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Abstract

In this paper, we investigate localized discrete stateh winhon-zero topologi-
cal charge discrete vortices) in a prototypical model of dynamical lattice systems,
based on the two- and three-dimensional (2D and 3D) diso@ignear Schrodinger
(DNLS) equation, with both attractive and repulsive or-gitibic nonlinearity. Sys-
tems of two nonlinearly coupled DNLS equations are considéoo. We report new
results concerning the existence and, especially, diabilithe vortices with higher
values of the topological charge(S = 2, 3,4). Quasi-vortices, i.e., stable solutions
of the quadrupole and octupole type, which replace unstabtces withS = 2 and
4, respectively, are also found. The vortices of the gapeolype, which are found
in the defocusing (repulsive) model, are quite differeatcancerns the stability, from
their counterparts in the focusing (attractive) modelsthistwo-component system,
stable compound vortices of the typ8,, S,) = (1, +1) are found, the stability area
beinglarger for the (+S, —S) species. In the 3D case, besides finding stable vortices
with S = 1 and3, a novel possibility is reported, viz., a stable two-comgmircom-
plex with mutually orthogonal vortices in the componentpphcations of the results
to nonlinear optics and Bose-Einstein condensates ariiytdiscussed.
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1 Introduction

In the last two decades, intrinsic localized modes in nealirdynamical lattices (aliabs-
crete breathers) have become a topic of intense theoretical and experirientstigation,
due to their inherent ability to concentrate and (potelyliatansport energy in a coherent
fashion; for recent reviews of the topic, see Refs. [1]. iBgétin which these nonlinear
excitations, strongly localized on the lattice, play an amgnt role range from arrays of
nonlinear-optical waveguides [2] to Bose-Einstein corsdées (BECS) in periodic poten-
tials [3], and from various models based on nonlinear sgridg to Josephson-junctions
ladders [5] and dynamical models of the DNA double strand [6]

One of the most ubiquitous (and, simultaneously, most auew to examine) models
in which such modes have been extensively studied is theetiisaonlinear Schrodinger
(DNLS) equation [7]. Its most straightforward physical lization was found in one-
dimensional (1D) arrays of coupled optical waveguides [8 Sich arrays may be multi-
core structures made in a slab of a semiconductor materi@aAs) [9] or silica [10], or
virtual ones, induced by a set of laser beams illuminating@qrefractive crystal [11]. In
this experimental implementation of the DNLS system, thmler of lattice sites (guid-
ing cores) is~ 40, and the available propagation distance is upldiffraction lengths of
the localized mode, which lends enough room to create dessitons and conduct vari-
ous experiments with them, including collisions [12]. Veegently, discrete diffraction of
light was demonstrated experimentally in a bundle of optiGveguides with a regular 2D
square-lattice transverse structure, of size up 07, made in fused silica [13]. Actually,
lattices of a much larger size, suchld® x 112, can be readily created in a photorefractive
crystal, with lattice spacing: 20um.

An array of BEC droplets trapped in a strong optical lattiod ), with ~ 103 atoms in
each droplet, is another direct physical realization of@NLS model [3]. In this case, the
DNLS equation can be systematically derived via a Wanniaction decomposition [14].

While the BEC-droplet arrangements can be one-, two- arektdimensional (3D)
[15], the optical-waveguide implementations can be, attmes-dimensional. Another
feasible physical realization of the DNLS model in the 3Decasay be provided by a
lattice built of tunnel-coupled microresonators trappaptons [16] or polaritons [17].

Recently, an idea of light-induced photonic lattices hagmy®d in nonlinear optics
[18, 19, 20] (it is closely related to the above-mentioneduail lattices used in the ex-
periments with photorefractive media [11]). It arises frtime possibility to modify the
refractive index of a nonlinear medium by means of a peripditern of intensity modula-
tion, created by a grid of strong beams, while a weaker bedmckwhowever, experiences
much stronger nonlinearity) is launched in the perpendicdirection to probe the resulting
structure. Promising experimental studies of discretéosd in 2D and quasi-2D lattices
were stimulated by this novel context [18, 19, 21, 22].

Theoretical studies have predicted various types of stibl@ete solitons that may oc-
cur in 1D dynamical lattices, such as twisted solitons anttirnumped bound states [23],
compactons [24], and several types of gap solitons [25, 26k recent advancements in
the above-mentioned experiments strongly suggest to @xiteranalysis of DNLS solitons
to the 2D and 3D cases. Strictly speaking, 2D photonic kdtin photorefractive mate-
rials feel a different (saturable) nonlinearity; howewiiey support essentially the same
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robust structures as the DNLS model. On the other hand, thdléd 2D waveguide ar-
rays, reported in Ref. [13], as well as BECs loaded into angti2D/3D optical lattice, are
described precisely by the respective (2D/3D) DNLS modepdrticular, of special inter-
est are discrete 2D and 3D solitons carrying a topologicatgd i.e. discrete vortices. In
the context of the DNLS equation, the fundamental vortiea#y the topological charge
(“spin”) S = 1, were systematically investigated in Ref. [27], as 2D ceypurts of the 1D
discrete twisted solitons of [23], the most important iskamg their stability. Bound states
of 2D DNLS solitons, including both vortex and zero-vottijcones, were investigated in
Ref. [28]. In the context of other 2D lattice models, sometiedy-carrying configurations
were earlier considered in Ref. [29]. Very recently, qudiscrete vortices were observed,
and their robustness was demonstrated, in two indepenaeetiments performed in a
photonic lattice created in a photorefractive material [R0.

Similar vortex states, as well as higher-order vorticesl ‘@upervortices”, i.e., ring-
shaped arrays built of individual vortices with global voity imprinted upon them, were
found in acontinuum model based on the 2D Gross-Pitaevskii (GP) equation imaud
square-lattice periodic potential, which describes a BHG attractive inter-particle inter-
actions (negative scattering length), loaded into theesponding square OL [32]. Anal-
ogous vortex solutions were obtained in the context of a 28npmenological model of
photonic crystals [33]. Stable vortex solitons can be fotowlin the 2D GP equation with
hexagonal, triangular, or quasi-periodic (rather tharasg)uOLs, and even in the case when
the intrinsic interaction is repulsive [34] (in the lattexse, the localized structure is of the
gap-soliton type, see also Refs. [35] and [36]). Asymméitxiith respect to the geometry
of the lattice) vortices were also recently examined [37].

While it was quite easy to demonstrate that the fundamestak (1) vortex solitons
are stable in all the above-mentioned settings, a chalignigsue concerns the stability of
higher-order discrete vortices, witts > 2. In the case of the DNLS, a family & = 2
vortices was constructed in Ref. [27]; however they weraébio be unstable.

On the other hand, similar issues were recently investigatemniform (i.e., without
external potential) continuum models with the cubic-ggiraind (2 : x(f) (quadratic —
self-defocusing-cubic) nonlinearities. Originally, itag/ found that only vortex solitons
with S = 1 andS = 2 were stable in the cubic-quintic model, while the ones wsitk» 3
were supposed to be unstable [38]. However, it was then dstnaded that the higher-
order vortices may be stable too (at least, ugte- 5), but in very narrow regions [39].
For instance, foS = 3 solitons the stability domain occupies3% of the existence region
(and still less forS > 3), while for the fundamentalS = 1) vortices the relative size of
the stability area was: 10%. More recently, similar results were obtained for the vorte
solitons in the spatially uniforng(® : x(f) model [40], which suggests that narrow stability
domains of higher-order vortex solitons is a generic featfrcontinuum spatially uniform
models with competing nonlinear interactions.

It is relevant to mention that the stable higher-order vos@iton beams in bulk media
may be promising, in applications to photonics, as “lighhauwits” to guide weak optical
signals, since they are “more hollow” than the beams ite- 1. On the other hand, if,
for instance, the vortex beam with= 2 is unstable against splitting into two fundamental
vortices withS = 1, which is typical in media with a simple nonlinearity (foistance, only
guadratic) [38], this may be used to creaf€-ahaped ramification of the conduit.
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In this work, we address the stability of higher-order vergelitons in the 2D and 3D
DNLS model. In particular, this is motivated, by the aboventioned recent experimental
demonstration of stable fundamental quasi-discrete x@tditons [30], and availability
of phase masks which can lend vorticify > 2 to a laser beam, which is to be used for
the creation of the soliton. Experimental search for sugh-uirder spatial vortex solitons
in a photorefractive lattice was recently undertaken (sgeRef. [41] where an input of a
charge 4 vortex gave rise to soliton necklaces). Here, weodstrate, by means of accurate
numerical calculation of eigenvalues of the linearizatavound such solitons, that they
arestable in properly chosen parameter regions of the DNLS model. Alse recent 3D
experiments in BECs with OLs [15] indicate that similar sttues may be present in the
latter context.

The paper is organized as follows. The 2D model is formulatatiexamined in Section
I, which also briefly describes numerical techniques erygdiofor the analysis of solutions
and their stability. Detailed results for the vortices with= 3 are given. The analysis is
based on the computation of the full set of the correspontiiegr-stability eigenvalues.
The evolution of unstable solitons is investigated by dindlicect simulations (it is found
that they split into a set of two stable solitons, wigh= 1 and.S = 0). We also consider
real solutions of the quadrupole type, which replace théices withS = 2 (recall the
true complexS = 2 solitons are all unstable [27]); their octupole-type ceupérts are
briefly considered too. The vorticity of the real quadrup@ed octupole too) solitons can
be directly identified only if a small perturbation, which kea them complex, is added.
To this end, we employ all the localized eigenmodes of smadtupbations around the
solutions, and conclude that their vorticity, defined thas not2, but zero. Nevertheless,
it is a novel type of the localized solutions, qualitativeli§ferent from the ordinarys = 0
solitons, therefore we call thequasi-vortices. The stability region is found for the quasi-
vortices adjoint to both th& = 2 andS = 4 configurations. We also examine vortices in
the cases of defocusing cubic nonlinearity (which corresponds to the repulsiveracttion
between atoms in the BEC), and identify differences of thtbility characteristics from
those in the focusing case. Additionally, in Section Il wamxnecoupled vortices in two-
component models, and report a surprising finding: a paioopted vortices with opposite
values of the topological chargé; = —.S,, aremore robust (have a larger stability area)
than their counterparts with, = +5,.

In Section Ill, we examine discrete vortices in the 3D DNLSd®lo In this case, we
find stableS = 1 andS = 3 vortices. ForS = 2 we demonstrate an unexpected feature,
that unstables = 2 vortices may relaxipscale, to their stable counterparts with= 3. We
also highlight a new type of a compound vortex in the two-congmt model, which is a
stable bound state of two vortices with mutually perpendicaxes. Finally, in Section 1V
we summarize the findings and present conclusions.

2 Two-Dimensional Vortices

2.1 TheMod€

The DNLS equation for the complex dynamical figig ,, (which is the atomic wave func-
tion in the BEC, or amplitude of the electromagnetic wavénmdptical waveguiding array)
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on the 2D square lattice has a well-known form [7],

.d
Za¢m,n + CA2¢m,n + |¢m,n|2 ¢m,n = 0, (l)

whereC is the coupling constant, anfl, stands for the discrete Laplaciady¢,,, =
Gmtin + dmnt1 + dmn—1 + Gm_1n — 4ém,n. FOr stationary solutionsg,,, =
exp(iAt) uy, ,, EQ. (1) leads to the time-independent equation:

Aty = CAoup, p + |um,n|2 U, n- 2

Numerical solutions to Eq. (2) were obtained by means of teetdn method (note that we
are interested, generally speaking, in complex solutitreseforeu,, ,, was decomposed
into its real and imaginary parts).

Upon generating stationary localized solutions, theibitita was examined through
linearization. To this aim, a perturbed expression of tmff12],

bm.n = exp(iAt)un,
+eexp(iAt)[am,n exp(—iwt) + by, 5 exp(iw*t)] 3)

was substituted into Eq. (1). Here,, , is the unperturbed stationary solutionjs an
infinitesimal amplitude of the perturbation,is its eigenfrequency (which is imaginary or
complex in the case of instability) arfd* denotes complex conjugation. This leads to the
following linear equation for the perturbation eigenmaqdes

()= ()

wheredJ is the Jacobian matrix,

( OF},/0u; OFy | 0uj )
J= ;

—0F;/0u;  — OFy /0u;

()

andFy, = —Cl(ugyr +up_ 1 +upen +up-n — dug) + Aug — |uk|2 uy,; the string index
k =m + (n— 1)N maps theV x N lattice {m,n} into a vector of lengthV2. Numerical
solutions were sought for with the Dirichlet boundary caiadis at the domain boundaries,
i.e.,atn =1,n= N andm =1,m = N.

We use the obvious scaling invariance of the equation to &éxXrgquencyA = 4 in Eq.
(2), and then vary the coupling const&@htto examine continuous branches of the solutions.
This way, we can cover the entire manifold of the discreldesosolutions, if their integer
vorticity S is varied too. It has been shown before [27] that, for the ehaslue ofA = 4,
the S = 0 discrete solitons and the = 1 fundamental vortices in the DNLS equation are
stable in the regions

C<CY =40 and ¢ <CV =1, (6)

respectively.
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To generate vortex solutions with given integemve initialize the Newton method with
a complexansatz suggested by a general expression for the vortex relevam wontinuum
model,

(mit) Al(m — mg) + i(n — ng)]®

: X sech (n\/(m —mg)* + (n — n0)2> ; (7

where(ng, mg) is the location of the vortex’ center, amdis its intrinsic scale parameter.
To generate numerically exact stationary solutions, thethie algorithm was iterated until
a convergence no worse than 1 partliif was achieved. After that, the linear stability
analysis of the stationary solutions was performed. Thaltesre typically shown for
15 x 15 site lattices, but it was verified that they are only weakkeeted by domain size
for larger domains.

2.2 Vorticeswith S =3

Motivated by the discovery of the stable higher-order vosdglitons in the uniform contin-
uum models [39, 40], we started by seeking $o& 3 solutions in the 2D DNLS equation.
Basic results for these vortices are summarized in Fig. ke tdp left panel of the figure
displays the norm of the solutio®} = -, [um.n|? (Which has the meaning of the total
power of the trapped light beam in the optical waveguideyaowanumber of atoms in the
trapped BEC) as a function af, for fixed A = 4. Note that, in the quasi-continuum ap-
proximation, which corresponds € > A, the dependencB(C') must be obviously linear
for 2D solitons of any type; it is noteworthy that the lineapédndence pertains at smaller
values of the coupling constant.

The instability growth rate of the vortex soliton, i.e., tteal part of the most unstable
perturbation eigenvalug = iw, is shown, as a function af, in the top middle panel of
Fig. 1. The top right panel illustrates the structure of ttaiaenary solution (folC' = 0.02)
through values of the complex field,, ,, at the main sites constituting the vortex. The
solution can be identified as correspondingSto= 3 through the phase variation of the
field, which follows the=3¥ pattern f being the angular coordinate in the plane. Bhe 3
vortices are stable in the region

C <O =0.398, (8)

where R¢\) = 0 [cf. the stability intervals (6) foilS = 0 andS = 1 solitons]. At the

pointC = ¢, an instability sets in through ldamiltonian Hopf bifurcation [43], which

is a consequence of the collision of two imaginary eigere/glairs with opposit&rein
signatures (as was discussed in a general form in Refs. [44, 45]). THigdation results
in complex quartet of eigenvalues. With subsequent inered<”, we encounter addi-
tional destabilizing bifurcations &t = 0.402, C = 0.508, C = 0.524, C' = 0.886 and
C = 0.952, which increase the number of unstable modes. This evéyntesults in six
guartets of unstable eigenvaluesCat= 1.418, as shown in the bottom right panel of Fig.
1. Examples of the stationary vortices and spectral plahdlseir stability eigenvalues,
A = A, + A, are displayed in the middle row of Fig. 1 for a stable c&se=0.02), and in
the bottom row forlC' = 1.418.
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Figure 1: The top left panel shows the norm of the vortext@olsolution withS = 3 vs.

the lattice-coupling strengtty’. The real part of the most unstable eigenvalues are shown
as a function of” in the top middle panel (the instability takes placeCat- 0.398). The

top right panel shows the structure of the= 3 vortex through values of the complex
stationary fieldu,, ,, at the sites where the vortex is actually located. Examidseoreal

and imaginary parts of the profile of the stationary solutiand of the spectral plane of
its (in)stability eigenvalues are shown in the left, middted right panels, respectively: in
the middle row forC' = 0.02 (a stable vortex), and in the bottom row f6r = 1.418 (a
strongly unstable one). Note that there may be up to six e@ee quartets accounting for
the instability.
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Nonlinear development of the instability of tise= 3 vortex in the regiorC > Oc(f) =
0.398 was examined in a number of cases by means of direct simugatibEq. (1), using
the fourth-order Runge-Kutta method; the instability waisated by adding a small initial
perturbation to the solution. A typical example is shownim B for the case of’ = 0.618.

In this case, the originad = 3 vortex splits into one witht = 1, which stays at the initial
position, and an additional fragment with = 0, which separates and eventually gets
trapped at a different lattice site. Both tfe= 1 andS = 0 solitons, generated by the
instability from theS = 3 vortex, are stable at the corresponding values of the pdeame
We stress that the apparent non-conservation of the tojgalogharge observed in these
simulations is quite possible, as the lattice does not ceasngular momentum.

(@) (b) ()

)

Re(u
Im(u, )
Max(lul®)

(d) (e)

o)

Re(u
Imu_ )

Figure 2: The two top left panels show the initial unstaBle= 3 vortex forC = 0.618.
The top right panel shows the beginning of the oscillatostahility in the evolution of
the lattice field. The bottom panels show the real and imagiparts of the eventually
established field configuration, which contains stabld@mdi withS = 0 andS = 1.

2.3 Quasi-vortices(S =2and S = 4)

The stationary equation (2) admits real solutions, whiah generated, e.g., by the real
part of the ansatz (7) witlh = 2 andS = 4. First, we will consider their shape and
dynamical properties; then, we will discuss the intergreteof such real solutions in terms
of vorticity.

For S = 2, typical results are shown in Figs. 3 and 4. Similar to Figh#,top left and
right panels in Fig. 3 show, respectively, the norm of theisoh, and the instability growth
rate as a function of’. As in the case of th& = 3 vortex, the instability sets in through
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the Hamiltonian Hopf bifurcation resulting from the caltia of two imaginary eigenvalue
pairs with opposite Krein signatures, which gives rise taartet of complex eigenvalues.
The stability region is

C < CP? =0.862 9)

[cf. the stability intervals (6) forS = 0 and S = 1 solitons, and (8) forS = 3]. The
profile of the solution and the spectral plane of the stgbdigenvalues associated with it
are displayed for a stable cagé & 0.02) in the middle row, and at the instability onset,
C = 0.862, in the bottom row of Fig. 3. It is clear that the resultingut@n follows a
pattern ofcos(26) (which relates the solution t6 = 2), whered is, as above, the angular
variable in the plane.

Development of the instability of these solitons fér> 0.862 was studied by direct
simulations of Eq. (1). A typical example is shown in Fig. 4 @ = 1: the oscillatory
instability transforms the initial state into an ordinagra-vorticity lattice soliton, which is
a stable solution in this case.

The interpretation of solutions of this type in terms of thaticity is ambiguous, as
the solution is a purely real one. As is obvious from Fig. & #olution is actually a
qguadrupole localized on four lattice sites, with zero bemvéhem, which is typical for
vortex solutions that must vanish at the central point. Tiasp of the solution jumps by
m when comparing positive and negative real values of the fieladjacent sites carrying
the solution. To understand the global vorticity that mayaberibed to this state, one can
add a small perturbation which makes the solution complekthns makes it possible to
define a phase field across the lattice (this, obviouslyesponds to a situation expected
in the experiment, where perturbations are inevitable)thimend, perturbations based on
the three localized eigenmodes of small perturbationgiegisround the stable stationary
states of the present type were tried. In Fig. 5, a full sebotaur plots for the eigenmodes
is displayed for the same cas@ & 0.02) which was used as an example in Fig. 3. The
most essential feature of the eigenmodes is that they arpletety localized on the same
set of four sites which carry the unperturbed solution.

Straightforward consideration demonstrates that a coatibim of the stationary solu-
tion and of the first eigenmode (the one with the eigenvalue: iw; ~ 0.087), taken with
a small amplitude, may give rise to the following phase tstion along a closed route
connecting the four sites:

0=>m1m—>0—=7—0, (10)

or the same multiplied by—1). In fact, the perturbed configuration oscillates, at the fre
guencyw;, between these two phase patterns. Next, the second addeigEnmodes,
which belong to a double eigenvalug; 3 = iws 3 ~ 0.04i (w23 iS not exactly exactly
equal tow; /2), if added, with a small amplitude, to the unperturbed stai@y give rise to
phase patterns of the types

0>7m—>0——-7—=0,or0—=>7— 27— 71 —0. (1))

None of these patterns is characterized by a nonzero net glaés generated by the round
trip along the closed route, so the pattern cannot be askfibige vorticity. However, this
is clearly a new type of stable localized 2D lattice solusiodrastically different from the
ordinary zero-vorticity solitons. While this solution hag vorticity, it may be characterized
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Figure 3: The top left panel shows the norm of the quasi-xostaution, corresponding
to S = 2, vs. the coupling constartf. The largest real part of the stability eigenvalues
is shown as a function of’ in the top right panel (the instability sets in@t= 0.862).
The (purely real) profile of the stationary solution, and spectral plane of the associated

stability eigenvalues, are shown in the left and right psinielthe middle row folC' = 0.02,
and in the bottom one faf' = 0.862.
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in the case of” = 1. The top right panel shows the oscillatory instabilitytisetin around
t = 15, in the evolution of the lattice field. The bottom panels shibe/real and imaginary

parts of the established stable configuratior: @&t200), which is identified as an ordinary

Figure 4: The top left panel shows the initial unstable qyasiex corresponding t8
stable zero-vorticity soliton.
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Figure 5: The panels display, in the form of contour plots, bal (left panels) and imag-
inary (right panels) parts of the full set of three eigennsodé small perturbations that
are localized in the case of the stable quasi-vortex(doe 0.02 (the same case as pre-
sented in Fig. 3). The first eigenmode (top panels) corredptmthe frequency; ~ 0.08,

and the two other eigenmodes (middle and bottom panelshipetothe double frequency
w23~ 0.04.
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Figure 6: The profile (left) and stability (right) of the qursrtex with S = 4 for C = 0.02.
Notice that the spectral plane contains 7 pairs of eigemgailu this case.

by the largest intrinsic phase differend¢A¢|),,..... This quantity depends on the way a
small perturbation is added;A¢|) ... = = in the case of Eq. (10), andAd¢|), .. = 27
in the case of Eq. (11). We call this type of real solutigoasi-vortices.

We stress that complex localized solutions to the 2D DNLSa#qn, that are true vor-
tices withS = 2, were found in Ref. [27]. They were constructed startingwaittcomplex
ansatz, whose real and imaginary parts, unlike those inxpeession (7), emulated the
continuum-model’s expressions@fs(260) andsin(26) respectively. However, it was found
in Ref. [27] (and re-checked in the course of the present Wit those true vortices are
always unstable, through a real eigenvalue pair.

We have also constructed real quasi-solitons correspgrdis = 4 [i.e., generated
by the real part of the initial ansatz (7) with = 4]. An example is given in Fig. 6 for
C = 0.02. The stability interval of such solutions is [cf. Egs. (80&®)]

C < CW =0.292.

As expected from the comparison with known results for cantm models (with compet-
ing nonlinearities) [39, 40], the stability interval shts(but does not disappear) with the
increase of5, which equally pertains to the true vortices and quasiicest

2.4 Vorticesin the Repulsive M odel

We have also examined Eq. (1) with the opposite sign in frotli@nonlinear term, i.e., the
defocusing nonlinearity. This case is relevant, e.g., t€B®ith repulsive interactions in
the presence of the OL, see, e.g., [3, 14, 46]. We report hasdly, the results for vortices
in this case.

It should be mentioned that the substitution , (t) = (—1)™+" exp (—8iCt) ¢}, ()
(the so-called staggering transformation), followed bynptex conjugation, reverses the
sign of the nonlinearity in the DNLS equation (1). Therefany ordinary (quasi-smooth)
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soliton in the attractive model comes with its staggerdidesocounterpart in the repulsive
model, and vice versa. To avoid dealing with essentiallyséme solution twice, we con-
sider the discrete solitons in the attractive model (aboneteelow) and in the repulsive one
(in this subsection), each time starting to search for thaisos with an initial ansatz [see
Eq. (7) and also Eq. (16) below] that daast contain the staggering factdr-1)™*".
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Figure 7: The top panels show the real (left) and imaginargdie) parts of the unstable
vortex with S = 1 in the repulsive model fo€ = 0.47 andA = —4 (the linear-stability
spectral plane is shown in the right panel). This vortex istaile forC' > 0.38. The
bottom panels show another branch of the solutions Witk= 1 (in th same repulsive
model), initialized with a quasi-continuum ansatz. Theaigoh is shown foilC' = 0.48, but
it is unstable at’' > 0.22.

The stability of vortices in the repulsive model is signifidg different from that of
their counterparts in the attractive one. There exist mleltbranches of vortices, including
“more discrete” ones (which, at small values of the couplingstant, resemble the ones
examined in the focusing case) and more extended states) wbuld be highly unstable in
the attractive model (in terms of Ref. [36], these two braschre of the “tightly-bound” and
“weakly-bound” types, respectively). Two such examplesstmown in Fig. 7. The solutions
corresponding to the strongly discrete branch gradualpragech (with the increase @f)
vortices of the gap-soliton type, similar to those receftlynd in the continuum equation
with the OL in Refs. [35] and [36]. This branch becomes unstalbC' = 0.38 (with A =
—4), and it can no longer be traced f6r> 0.48. The simplest branch of weakly localized
vortices is also shown in the same figure. This branch becamstsble at” = 0.22 and
cannot be traced far' > 0.49 (cf. Fig. 7).
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In the repulsive model, even the solitons wgh= 0 can be of different types, i.e.,
strongly or weakly localized (in the continuum model witke tBL, the same was found in
Ref. [36]). The strongly localized solution gives rise tascdete gap-soliton branch (which
is similar to the one found in Ref. [47]) that cannot be camtid forC' > 0.48 (and appears
to become unstable through a saddle-node bifurcation Mesg do this point), while the
latter is stable foC' < 0.148 and also disappears at large values of the coupling constant
Examples of thés = 0 discrete solitary waves are shown in Fig. 8.

(b)

() (d)

S S-S VS GRS

Figure 8: The top panels show the localized gap soliton With 0, whenC = 0.48. The
bottom panels show a more extended= 0 localized state for” = 0.4. Notice that it is
highly unstable (this branch becomes unstable’fas 0.148).

It is interesting that the stability of th& = 2 vortices is also different from what was
reported above for the focusing model. While the strongbalized gap-type vortices are
unstable for allC > 0, as is shown in Fig. 9, and was true in the attractive modetemo
extended vortex structures with= 2 can be identified ainearly stable configurations in
the defocusing model (see, e.g., the solutions in the botmne! of Fig. 9 that are linearly
stable forC' < 0.19). These branches also terminateCat: 0.5. Higher-order vortices
(with S = 3 andS = 4) have also been found in the defocusing model. Howeveratiter|
have been found to be always unstable (in contrast to thécgsrin the focusing case),
hence we do not discuss them here in detail.

It is straightforward to understand why all the soliton lmiaes in the defocusing case
terminate close t@” = 0.5. Beyond this critical point, the internal frequency of the
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Figure 9: The top panels show the real (left) and imaginargdie) parts of the unstable
S = 2 vortex forC = 0.49 andA = —4, in the repulsive model. The right panel shows
the spectral plane for this case. This vortex is always biestgsimilarly to its focusing
counterpart). However, the bottom panels indicate a moreneed species of thg = 2
vortex (itis again shown fof’ = 0.49). The latter one was found to be stable o< 0.19.

discrete soliton|(\| = 4) resonates with the frequenciesof the linear phonon modes
(w = 4C [sin?(ky, /2) + sin?(kn /2)], wherek,, ,, are the wavenumbers in the two discrete
directions). Hence, solitons cannot exist in the latteecas a channel for their direct decay
into radiation is available.

2.5 Two-Component Vortices

The two-component DNLS model is particularly relevant asaleh of BEC droplet ar-
rays composed of a mixture of two different species [49]. mbelinearly-coupled DNLS
equations for the discrete wave functions of the spegigs, andy,, ,,, are

2
)= e

whereg is the relative coefficient of the nonlinear interactionviextn the two species.

In uniform continuum models, two-componenbifnposite) solitons, in which one com-
ponent carries vorticity, are known [48]. We have examinlee discrete model (12)
for coupled stationary vortex solutions with the set of iaities (S;,52) = (1,1) and

2 BlYpmn
S (Y

[Z% + OAQ + ( Bw)m’n
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(S1,52) = (1,-1), (3,3) and(3, —3), etc., looking for them in the form

¢m,n _ eiAt Um,n
wm,n Um,n

The stationary fields in the compound vortices of the types, +S) and (+S, —S) are
related in an obvious way,

(Um,n)+57+5 = (um,n)+5,75
(T)m,n)+S,+S = (U;’”)-{-SﬁS’ (13)

while their stability may be different. Unlike these symnesolutions, we were unable to
find solutions like(S1, S2) = (3, £1).

The region of the dynamical stability of the solutions of tyge (+ S, +.5) was found to
be identical to that of the single-component vortex withtthlogical charges (obviously,
the stability of the latter solution is a necessary condifiar the stability of the compound
vortex, and our results show that this condition is sufficiam well). For instance, the
solutions of thg1, 1) type are stable a' < 1.6, cf. Eq. (6).

A striking property of the compound vortices is that the siohs of the(+S, —S) type
have a stability region which is, typicallwider than that for thg+S, +S) solution. For
instance, thé1, —1) vortex was found to be stable @t < 1.99, cf. the above-mentioned
stability regionC < 1.6 for its (1, 1) counterpart. The solutions of thié, +1) types and
their stability eigenvalues are displayed together,(doe= 1.6 [when the solution(1, 1) is
unstable and the on@, —1) is stable], in Fig. 10. These results are obtainedsfer 2/3.

3 Three-Dimensional Vortices

3.1 TheModéd
The DNLS equation on the 3D cubic lattice with a coupling ¢ansC' is [7] [cf. Eq. (1)]

d
Zﬁ¢l,m,n + CA2¢l,m,n + |§{)l,m,n|2 d)l,m,n = Oa (14)

with A2¢l,m,n = ¢l+1,m,n + ¢l,m+1,n + ¢l,m,n+1 + ¢171,m,n + le,mfl,nfl + le,m,nfl -
6¢1.m,n- We seek for localized solutions [sometimes also callednisit localized modes
(ILMs)] in the same form as in the 2D case,@s,, , = exp (iAt)u, ,, ,, Where stationary
functionsw, ,,, , obey a 3D version of Eq. (2),

2
Aul,m,n = OAQ“l,m,n + |“l,m,n| Ulm,n- (15)

Solutions to Eg. (15) (generally, complex ones) are obthibg means of the Newton
method, with Dirichlet boundary conditions. A 2D countetpaf the expression (3)
was used to test the stability of the stationary solutionsicivleads to Eqgs. (4) and (5),
with a difference that, this timef, = —C(ug1 + ug—1 + Uppn + Up— N + U2 +
w2 — 6ug) + Aug — |ug|” ug, and the string index is defined so thiatm, n) — k =
I+ (m—1)N + (n— 1)N2
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Figure 10: The panels (a) show the real (left) and imaginaghi) parts of the compound
vortex with (S, S2) = (1,1) for C = 1.6, and the panel (b) displays the corresponding
spectral plang\,, \;). The bottom panels show the same features (notice theetifferin
the spectral plane) for thg5;, Sy) = (1, —1) solution.

We examine solutions of Eq. (15) by fixing the frequenay,= 2, and varying the
couplingC, with the objective to construct ILMs carrying the vorticit (from 0 to 3). The
solutions were generated by a Newton scheme with an initisdtz motivated by a typical
model expression for the 3D vortex soliton in the continuimiti[51],

(init)
l,m,n

= A[(l — lp) +i(m — mg)]” exp (~|n — ng))

xsech (n\/(l —1p)? 4+ (m — mg)2> , (16)

where (ly, mg, ng) is the location of the vortex’ center, the lattice angularnmeatum
(which is not a dynamical invariant) is aligned with the axisandr is a scale parame-
ter. The Newton algorithm was then iterated until it coneergo1 part in107. Our results
are typically shown fob x 9 x 9 and11 x 11 x 11 lattices, but larger ones were also used,
without notable differences in the results reported here.
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3.2 Reaults

Basic results for the solutions with different topologicharges can be summarized as fol-
lows. Ordinary ILMs withS = 0 are stable below a critical vaIt@é?) of the coupling
constant, which complies with the fact that they are strpngistable (against the 3D col-
lapse) in the continuum limit of — oo (in fact, Cérm is quite large, and it depends on
the size of the numerical lattice). An example of a stablenany soliton is shown in Fig.
11. As ILMs with S = 0 have the largest stability regio; < 06(9), in comparison to
topologically charged ones (see below), in the case whenaheunstable, they can only
be destroyed (decay into phonon waves), rather than tnangfeemselves into ILMs of
other types.

(@ Re(uymn) = +0.5 (b) Re(um n=56)

n
w M OO N o ©

Figure 11: The ILM (intrinsic localized mode) with = 0 in the 3D model is shown for

C = 1. The left panel shows the shape of the ILM in terms of contaluasvn through the
lattice sites wher®e w, ,, , = 0.5. The right panels show 2D cross sections of the solution
through the planes = 6 (top) andn = 5 (bottom) for thell x 11 x 11 DNLS lattice.

3D vortices withS = 1 are stable (see Fig. 12) far < CQ) = 0.65, cf. the stability
region (6) for the 2D vortex lattice solitons. Atthe instépithreshold, a quartet of complex
eigenvalues emerges from collision of two imaginary eigdue pairs (for details, see, e.g.,
Refs. [27, 52]). Numerically simulated development of thstability is displayed in Fig.
12, for a typical case witl’ = 0.7 > Cc(,}). The instability removes the vortex structure
and, as a result, an ordinar§ & 0) ILM emerges; obviously, the change of the topological
charge is possible in the 3D lattice, as well as in its 2D cengart, see above.

An example of a 3D vortex ILM witht = 2 is shown in Fig. 13 foC' = 0.01. Similar
to its 2D counterpart (see above), this complex solutiom#table through a real eigenvalue
pair at all values of’. On the other hand, purely resifible solutions, that may be regarded
as counterparts of thguasi-vortices of the 2D quadrupole-type solutions displayed above,
can be found in the 3D case as well; see Fig. 14 for a relevanhple. What is more
interesting, however, is that the unstable ILMs with= 2 may reshape themselves not
downwards, into ones wit§ = 0 or S = 1, but ratherupwards, into a stable vortex ILM
with S = 3, as seenin Fig. 13.
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Figure 12: The top panels show level contour®aty; ,, , = £0.5 (left) andlm u; , , =
+0.5 (right) for the three-dimensional vortex ILM witl§ = 1. Red/light-gray and
blue/dark-gray surfaces (in the color/black-and-whitesian) pertain to the levels with
+0.5 and—0.5 values, respectively. Cross sections of the vortex are shiodiour middle
panels, (c) and (d). The bottom row displays the developrotintstability of the vortex
for C = 0.7, through the time evolution of its amplitude, and a 2D crasgion att = 100
[panel (f), top and bottom, respectively]. The unstablaesotransforms itself into an ordi-
nary ILM with S = 0. The panel (e) shows the spectral plaig, \;) of the linear-stability
eigenvalues for the same unstable vortex.

The stabilization of the vortex ILM witts = 2 through spontaneouscrease of S is
a really striking result (feasible only in discrete systgms Fig. 15, we show the stable
S = 3 discrete vortex for the same cage= 0.01. The instability of the vortex witl$ = 2
vs. the stability of the vortex witl = 3 may be understood, in loose terms (as well as in the
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(@ Re(ty mp) = +0.25 () Im (g ) = £0.25

Re(u(l,m,10))

Im(u(l,m,10))

Figure 13: The ILM vortex in the 3D lattice, with = 2 for C' = 0.01. Top panels have
the same meaning as in Fig. 4. The panel (c) displays therlgtakility eigenvalues, while
(d) shows the result of long evolution of this unstable vart&he eventual state, shown
through its 2D cross-sections fat 1000, is a vortex withS = 3, which isstable for this
value ofC.

2D case), if one invokes the concept of the lattice-indueaedr|s-Nabarro (PN) potential
acting on the soliton (strictly speaking, in the quasi-@mnim approximation). Indeed, it
is the PN potential which may stabilize a soliton which wobklstrongly unstable in the
free space. Itis seen from Figs. 13 and 15 that the PN potémdiaced by the cubic lattice
is, obviously, a much stronger factor for the soliton with= 3 than withS = 2, due to the
symmetry difference between the former one and the squtieelé.e., lines forming the
“skeleton” of theS = 3 vortex form angles 0120 degrees, as opposed to the right angles
of the underlying cubic lattice).

Another striking feature, which is truly unique to the 3D eais a possibility of the
existence of vortex complexes in a multi-component systeit, the vortices in different
(up to three) componentsthogonal to each other. We consider, in particular, two coupled
3D DNLS equations, cf. Egs. (12):

d o> By ¢\ _
crosan (00 2] (0] -0 a7

where (¢, ¢) = (d1mmn. ¥imn). As for the 2D case, Eq. 17 describes an array of BEC
droplets, composed of a mixture of two different speciestamuped in the OL [49]. In the
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(a) R‘e(ul,m,n) = +0.5 (b) R‘e(ul,m,n:5,6)

™

Re(u(l,m,6)

R:e(u(l.m.S)

Figure 14: Same as Fig. 11 but for the quasi-vortex Witk 2 and forC' = 0.01. The left
panel shows the shape of the quasi-vortex in terms of contitawn through the lattice
sites whereRe u;,,,, = £0.5. The right panels show 2D cross sections of the solution
through the planes = 6 (top) andn = 5 (bottom) for thell x 11 x 11 DNLS lattice.

(@) Re(uy m,n) = £0.25 (b) Im (w1, ) = £0.25

Figure 15: A stable stationary vortex ILM in the 3D latticetiw = 3 for C = 0.01. The
panels have same meaning as top panels in Fig. 4.

case of the above-mentioned model of the photon or polafigétchtrapped in the lattice of
microresonatorsp ands) refer to two different polarizations or distinct cavity nesd

We examine a complex of two orthogonal vortices, in whichdhe in the first com-
ponent is directed perpendicular to tfiem) plane, while, in the second component, the
vortex is orthogonal to thé, n) plane. An example of suchstable complex is shown, for
£ = 0.5, in Fig. 16. We have found that the orthogonal complexes tatdesfors < 1,
and unstable fog > 1, which can be qualitatively understood in terms of the Heonibn
of the attractive interaction between the two componerdashéiaving the characteristic
“doughnut” [51] vortex-soliton shape (in the continuum ilim Indeed, one can roughly
estimate the interaction energy through the volumef the overlap between two cylinders
of a radiusp (which represent long inner holes of the doughnuts) inttirsg at an angle
9,V = (20/3)p/sinf (the divergence a — 0 is limited by the finite length of the
holes). As it follows from here, the interaction energy hasaimum at? = 7/2, which
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corresponds, by itself, to an unstable equilibrium statéwaf orthogonal vortices. The
equilibrium is transformed into a stable one by the pinnionghie PN potential, provided
that the interaction is not too strong, i.8.is not too large.

(8) Re($1m.n) = +£0.25 (6) (1 n) = £0.25

Figure 16: A complex of two orthogonal vortices with= 1 in the two-component 3D sys-
tem is shown folC' = 0.01. The top and bottom panels correspond to the two components,
and they have the same meaning as the top panels in Fig. 4.

4 Conclusions

In this work, we have constructed and investigated a varétgtable (in appropriate
parametric regimes), topologically charged localizedtesoistates in the two- and three-
dimensional versions of the nonlinear dynamical latticecdbed by the DNLS (discrete
nonlinear Schrodinger) equation, as well as a system ofrterdinearly coupled DNLS
equations. New objects reported here are stable higher-saitex solitons (with the vor-
ticity S > 1) and quasi-vortices in the 2D model, as well as lattice @adit(ILMs) in its 3D
counterpart. Localized vortices in the 2D lattice with tledf-slefocusing nonlinearity are
new entities too.

In the 2D case, the stability region of the true complex vovtéh S = 3 has been iden-
tified. While all the vortices witt = 2 are unstable, we have found that they are replaced
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by real quasi-vortex solutions of the quadrupole type, Wiy be stable for sufficiently
weak coupling. The stability analysis was based on the klon of the eigenvalues for
small perturbations, and verified against direct simutetidGenerally, this interval shrinks
with the increase of. Direct simulations have demonstrated that the unstébte 3 vor-
tices split into a set of two stable solitons with= 1 andS = 0, while the quasi-vortex
(quadrupole), existing in lieu of th& = 2 vortex, transforms itself, in the case of instability,
into an ordinary zero-vorticity soliton.

In the 2D two-component model, stability regions of the coomu vortex solitons of
the (1, +1) types were found. A noteworthy result is that, for the vasiof the(+S, —S)
type, the stability area is larger than for their countetpaf the(+S, +5) types.

Localized vortices were also found in the repulsive (de$irmg) model and their regions
of existence and stability were illustrated. These vostiaee tantamount to solutions of the
staggered type in the attractive model. It was found thathis case, the solitons with
different values ofS exist in two forms, strongly and weakly localized ones. Te types
have different stability intervals. In most cases, theifitalarea is larger for the strongly
localized states; however, the weakly localized vorticéh W = 2 may be stable, in the
drastic contrast with the complete instability of this tygfehe vortices in all the other cases
(including the strongly localized = 2 vortices in the repulsive model).

We have constructed vorticity-carrying solitons (aliasiirsic localized modes, ILMSs)
in the 3D DNLS model too. Stability regions were found for ttases ofS = 0, 1, and3.
All the 3D ILMs with S = 2 are unstable, but their instability develops in quite a rivia
way, rearranging the soliton into its stable counterpathwhe larger vorticity,S = 3.
Furthermore, the 3D dynamical lattice sustains quite ualusut stable states, such as the
two-component vortex complex, with the individual vorgaae the components orthogonal
to each other. Studying more complex configurations in tbtsrgy (such as a complex
of three mutually orthogonal vortices in a three-comporsstem), as well as examining
interactions between ILMs, are challenging problems féurieiwork.

The results reported in this paper are relevant not onlyggémeral theory of dynamical
lattices: the 2D model directly applies to bundled arraysaflinear optical waveguides
and, indirectly (as the on-site nonlinearity is differert) waveguiding structures in the
form of photonic lattices in photorefractive media. In thestups, the results suggest a
possibility of existence of new types of spatial opticalteols. In particular, the recent ex-
perimental demonstration of stable fundamental discretiéices in the 2D photonic lattices
with self-focusing nonlinearity in Ref. [30] suggests that higher-order discrete vortices
may be observed in the same medium. Experiments were negaartbrmed with vortex
masks corresponding = 3 andS = 4 [41]. Another direct application of the theoretical
results reported in this paper is the prediction of vortest gnasi-vortex solitons in BECs
loaded into strong 2D (“egg-carton”) and 3D optical latticender realistic experimental
conditions.
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