iwave(t) − n

τe
,

where the state of vB(t) is determined by events
given by the conditions of the CIRCUIT STATE algo-
rithm defined above. The simulation is accom-
plished in a series of time intervals with initial con-
ditions (T0, n0) given from the final values (Tf , nf )
of the systems’ previous state. For clarity, the mean-
ing and values of the physical and modeling param-
eters are listed in Table 1.

3.3. Parameter space and dynamics
of the model

The dynamics of the system is studied by varying
the linear resistor and distance parameters R and d.
Figure 10 depicts, in the parameter space (d,R), the
regions where the output waveform is periodic (with
periods T , 2T , and 3T ) and where it is chaotic. The
figure was obtained by sweeping d for fixed values of
R (at intervals of 0.5MΩ) and determining the state
of the system by observing the power spectrum of
the simulated bulb output, P (t), calculated as

P (t) = σ(T 4 − T 4
0).
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Table 1. Definitions of the physical and modeling parame-
ters of the nightlight feedback system.

Parameter Value Meaning

A 110 V Mains amplitude

f 60Hz Mains frequency

T0 274.15 K Room temperature

R0 250 Ω W Resistance at T0

Rg 45.23 J/K mol W Gas constant

ΘD 310 K Debye temperature

σ 1.74 × 10−13 Bulb model parameter 1

M 1 × 10−6 kg Bulb model parameter 2

τe 1 × 10−12 s Carrier lifetime

c 0.454 CdS model parameter 1

ψ 0.44 CdS model parameter 2

vf 1.7 V Thyristor forward voltage

ih 5.0 mA Thyristor holding current

The parameter space shows a thin “critical strip”
where chaotic feedback dynamics occur over a range
of sensitivities and feedback distances. Figure 10
predicts as the circuit is made more sensitive to light
(by increasing R) then the system’s switching phe-
nomena occurs at larger distances thus illustrating
the two parameters’ interdependence.

To illustrate the effects that R has on the qual-
ity of dynamics exhibited by the system, simula-
tions were performed while keeping d constant and
varying R along the vertical line depicted in Fig. 10.
For each value of R, the crest factor, Ci, of each
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three points labeled (a)–(c) depict the parameter values used
for the waveforms and power spectra in Fig. 13. The model
predicts that increasing/decreasing R should result in a cor-
responding increase/decrease in circuit sensitivity and a shift
in the value of d required for chaos.
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Fig. 11. Crest factor of the model’s power output corre-
sponding to the strip d = 0.12 m in Fig. 10.

peak, pki, of the output waveform was computed as

Ci =
pki
pkrms

,

where pkrms =
√

(pk2
1 + pk2

2 + · · · + pk2
n)/n is the

root mean square of the set of peaks {pki}, (i =
1, . . . , n). Figure 11, depicting the crest factor

P(t)

P(t+τ)

P
(
t
+
2

τ)

τ = 3.7 ms

0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

 t x f 

<
 
l
o
g
 
d
j
(
i
)
>

d
j
(i)=d

j
(0)eλ(t)

λ ≈ 2.03 

Lyapunov exp.
(numerical) 

Fig. 12. Top panel: Reconstructed attractor of the circuit
model from the chaotic region of Fig. 11. Bottom panel:
Average exponential growth computed from the numerical
time series corresponding to the chaotic state in Fig. 13(b).
The linear fit estimates a largest Lyapunov exponent of λ =
+2.03. For both panels the model parameters are R = 2.5 MΩ
and d = 0.12 cm.
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dependence on R, clearly shows the effect of R on
the system’s route to chaos. The peaks of the wave-
form remain quasi-periodically concentrated near
their rms value and diverge when the system is in its
chaotic regime. Interestingly, in Fig. 11 there seems
to be a transition from order to chaos to order as
one sweeps the resistance R.

Figure 12 shows the bulb output of the sim-
ulated waveform in the chaotic region depicted in
Fig. 11 embedded in three dimensions with the
same time delay τ = 3.7ms as the experimental
data from Fig. 4 and, correspondingly, displays the
system’s fractal structure. Finally, the largest Lya-
punov exponent of the numerical attractor was com-
puted using the same method as the one used for

Fig. 6 which yields a value of λ = +2.03 which
demonstrates that the model can reproduce chaotic
dynamics by adjusting R while holding d fixed. It is
important to note that the qualitative behavior of
the system does not depend on the precise value of
R (as different “cuts” for fixed R seem to produce
qualitatively the same order-chaos-order transition;
see Fig. 10). This is a strong indication that the phe-
nomena hereby described — cf. period bifurcations
and chaos — is generic. For instance, the incorpo-
ration of small amounts of noise should not affect
the qualitative characteristics of the system.

Finally, to compare the qualitative dynamics of
the model to the experimental results, we present
in Fig. 13 the waveforms and their power spectra
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Fig. 13. Waveforms (left panels) and their corresponding power spectra (right panels) of the circuit model at the points
(a)–(c) labeled in Fig. 10.
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for our model corresponding to the 3T , chaos, and
2T experimental cases of Fig. 5. As it is evidenced
from the figure, the waveforms obtained from the
model have a striking resemblance to the wave-
forms from the experiments. Specifically, the power
spectra reveal similar characteristics between the
theoretical and experimental waveforms. Note that
in Fig. 13 we chose a range of values for the lin-
ear resistor R larger than the corresponding one in
our experiment (approximatively 1MΩ) in order to
demonstrate the robustness of the order-chaos-order
transition. The system output and power spectra for
R = 1 MΩ are similar to the ones corresponding to
the experiment (see Fig. 5).

4. Conclusions

The feedback behavior of a nightlight circuit was
studied. We presented experimental results where
the light emanating from a nightlight was fed back
into itself. This created a feedback loop as the night-
light turns on in the absence of light, but as it turns
on, it produces light that is fed back into itself
inducing its dimming down. We showed that this
feedback loop does not induce a stable equilibrium
but induces bifurcations in the period as the feed-
back strength is varied by adjusting the distance
between the nightlight bulb and its light detect-
ing photoresistor. As this distance is decreased, the
output signal of the bulb undergoes period bifurca-
tion until it exhibits apparently chaotic dynamics.
Decreasing further the distance resulted in regular-
ization of the dynamics thus giving an order-chaos-
order transition as the distance is varied.

The behavior of the system was explained by
taking into account the influence of the feedback
distance and the linear resistor effect on system
sensitivity. Observing the power spectra of the
bulb’s output signal showed waveforms consisting of
a mixture of frequencies which resulted in complex
aperiodic behavior. Our model is based on a com-
mercially available nightlight device that contains
a photoresistor, a thyristor and a linear resistor.
The obtained model was able to predict qualita-
tively the bifurcations observed in the experiment,
including the order-chaos-order transition as the
strength of the feedback is varied. Very good qual-
itative agreement was observed between the exper-
imental results and the numerics ensuring for our
model for the different types of periodic and appar-
ently chaotic dynamics. The nonperiodic dynamics

in the experiment was analyzed by delay-embedding
attractor reconstruction and the computation of its
corresponding correlation dimension. We obtained
a correlation dimension of D = 1.46 evidencing
the fractal nature of the attractor. Furthermore, we
also computed, from the reconstructed dynamics,
the largest Lyapunov exponent yielding a value of
λ = 0.577 and thus confirming that the dynamics
is indeed chaotic. The power spectra of the output
signals in the different regimes also suggested that
for intermediate distances between the bulb and
the photoresistor the dynamics was chaotic. Qual-
itatively similar conclusions were also obtained for
the corresponding model including, remarkably, the
order-chaos-order transition.

Furthermore, a two-dimensional parameter
phase transition diagram of the model showed
that the observed order-chaos-order transition was
generic. We note that although the chaotic region
seems to be generic, it is relatively thin and there-
fore some care is necessary to obtain conditions for
its manifestation. This was also observed in the
experiments where apparently aperiodic behavior
could be obtained by slowly varying (decreasing)
the distance between the bulb and the photoresis-
tor for a narrow window of distances.

The physical mechanisms underlying the crit-
ical distance between the nightlight’s bulb and
the ensuing output phenomena remains unknown.
Achieving a deeper understanding of its proper-
ties would require close investigation of the circuits’
nonlinear devices under operation. Thus, it would
be interesting to expand the present considerations
of negative feedback signals to a more sophisticated
and measurable chaos generation system incorpo-
rating a similar light activated circuit in order to
examine its operating dynamics in finer detail. It
may be possible to conduct experiments and simu-
lations with chaos control techniques to yield insight
into understanding the control of chaotic opto-
electronic signals and encryption techniques and
devices.
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