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Abstract

In this paper, we investigate localized discrete states with a non-zero topologi-
cal charge (discrete vortices) in a prototypical model of dynamical lattice systems,
based on the two- and three-dimensional (2D and 3D) discretenonlinear Schrödinger
(DNLS) equation, with both attractive and repulsive on-site cubic nonlinearity. Sys-
tems of two nonlinearly coupled DNLS equations are considered too. We report new
results concerning the existence and, especially, stability of the vortices with higher
values of the topological chargeS (S = 2; 3; 4). Quasi-vortices, i.e., stable solutions
of the quadrupole and octupole type, which replace unstablevortices withS = 2 and4, respectively, are also found. The vortices of the gap-soliton type, which are found
in the defocusing (repulsive) model, are quite different, as concerns the stability, from
their counterparts in the focusing (attractive) models. Inthe two-component system,
stable compound vortices of the type(S1; S2) = (1;�1) are found, the stability area
beinglarger for the(+S;�S) species. In the 3D case, besides finding stable vortices
with S = 1 and3, a novel possibility is reported, viz., a stable two-component com-
plex with mutually orthogonal vortices in the components. Applications of the results
to nonlinear optics and Bose-Einstein condensates are briefly discussed.�URL: http://nlds.sdsu.edu
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1 Introduction

In the last two decades, intrinsic localized modes in nonlinear dynamical lattices (aliasdis-
crete breathers) have become a topic of intense theoretical and experimental investigation,
due to their inherent ability to concentrate and (potentially) transport energy in a coherent
fashion; for recent reviews of the topic, see Refs. [1]. Settings in which these nonlinear
excitations, strongly localized on the lattice, play an important role range from arrays of
nonlinear-optical waveguides [2] to Bose-Einstein condensates (BECs) in periodic poten-
tials [3], and from various models based on nonlinear springs [4] to Josephson-junctions
ladders [5] and dynamical models of the DNA double strand [6].

One of the most ubiquitous (and, simultaneously, most convenient to examine) models
in which such modes have been extensively studied is the discrete nonlinear Schrödinger
(DNLS) equation [7]. Its most straightforward physical realization was found in one-
dimensional (1D) arrays of coupled optical waveguides [8, 9]. Such arrays may be multi-
core structures made in a slab of a semiconductor material (AlGaAs) [9] or silica [10], or
virtual ones, induced by a set of laser beams illuminating a photorefractive crystal [11]. In
this experimental implementation of the DNLS system, the number of lattice sites (guid-
ing cores) is' 40, and the available propagation distance is up to20 diffraction lengths of
the localized mode, which lends enough room to create discrete solitons and conduct vari-
ous experiments with them, including collisions [12]. Veryrecently, discrete diffraction of
light was demonstrated experimentally in a bundle of optical waveguides with a regular 2D
square-lattice transverse structure, of size up to7 � 7, made in fused silica [13]. Actually,
lattices of a much larger size, such as112� 112, can be readily created in a photorefractive
crystal, with lattice spacing' 20�m.

An array of BEC droplets trapped in a strong optical lattice (OL), with' 103 atoms in
each droplet, is another direct physical realization of theDNLS model [3]. In this case, the
DNLS equation can be systematically derived via a Wannier-function decomposition [14].

While the BEC-droplet arrangements can be one-, two- and three-dimensional (3D)
[15], the optical-waveguide implementations can be, at most, two-dimensional. Another
feasible physical realization of the DNLS model in the 3D case may be provided by a
lattice built of tunnel-coupled microresonators trappingphotons [16] or polaritons [17].

Recently, an idea of light-induced photonic lattices has emerged in nonlinear optics
[18, 19, 20] (it is closely related to the above-mentioned virtual lattices used in the ex-
periments with photorefractive media [11]). It arises fromthe possibility to modify the
refractive index of a nonlinear medium by means of a periodicpattern of intensity modula-
tion, created by a grid of strong beams, while a weaker beam (which, however, experiences
much stronger nonlinearity) is launched in the perpendicular direction to probe the resulting
structure. Promising experimental studies of discrete solitons in 2D and quasi-2D lattices
were stimulated by this novel context [18, 19, 21, 22].

Theoretical studies have predicted various types of stablediscrete solitons that may oc-
cur in 1D dynamical lattices, such as twisted solitons and multi-humped bound states [23],
compactons [24], and several types of gap solitons [25, 26].The recent advancements in
the above-mentioned experiments strongly suggest to extend the analysis of DNLS solitons
to the 2D and 3D cases. Strictly speaking, 2D photonic lattices in photorefractive mate-
rials feel a different (saturable) nonlinearity; however,they support essentially the same
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robust structures as the DNLS model. On the other hand, the bundled 2D waveguide ar-
rays, reported in Ref. [13], as well as BECs loaded into a strong 2D/3D optical lattice, are
described precisely by the respective (2D/3D) DNLS model. In particular, of special inter-
est are discrete 2D and 3D solitons carrying a topological charge, i.e.,discrete vortices. In
the context of the DNLS equation, the fundamental vortices,with the topological charge
(“spin”) S = 1, were systematically investigated in Ref. [27], as 2D counterparts of the 1D
discrete twisted solitons of [23], the most important issuebeing their stability. Bound states
of 2D DNLS solitons, including both vortex and zero-vorticity ones, were investigated in
Ref. [28]. In the context of other 2D lattice models, some vorticity-carrying configurations
were earlier considered in Ref. [29]. Very recently, quasi-discrete vortices were observed,
and their robustness was demonstrated, in two independent experiments performed in a
photonic lattice created in a photorefractive material [30, 31].

Similar vortex states, as well as higher-order vortices, and “supervortices”, i.e., ring-
shaped arrays built of individual vortices with global vorticity imprinted upon them, were
found in acontinuum model based on the 2D Gross-Pitaevskii (GP) equation including a
square-lattice periodic potential, which describes a BEC with attractive inter-particle inter-
actions (negative scattering length), loaded into the corresponding square OL [32]. Anal-
ogous vortex solutions were obtained in the context of a 2D phenomenological model of
photonic crystals [33]. Stable vortex solitons can be foundtoo in the 2D GP equation with
hexagonal, triangular, or quasi-periodic (rather than square) OLs, and even in the case when
the intrinsic interaction is repulsive [34] (in the latter case, the localized structure is of the
gap-soliton type, see also Refs. [35] and [36]). Asymmetric(with respect to the geometry
of the lattice) vortices were also recently examined [37].

While it was quite easy to demonstrate that the fundamental (S = 1) vortex solitons
are stable in all the above-mentioned settings, a challenging issue concerns the stability of
higher-order discrete vortices, withS � 2. In the case of the DNLS, a family ofS = 2
vortices was constructed in Ref. [27]; however they were found to be unstable.

On the other hand, similar issues were recently investigated in uniform (i.e., without
external potential) continuum models with the cubic-quintic and�(2) : �(3)� (quadratic –
self-defocusing-cubic) nonlinearities. Originally, it was found that only vortex solitons
with S = 1 andS = 2 were stable in the cubic-quintic model, while the ones withS � 3
were supposed to be unstable [38]. However, it was then demonstrated that the higher-
order vortices may be stable too (at least, up toS = 5), but in very narrow regions [39].
For instance, forS = 3 solitons the stability domain occupies' 3% of the existence region
(and still less forS > 3), while for the fundamental(S = 1) vortices the relative size of
the stability area was' 10%. More recently, similar results were obtained for the vortex
solitons in the spatially uniform�(2) : �(3)� model [40], which suggests that narrow stability
domains of higher-order vortex solitons is a generic feature of continuum spatially uniform
models with competing nonlinear interactions.

It is relevant to mention that the stable higher-order vortex soliton beams in bulk media
may be promising, in applications to photonics, as “light conduits” to guide weak optical
signals, since they are “more hollow” than the beams withS = 1. On the other hand, if,
for instance, the vortex beam withS = 2 is unstable against splitting into two fundamental
vortices withS = 1, which is typical in media with a simple nonlinearity (for instance, only
quadratic) [38], this may be used to create aY-shaped ramification of the conduit.
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In this work, we address the stability of higher-order vortex solitons in the 2D and 3D
DNLS model. In particular, this is motivated, by the above-mentioned recent experimental
demonstration of stable fundamental quasi-discrete vortex solitons [30], and availability
of phase masks which can lend vorticityS � 2 to a laser beam, which is to be used for
the creation of the soliton. Experimental search for such high-order spatial vortex solitons
in a photorefractive lattice was recently undertaken (see e.g. Ref. [41] where an input of a
charge 4 vortex gave rise to soliton necklaces). Here, we demonstrate, by means of accurate
numerical calculation of eigenvalues of the linearizationaround such solitons, that they
arestable in properly chosen parameter regions of the DNLS model. Also, the recent 3D
experiments in BECs with OLs [15] indicate that similar structures may be present in the
latter context.

The paper is organized as follows. The 2D model is formulatedand examined in Section
II, which also briefly describes numerical techniques employed for the analysis of solutions
and their stability. Detailed results for the vortices withS = 3 are given. The analysis is
based on the computation of the full set of the correspondinglinear-stability eigenvalues.
The evolution of unstable solitons is investigated by dint of direct simulations (it is found
that they split into a set of two stable solitons, withS = 1 andS = 0). We also consider
real solutions of the quadrupole type, which replace the vortices withS = 2 (recall the
true complexS = 2 solitons are all unstable [27]); their octupole-type counterparts are
briefly considered too. The vorticity of the real quadrupole(and octupole too) solitons can
be directly identified only if a small perturbation, which makes them complex, is added.
To this end, we employ all the localized eigenmodes of small perturbations around the
solutions, and conclude that their vorticity, defined this way, is not2, but zero. Nevertheless,
it is a novel type of the localized solutions, qualitativelydifferent from the ordinaryS = 0
solitons, therefore we call themquasi-vortices. The stability region is found for the quasi-
vortices adjoint to both theS = 2 andS = 4 configurations. We also examine vortices in
the cases of adefocusing cubic nonlinearity (which corresponds to the repulsive interaction
between atoms in the BEC), and identify differences of theirstability characteristics from
those in the focusing case. Additionally, in Section II we examinecoupled vortices in two-
component models, and report a surprising finding: a pair of coupled vortices with opposite
values of the topological charge,S1 = �S2, aremore robust (have a larger stability area)
than their counterparts withS1 = +S2.

In Section III, we examine discrete vortices in the 3D DNLS model. In this case, we
find stableS = 1 andS = 3 vortices. ForS = 2 we demonstrate an unexpected feature,
that unstableS = 2 vortices may relaxupscale, to their stable counterparts withS = 3. We
also highlight a new type of a compound vortex in the two-component model, which is a
stable bound state of two vortices with mutually perpendicular axes. Finally, in Section IV
we summarize the findings and present conclusions.

2 Two-Dimensional Vortices

2.1 The Model

The DNLS equation for the complex dynamical field�m;n (which is the atomic wave func-
tion in the BEC, or amplitude of the electromagnetic wave in the optical waveguiding array)
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on the 2D square lattice has a well-known form [7],i ddt�m;n + C�2�m;n + j�m;nj2 �m;n = 0; (1)

whereC is the coupling constant, and�2 stands for the discrete Laplacian,�2�m;n =�m+1;n + �m;n+1 + �m;n�1 + �m�1;n � 4�m;n. For stationary solutions,�m;n =exp(i�t)um;n, Eq. (1) leads to the time-independent equation:�um;n = C�2um;n + jum;nj2 um;n: (2)

Numerical solutions to Eq. (2) were obtained by means of the Newton method (note that we
are interested, generally speaking, in complex solutions,thereforeum;n was decomposed
into its real and imaginary parts).

Upon generating stationary localized solutions, their stability was examined through
linearization. To this aim, a perturbed expression of the form [42],�m;n = exp(i�t)um;n+� exp(i�t)[am;n exp(�i!t) + bm;n exp(i!�t)℄ ; (3)

was substituted into Eq. (1). Here,um;n is the unperturbed stationary solution,� is an
infinitesimal amplitude of the perturbation,! is its eigenfrequency (which is imaginary or
complex in the case of instability) and(�)� denotes complex conjugation. This leads to the
following linear equation for the perturbation eigenmodes,! akb�k ! = J  akb�k ! ; (4)

whereJ is the Jacobian matrix,J = 0� �Fk=�uj �Fk=�u�j��F �k =�uj � �F �k =�u�j 1A ; (5)

andFk � �C(uk+1 + uk�1 + uk+N + uk�N � 4uk) + �uk � jukj2 uk; the string indexk = m+ (n� 1)N maps theN �N latticefm;ng into a vector of lengthN2. Numerical
solutions were sought for with the Dirichlet boundary conditions at the domain boundaries,
i.e., atn = 1; n = N andm = 1;m = N .

We use the obvious scaling invariance of the equation to fix the frequency� = 4 in Eq.
(2), and then vary the coupling constantC, to examine continuous branches of the solutions.
This way, we can cover the entire manifold of the discrete-soliton solutions, if their integer
vorticity S is varied too. It has been shown before [27] that, for the chosen value of� = 4,
theS = 0 discrete solitons and theS = 1 fundamental vortices in the DNLS equation are
stable in the regions C � C(0)
r = 4:0 and C � C(1)
r = 1:6; (6)

respectively.
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To generate vortex solutions with given integerS, we initialize the Newton method with
a complexansatz suggested by a general expression for the vortex relevant tothe continuum
model, u(init)m;n = A[(m�m0) + i(n� n0)℄S� se
h��q(m�m0)2 + (n� n0)2� ; (7)

where(n0;m0) is the location of the vortex’ center, and� is its intrinsic scale parameter.
To generate numerically exact stationary solutions, the Newton algorithm was iterated until
a convergence no worse than 1 part in108 was achieved. After that, the linear stability
analysis of the stationary solutions was performed. The results are typically shown for15 � 15 site lattices, but it was verified that they are only weakly affected by domain size
for larger domains.

2.2 Vortices with S = 3
Motivated by the discovery of the stable higher-order vortex solitons in the uniform contin-
uum models [39, 40], we started by seeking forS = 3 solutions in the 2D DNLS equation.
Basic results for these vortices are summarized in Fig. 1. The top left panel of the figure
displays the norm of the solution,P = Pm;n jum;nj2 (which has the meaning of the total
power of the trapped light beam in the optical waveguide array, or number of atoms in the
trapped BEC) as a function ofC, for fixed� = 4. Note that, in the quasi-continuum ap-
proximation, which corresponds toC � �, the dependenceP (C) must be obviously linear
for 2D solitons of any type; it is noteworthy that the linear dependence pertains at smaller
values of the coupling constant.

The instability growth rate of the vortex soliton, i.e., thereal part of the most unstable
perturbation eigenvalue� � i!, is shown, as a function ofC, in the top middle panel of
Fig. 1. The top right panel illustrates the structure of the stationary solution (forC = 0:02)
through values of the complex fieldum;n at the main sites constituting the vortex. The
solution can be identified as corresponding toS = 3 through the phase variation of the
field, which follows thee3i� pattern,� being the angular coordinate in the plane. TheS = 3
vortices are stable in the region C � C(3)
r = 0:398; (8)

where Re(�) � 0 [cf. the stability intervals (6) forS = 0 andS = 1 solitons]. At the

pointC = C(3)
r , an instability sets in through aHamiltonian Hopf bifurcation [43], which
is a consequence of the collision of two imaginary eigenvalue pairs with oppositeKrein
signatures (as was discussed in a general form in Refs. [44, 45]). This bifurcation results
in complex quartet of eigenvalues. With subsequent increase of C, we encounter addi-
tional destabilizing bifurcations atC = 0:402, C = 0:508, C = 0:524, C = 0:886 andC = 0:952, which increase the number of unstable modes. This eventually results in six
quartets of unstable eigenvalues atC = 1:418, as shown in the bottom right panel of Fig.
1. Examples of the stationary vortices and spectral planes of their stability eigenvalues,� � �r + �i, are displayed in the middle row of Fig. 1 for a stable case (C = 0:02), and in
the bottom row forC = 1:418.
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Figure 1: The top left panel shows the norm of the vortex-soliton solution withS = 3 vs.
the lattice-coupling strengthC. The real part of the most unstable eigenvalues are shown
as a function ofC in the top middle panel (the instability takes place atC > 0:398). The
top right panel shows the structure of theS = 3 vortex through values of the complex
stationary fieldum;n at the sites where the vortex is actually located. Examples of the real
and imaginary parts of the profile of the stationary solution, and of the spectral plane of
its (in)stability eigenvalues are shown in the left, middleand right panels, respectively: in
the middle row forC = 0:02 (a stable vortex), and in the bottom row forC = 1:418 (a
strongly unstable one). Note that there may be up to six eigenvalue quartets accounting for
the instability.
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Nonlinear development of the instability of theS = 3 vortex in the regionC > C(3)
r =0:398 was examined in a number of cases by means of direct simulations of Eq. (1), using
the fourth-order Runge-Kutta method; the instability was initiated by adding a small initial
perturbation to the solution. A typical example is shown in Fig. 2 for the case ofC = 0:618.
In this case, the originalS = 3 vortex splits into one withS = 1, which stays at the initial
position, and an additional fragment withS = 0, which separates and eventually gets
trapped at a different lattice site. Both theS = 1 andS = 0 solitons, generated by the
instability from theS = 3 vortex, are stable at the corresponding values of the parameters.
We stress that the apparent non-conservation of the topological charge observed in these
simulations is quite possible, as the lattice does not conserve angular momentum.
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Figure 2: The two top left panels show the initial unstableS = 3 vortex forC = 0:618.
The top right panel shows the beginning of the oscillatory instability in the evolution of
the lattice field. The bottom panels show the real and imaginary parts of the eventually
established field configuration, which contains stable solitons withS = 0 andS = 1.

2.3 Quasi-vortices (S = 2 and S = 4)

The stationary equation (2) admits real solutions, which are generated, e.g., by the real
part of the ansatz (7) withS = 2 andS = 4. First, we will consider their shape and
dynamical properties; then, we will discuss the interpretation of such real solutions in terms
of vorticity.

ForS = 2, typical results are shown in Figs. 3 and 4. Similar to Fig. 1,the top left and
right panels in Fig. 3 show, respectively, the norm of the solution, and the instability growth
rate as a function ofC. As in the case of theS = 3 vortex, the instability sets in through
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the Hamiltonian Hopf bifurcation resulting from the collision of two imaginary eigenvalue
pairs with opposite Krein signatures, which gives rise to a quartet of complex eigenvalues.
The stability region is C � C(2)
r = 0:862 (9)

[cf. the stability intervals (6) forS = 0 andS = 1 solitons, and (8) forS = 3]. The
profile of the solution and the spectral plane of the stability eigenvalues associated with it
are displayed for a stable case (C = 0:02) in the middle row, and at the instability onset,C = 0:862, in the bottom row of Fig. 3. It is clear that the resulting solution follows a
pattern of
os(2�) (which relates the solution toS = 2), where� is, as above, the angular
variable in the plane.

Development of the instability of these solitons forC > 0:862 was studied by direct
simulations of Eq. (1). A typical example is shown in Fig. 4 for C = 1: the oscillatory
instability transforms the initial state into an ordinary zero-vorticity lattice soliton, which is
a stable solution in this case.

The interpretation of solutions of this type in terms of the vorticity is ambiguous, as
the solution is a purely real one. As is obvious from Fig. 3, the solution is actually a
quadrupole localized on four lattice sites, with zero between them, which is typical for
vortex solutions that must vanish at the central point. The phase of the solution jumps by� when comparing positive and negative real values of the fieldat adjacent sites carrying
the solution. To understand the global vorticity that may beascribed to this state, one can
add a small perturbation which makes the solution complex and thus makes it possible to
define a phase field across the lattice (this, obviously, corresponds to a situation expected
in the experiment, where perturbations are inevitable). Tothis end, perturbations based on
the three localized eigenmodes of small perturbations existing around the stable stationary
states of the present type were tried. In Fig. 5, a full set of contour plots for the eigenmodes
is displayed for the same case (C = 0:02) which was used as an example in Fig. 3. The
most essential feature of the eigenmodes is that they are completely localized on the same
set of four sites which carry the unperturbed solution.

Straightforward consideration demonstrates that a combination of the stationary solu-
tion and of the first eigenmode (the one with the eigenvalue�1 � i!1 � 0:08i), taken with
a small amplitude, may give rise to the following phase distribution along a closed route
connecting the four sites: 0! � ! 0! � ! 0; (10)

or the same multiplied by(�1). In fact, the perturbed configuration oscillates, at the fre-
quency!1, between these two phase patterns. Next, the second and third eigenmodes,
which belong to a double eigenvalue,�2;3 � i!2;3 � 0:04i (!2;3 is not exactly exactly
equal to!1=2), if added, with a small amplitude, to the unperturbed state, may give rise to
phase patterns of the types0! � ! 0! �� ! 0; or 0! � ! 2� ! � ! 0: (11)

None of these patterns is characterized by a nonzero net phase gain generated by the round
trip along the closed route, so the pattern cannot be ascribed finite vorticity. However, this
is clearly a new type of stable localized 2D lattice solutions, drastically different from the
ordinary zero-vorticity solitons. While this solution hasno vorticity, it may be characterized
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Figure 3: The top left panel shows the norm of the quasi-vortex solution, corresponding
to S = 2, vs. the coupling constantC. The largest real part of the stability eigenvalues
is shown as a function ofC in the top right panel (the instability sets in atC = 0:862).
The (purely real) profile of the stationary solution, and thespectral plane of the associated
stability eigenvalues, are shown in the left and right panels: in the middle row forC = 0:02,
and in the bottom one forC = 0:862.
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Figure 4: The top left panel shows the initial unstable quasi-vortex corresponding toS = 2,
in the case ofC = 1. The top right panel shows the oscillatory instability, setting in aroundt = 15, in the evolution of the lattice field. The bottom panels showthe real and imaginary
parts of the established stable configuration (att = 200), which is identified as an ordinary
stable zero-vorticity soliton.
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Figure 5: The panels display, in the form of contour plots, the real (left panels) and imag-
inary (right panels) parts of the full set of three eigenmodes of small perturbations that
are localized in the case of the stable quasi-vortex forC = 0:02 (the same case as pre-
sented in Fig. 3). The first eigenmode (top panels) corresponds to the frequency!1 � 0:08,
and the two other eigenmodes (middle and bottom panels) belong to the double frequency!2;3 � 0:04.
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Figure 6: The profile (left) and stability (right) of the quasi-vortex withS = 4 forC = 0:02.
Notice that the spectral plane contains 7 pairs of eigenvalues in this case.

by the largest intrinsic phase difference,(j��j)max. This quantity depends on the way a
small perturbation is added:(j��j)max = � in the case of Eq. (10), and(j��j)max = 2�
in the case of Eq. (11). We call this type of real solutionsquasi-vortices.

We stress that complex localized solutions to the 2D DNLS equation, that are true vor-
tices withS = 2, were found in Ref. [27]. They were constructed starting with a complex
ansatz, whose real and imaginary parts, unlike those in the expression (7), emulated the
continuum-model’s expressions of
os(2�) andsin(2�) respectively. However, it was found
in Ref. [27] (and re-checked in the course of the present work) that those true vortices are
always unstable, through a real eigenvalue pair.

We have also constructed real quasi-solitons corresponding to S = 4 [i.e., generated
by the real part of the initial ansatz (7) withS = 4]. An example is given in Fig. 6 forC = 0:02. The stability interval of such solutions is [cf. Eqs. (8) and (9)]C � C(4)
r = 0:292:
As expected from the comparison with known results for continuum models (with compet-
ing nonlinearities) [39, 40], the stability interval shrinks (but does not disappear) with the
increase ofS, which equally pertains to the true vortices and quasi-vortices.

2.4 Vortices in the Repulsive Model

We have also examined Eq. (1) with the opposite sign in front of the nonlinear term, i.e., the
defocusing nonlinearity. This case is relevant, e.g., to BECs with repulsive interactions in
the presence of the OL, see, e.g., [3, 14, 46]. We report here,briefly, the results for vortices
in this case.

It should be mentioned that the substitution�m;n(t) � (�1)m+n exp (�8iCt) ~��m;n(t)
(the so-called staggering transformation), followed by complex conjugation, reverses the
sign of the nonlinearity in the DNLS equation (1). Therefore, any ordinary (quasi-smooth)
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soliton in the attractive model comes with its staggered-soliton counterpart in the repulsive
model, and vice versa. To avoid dealing with essentially thesame solution twice, we con-
sider the discrete solitons in the attractive model (above and below) and in the repulsive one
(in this subsection), each time starting to search for the solutions with an initial ansatz [see
Eq. (7) and also Eq. (16) below] that doesnot contain the staggering factor,(�1)m+n.
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Figure 7: The top panels show the real (left) and imaginary (middle) parts of the unstable
vortex withS = 1 in the repulsive model forC = 0:47 and� = �4 (the linear-stability
spectral plane is shown in the right panel). This vortex is unstable forC > 0:38. The
bottom panels show another branch of the solutions withS = 1 (in th same repulsive
model), initialized with a quasi-continuum ansatz. The solution is shown forC = 0:48, but
it is unstable atC > 0:22.

The stability of vortices in the repulsive model is significantly different from that of
their counterparts in the attractive one. There exist multiple branches of vortices, including
“more discrete” ones (which, at small values of the couplingconstant, resemble the ones
examined in the focusing case) and more extended states, which would be highly unstable in
the attractive model (in terms of Ref. [36], these two branches are of the “tightly-bound” and
“weakly-bound” types, respectively). Two such examples are shown in Fig. 7. The solutions
corresponding to the strongly discrete branch gradually approach (with the increase ofC)
vortices of the gap-soliton type, similar to those recentlyfound in the continuum equation
with the OL in Refs. [35] and [36]. This branch becomes unstable atC = 0:38 (with � =�4), and it can no longer be traced forC > 0:48. The simplest branch of weakly localized
vortices is also shown in the same figure. This branch becomesunstable atC = 0:22 and
cannot be traced forC > 0:49 (cf. Fig. 7).
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In the repulsive model, even the solitons withS = 0 can be of different types, i.e.,
strongly or weakly localized (in the continuum model with the OL, the same was found in
Ref. [36]). The strongly localized solution gives rise to a discrete gap-soliton branch (which
is similar to the one found in Ref. [47]) that cannot be continued forC > 0:48 (and appears
to become unstable through a saddle-node bifurcation very close to this point), while the
latter is stable forC < 0:148 and also disappears at large values of the coupling constant.
Examples of theS = 0 discrete solitary waves are shown in Fig. 8.
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Figure 8: The top panels show the localized gap soliton withS = 0, whenC = 0:48. The
bottom panels show a more extendedS = 0 localized state forC = 0:4. Notice that it is
highly unstable (this branch becomes unstable forC > 0:148).

It is interesting that the stability of theS = 2 vortices is also different from what was
reported above for the focusing model. While the strongly localized gap-type vortices are
unstable for allC > 0, as is shown in Fig. 9, and was true in the attractive model, more
extended vortex structures withS = 2 can be identified aslinearly stable configurations in
the defocusing model (see, e.g., the solutions in the bottompanel of Fig. 9 that are linearly
stable forC < 0:19). These branches also terminate atC � 0:5. Higher-order vortices
(with S = 3 andS = 4) have also been found in the defocusing model. However, the latter
have been found to be always unstable (in contrast to the vortices in the focusing case),
hence we do not discuss them here in detail.

It is straightforward to understand why all the soliton branches in the defocusing case
terminate close toC = 0:5. Beyond this critical point, the internal frequency of the



152 P.G. Kevrekidis, B.A. Malomed, D.J. Frantzeskakis et. al

(a) (b) (c)

−1

−0.5

0

0.5

1

n

m

7 8 9 10 11 12 13 14 15

7

8

9

10

11

12

13

14

15

−1

−0.5

0

0.5

1

n

m

7 8 9 10 11 12 13 14 15

7

8

9

10

11

12

13

14

15 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−4

−3

−2

−1

0

1

2

3

4

λ i

λ
r

(d) (e) (f)

−1.5

−1

−0.5

0

0.5

1

1.5

n

m

7 8 9 10 11 12 13 14 15

7

8

9

10

11

12

13

14

15 −1.5

−1

−0.5

0

0.5

1

1.5

n

m

7 8 9 10 11 12 13 14 15

7

8

9

10

11

12

13

14

15 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−4

−3

−2

−1

0

1

2

3

4

λ i

λ
r

Figure 9: The top panels show the real (left) and imaginary (middle) parts of the unstableS = 2 vortex forC = 0:49 and� = �4, in the repulsive model. The right panel shows
the spectral plane for this case. This vortex is always unstable (similarly to its focusing
counterpart). However, the bottom panels indicate a more extended species of theS = 2
vortex (it is again shown forC = 0:49). The latter one was found to be stable forC < 0:19.

discrete soliton (j�j = 4) resonates with the frequencies! of the linear phonon modes
(! = 4C �sin2(kn=2) + sin2(km=2)�, wherekm;n are the wavenumbers in the two discrete
directions). Hence, solitons cannot exist in the latter case, as a channel for their direct decay
into radiation is available.

2.5 Two-Component Vortices

The two-component DNLS model is particularly relevant as a model of BEC droplet ar-
rays composed of a mixture of two different species [49]. Thenonlinearly-coupled DNLS
equations for the discrete wave functions of the species,�m;n and m;n, are"i ddt + C�2 +  j�m;nj2 �j m;nj2�j�m;nj2 j m;nj2 !# �m;n m;n ! = 0; (12)

where� is the relative coefficient of the nonlinear interaction between the two species.
In uniform continuum models, two-component (composite) solitons, in which one com-

ponent carries vorticity, are known [48]. We have examined the discrete model (12)
for coupled stationary vortex solutions with the set of vorticities (S1; S2) = (1; 1) and



Higher-Order Vortices in Nonlinear Dynamical Lattices 153(S1; S2) = (1;�1), (3; 3) and(3;�3), etc., looking for them in the form �m;n m;n ! = ei�t  um;nvm;n ! :
The stationary fields in the compound vortices of the types(+S;+S) and(+S;�S) are
related in an obvious way,(um;n)+S;+S = (um;n)+S;�S(vm;n)+S;+S = �v�m;n�+S;�S ; (13)

while their stability may be different. Unlike these symmetric solutions, we were unable to
find solutions like(S1; S2) = (3;�1).

The region of the dynamical stability of the solutions of thetype(+S;+S) was found to
be identical to that of the single-component vortex with thetopological chargeS (obviously,
the stability of the latter solution is a necessary condition for the stability of the compound
vortex, and our results show that this condition is sufficient as well). For instance, the
solutions of the(1; 1) type are stable atC < 1:6, cf. Eq. (6).

A striking property of the compound vortices is that the solutions of the(+S;�S) type
have a stability region which is, typically,wider than that for the(+S;+S) solution. For
instance, the(1;�1) vortex was found to be stable atC < 1:99, cf. the above-mentioned
stability regionC < 1:6 for its (1; 1) counterpart. The solutions of the(1;�1) types and
their stability eigenvalues are displayed together, forC = 1:6 [when the solution(1; 1) is
unstable and the one(1;�1) is stable], in Fig. 10. These results are obtained for� = 2=3.

3 Three-Dimensional Vortices

3.1 The Model

The DNLS equation on the 3D cubic lattice with a coupling constantC is [7] [cf. Eq. (1)]i ddt�l;m;n + C�2�l;m;n + j�l;m;nj2 �l;m;n = 0; (14)

with �2�l;m;n � �l+1;m;n + �l;m+1;n + �l;m;n+1 + �l�1;m;n + �l;m�1;n�1 + �l;m;n�1 �6�l;m;n. We seek for localized solutions [sometimes also called intrinsic localized modes
(ILMs)] in the same form as in the 2D case, as�l;m;n = exp (i�t)ul;m;n, where stationary
functionsul;m;n obey a 3D version of Eq. (2),�ul;m;n = C�2ul;m;n + jul;m;nj2 ul;m;n: (15)

Solutions to Eq. (15) (generally, complex ones) are obtained by means of the Newton
method, with Dirichlet boundary conditions. A 2D counterpart of the expression (3)
was used to test the stability of the stationary solutions, which leads to Eqs. (4) and (5),
with a difference that, this time,Fk � �C(uk+1 + uk�1 + uk+N + uk�N + uk+N2 +uk�N2 � 6uk) + �uk � jukj2 uk, and the string index is defined so that(l;m; n) 7! k �l + (m� 1)N + (n� 1)N2.
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Figure 10: The panels (a) show the real (left) and imaginary (right) parts of the compound
vortex with (S1; S2) = (1; 1) for C = 1:6, and the panel (b) displays the corresponding
spectral plane(�r; �i). The bottom panels show the same features (notice the difference in
the spectral plane) for the(S1; S2) = (1;�1) solution.

We examine solutions of Eq. (15) by fixing the frequency,� = 2, and varying the
couplingC, with the objective to construct ILMs carrying the vorticity S (from 0 to 3). The
solutions were generated by a Newton scheme with an initial ansatz motivated by a typical
model expression for the 3D vortex soliton in the continuum limit [51],u(init)l;m;n = A[(l � l0) + i(m�m0)℄S exp (�jn� n0j)�se
h��q(l � l0)2 + (m�m0)2� ; (16)

where (l0;m0; n0) is the location of the vortex’ center, the lattice angular momentum
(which is not a dynamical invariant) is aligned with the axisn, and� is a scale parame-
ter. The Newton algorithm was then iterated until it converged to1 part in107. Our results
are typically shown for9� 9� 9 and11� 11� 11 lattices, but larger ones were also used,
without notable differences in the results reported here.
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3.2 Results

Basic results for the solutions with different topologicalcharges can be summarized as fol-
lows. Ordinary ILMs withS = 0 are stable below a critical valueC(0)
r of the coupling
constant, which complies with the fact that they are strongly unstable (against the 3D col-
lapse) in the continuum limit ofC ! 1 (in fact, C(0)
r is quite large, and it depends on
the size of the numerical lattice). An example of a stable ordinary soliton is shown in Fig.
11. As ILMs with S = 0 have the largest stability region,C < C(0)
r , in comparison to
topologically charged ones (see below), in the case when they are unstable, they can only
be destroyed (decay into phonon waves), rather than transform themselves into ILMs of
other types.

(a)Re(ul;m;n) = +0:5 (b) Re(ul;m;n=5;6)
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Figure 11: The ILM (intrinsic localized mode) withS = 0 in the 3D model is shown forC = 1. The left panel shows the shape of the ILM in terms of contoursdrawn through the
lattice sites whereRe ul;m;n = 0:5. The right panels show 2D cross sections of the solution
through the planesn = 6 (top) andn = 5 (bottom) for the11� 11� 11 DNLS lattice.

3D vortices withS = 1 are stable (see Fig. 12) forC < C(1)
r = 0:65, cf. the stability
region (6) for the 2D vortex lattice solitons. At the instability threshold, a quartet of complex
eigenvalues emerges from collision of two imaginary eigenvalue pairs (for details, see, e.g.,
Refs. [27, 52]). Numerically simulated development of the instability is displayed in Fig.
12, for a typical case withC = 0:7 > C(1)
r . The instability removes the vortex structure
and, as a result, an ordinary (S = 0) ILM emerges; obviously, the change of the topological
charge is possible in the 3D lattice, as well as in its 2D counterpart, see above.

An example of a 3D vortex ILM withS = 2 is shown in Fig. 13 forC = 0:01. Similar
to its 2D counterpart (see above), this complex solution is unstable through a real eigenvalue
pair at all values ofC. On the other hand, purely realstable solutions, that may be regarded
as counterparts of thequasi-vortices of the 2D quadrupole-type solutions displayed above,
can be found in the 3D case as well; see Fig. 14 for a relevant example. What is more
interesting, however, is that the unstable ILMs withS = 2 may reshape themselves not
downwards, into ones withS = 0 or S = 1, but ratherupwards, into a stable vortex ILM
with S = 3, as seen in Fig. 13.
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Figure 12: The top panels show level contours atRe ul;m;n = �0:5 (left) andIm ul;m;n =�0:5 (right) for the three-dimensional vortex ILM withS = 1. Red/light-gray and
blue/dark-gray surfaces (in the color/black-and-white version) pertain to the levels with+0:5 and�0:5 values, respectively. Cross sections of the vortex are shown in four middle
panels, (c) and (d). The bottom row displays the developmentof instability of the vortex
for C = 0:7, through the time evolution of its amplitude, and a 2D cross section att = 100
[panel (f), top and bottom, respectively]. The unstable vortex transforms itself into an ordi-
nary ILM with S = 0. The panel (e) shows the spectral plane(�r; �i) of the linear-stability
eigenvalues for the same unstable vortex.

The stabilization of the vortex ILM withS = 2 through spontaneousincrease of S is
a really striking result (feasible only in discrete systems). In Fig. 15, we show the stableS = 3 discrete vortex for the same case,C = 0:01. The instability of the vortex withS = 2
vs. the stability of the vortex withS = 3 may be understood, in loose terms (as well as in the
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Figure 13: The ILM vortex in the 3D lattice, withS = 2 for C = 0:01. Top panels have
the same meaning as in Fig. 4. The panel (c) displays the linear stability eigenvalues, while
(d) shows the result of long evolution of this unstable vortex. The eventual state, shown
through its 2D cross-sections att = 1000, is a vortex withS = 3, which isstable for this
value ofC.

2D case), if one invokes the concept of the lattice-inducedPeierls-Nabarro (PN) potential
acting on the soliton (strictly speaking, in the quasi-continuum approximation). Indeed, it
is the PN potential which may stabilize a soliton which wouldbe strongly unstable in the
free space. It is seen from Figs. 13 and 15 that the PN potential induced by the cubic lattice
is, obviously, a much stronger factor for the soliton withS = 3 than withS = 2, due to the
symmetry difference between the former one and the square lattice (i.e., lines forming the
“skeleton” of theS = 3 vortex form angles of120 degrees, as opposed to the right angles
of the underlying cubic lattice).

Another striking feature, which is truly unique to the 3D case, is a possibility of the
existence of vortex complexes in a multi-component system,with the vortices in different
(up to three) componentsorthogonal to each other. We consider, in particular, two coupled
3D DNLS equations, cf. Eqs. (12):"i ddt + C�2 +  j�j2 �j j2�j�j2 j j2 !# � ! = 0; (17)

where(�;  ) = (�l;m;n;  l;m;n). As for the 2D case, Eq. 17 describes an array of BEC
droplets, composed of a mixture of two different species andtrapped in the OL [49]. In the
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Figure 14: Same as Fig. 11 but for the quasi-vortex withS = 2 and forC = 0:01. The left
panel shows the shape of the quasi-vortex in terms of contours drawn through the lattice
sites whereRe ul;m;n = �0:5. The right panels show 2D cross sections of the solution
through the planesn = 6 (top) andn = 5 (bottom) for the11� 11� 11 DNLS lattice.
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Figure 15: A stable stationary vortex ILM in the 3D lattice with S = 3 for C = 0:01. The
panels have same meaning as top panels in Fig. 4.

case of the above-mentioned model of the photon or polaritonfield trapped in the lattice of
microresonators,� and refer to two different polarizations or distinct cavity modes.

We examine a complex of two orthogonal vortices, in which theone in the first com-
ponent is directed perpendicular to the(l;m) plane, while, in the second component, the
vortex is orthogonal to the(l; n) plane. An example of such astable complex is shown, for� = 0:5, in Fig. 16. We have found that the orthogonal complexes are stable for� < 1,
and unstable for� > 1, which can be qualitatively understood in terms of the Hamiltonian
of the attractive interaction between the two components, each having the characteristic
“doughnut” [51] vortex-soliton shape (in the continuum limit). Indeed, one can roughly
estimate the interaction energy through the volumeV of the overlap between two cylinders
of a radius� (which represent long inner holes of the doughnuts) intersecting at an angle�, V = (20=3)�3= sin � (the divergence at� ! 0 is limited by the finite length of the
holes). As it follows from here, the interaction energy has amaximum at� = �=2, which
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corresponds, by itself, to an unstable equilibrium state oftwo orthogonal vortices. The
equilibrium is transformed into a stable one by the pinning to the PN potential, provided
that the interaction is not too strong, i.e.,� is not too large.
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Figure 16: A complex of two orthogonal vortices withS = 1 in the two-component 3D sys-
tem is shown forC = 0:01. The top and bottom panels correspond to the two components,
and they have the same meaning as the top panels in Fig. 4.

4 Conclusions

In this work, we have constructed and investigated a varietyof stable (in appropriate
parametric regimes), topologically charged localized vortex states in the two- and three-
dimensional versions of the nonlinear dynamical lattice described by the DNLS (discrete
nonlinear Schrödinger) equation, as well as a system of twononlinearly coupled DNLS
equations. New objects reported here are stable higher-order vortex solitons (with the vor-
ticity S > 1) and quasi-vortices in the 2D model, as well as lattice solitons (ILMs) in its 3D
counterpart. Localized vortices in the 2D lattice with the self-defocusing nonlinearity are
new entities too.

In the 2D case, the stability region of the true complex vortex with S = 3 has been iden-
tified. While all the vortices withS = 2 are unstable, we have found that they are replaced
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by real quasi-vortex solutions of the quadrupole type, which may be stable for sufficiently
weak coupling. The stability analysis was based on the calculation of the eigenvalues for
small perturbations, and verified against direct simulations. Generally, this interval shrinks
with the increase ofS. Direct simulations have demonstrated that the unstableS = 3 vor-
tices split into a set of two stable solitons withS = 1 andS = 0, while the quasi-vortex
(quadrupole), existing in lieu of theS = 2 vortex, transforms itself, in the case of instability,
into an ordinary zero-vorticity soliton.

In the 2D two-component model, stability regions of the compound vortex solitons of
the(1;�1) types were found. A noteworthy result is that, for the vortices of the(+S;�S)
type, the stability area is larger than for their counterparts of the(+S;+S) types.

Localized vortices were also found in the repulsive (defocusing) model and their regions
of existence and stability were illustrated. These vortices are tantamount to solutions of the
staggered type in the attractive model. It was found that, inthis case, the solitons with
different values ofS exist in two forms, strongly and weakly localized ones. The two types
have different stability intervals. In most cases, the stability area is larger for the strongly
localized states; however, the weakly localized vortices with S = 2 may be stable, in the
drastic contrast with the complete instability of this typeof the vortices in all the other cases
(including the strongly localizedS = 2 vortices in the repulsive model).

We have constructed vorticity-carrying solitons (alias intrinsic localized modes, ILMs)
in the 3D DNLS model too. Stability regions were found for thecases ofS = 0, 1; and3.
All the 3D ILMs with S = 2 are unstable, but their instability develops in quite a nontrivial
way, rearranging the soliton into its stable counterpart with the larger vorticity,S = 3.
Furthermore, the 3D dynamical lattice sustains quite unusual but stable states, such as the
two-component vortex complex, with the individual vortices in the components orthogonal
to each other. Studying more complex configurations in this setting (such as a complex
of three mutually orthogonal vortices in a three-componentsystem), as well as examining
interactions between ILMs, are challenging problems for future work.

The results reported in this paper are relevant not only to the general theory of dynamical
lattices: the 2D model directly applies to bundled arrays ofnonlinear optical waveguides
and, indirectly (as the on-site nonlinearity is different), to waveguiding structures in the
form of photonic lattices in photorefractive media. In these setups, the results suggest a
possibility of existence of new types of spatial optical solitons. In particular, the recent ex-
perimental demonstration of stable fundamental discrete vortices in the 2D photonic lattices
with self-focusing nonlinearity in Ref. [30] suggests thatthe higher-order discrete vortices
may be observed in the same medium. Experiments were recently performed with vortex
masks corresponding toS = 3 andS = 4 [41]. Another direct application of the theoretical
results reported in this paper is the prediction of vortex and quasi-vortex solitons in BECs
loaded into strong 2D (“egg-carton”) and 3D optical lattices, under realistic experimental
conditions.
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