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1 Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515, USA
2 Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
3 Department of Interdisciplinary Studies, Tel Aviv University, Tel Aviv 69978, Israel
4 Nonlinear Dynamical Systems Groupb, Department of Mathematics and Statistics, San Diego State University,

San Diego CA, 92182-7720, USA

Received 8 July 2003
Published online 16 December 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We produce several families of solutions for two-component nonlinear Schrödinger/Gross-
Pitaevskii equations. These include domain walls and the first example of an antidark or gray soliton
in one component, bound to a bright or dark soliton in the other. Most of these solutions are linearly
stable in their entire domain of existence. Some of them are relevant to nonlinear optics, and all to Bose-
Einstein condensates (BECs). In the latter context, we demonstrate robustness of the structures in the
presence of parabolic and periodic potentials (corresponding, respectively, to the magnetic trap and optical
lattices in BECs).

PACS. 03.75.-b Matter waves – 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other
interactions (including parametric effects, mode coupling, ponderomotive effects, etc.)

The recent progress in experimental and theoretical stud-
ies of Bose-Einstein condensates (BECs) [1] has made
matter-wave solitons physically relevant objects. One di-
mensional (1D) dark [2] and bright [3] solitons have been
observed in experiments, and possibilities for the obser-
vation of their multidimensional counterparts were pre-
dicted [4]. Further study of matter-wave solitons is a
subject of profound interest, not only from a theoretical
perspective, but also for applications, as there are possi-
bilities to coherently manipulate such robust structures in
matter-wave devices, e.g., atom chips, which are analogs
of the existing optical ones [5]. On the other hand, many
results obtained for optical solitons as fundamental non-
linear excitations in optical fibers and waveguides (see,
e.g., recent reviews [6,7]) suggest the possibility to search
for similar effects in BECs.

A class of physically important generalizations of the
nonlinear Schrödinger (NLS) equation for optical me-
dia, or its BEC counterpart, the Gross-Pitaevskii equa-
tion (GP), is based on their multi-component versions.
In particular, the theoretical work has already gone
into studying ground-state solutions [8,9] and small-
amplitude excitations [10] of the order parameters in
multi-component BECs. Additionally, the structure of bi-
nary BECs [11], including the formation of domain walls
in the case of immiscible species, has also been stud-
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ied [11,12]; 1D bound dark-dark [13] and dark-bright [14]
soliton complexes, as well as spatially periodic states [15],
were predicted too. Experimental results have been re-
ported for mixtures of different spin states of 87Rb [16] and
mixed condensates [17]. Efforts were also made to create
two-component BECs with different atomic species, such
as 41K–87Rb [18] and 7Li–133Cs [19].

In this work, we report novel solitons in the context
of coupled two-component GP equations. These solutions
correspond to new families of solitons even for the NLS
equations per se, hence they are also interesting as non-
linear waves in their own right. We start by demonstrat-
ing their existence in the context of two coupled NLS
equations. Some of them are relevant as new solitons in
nonlinear-optical models as well. We also demonstrate
that all the solutions proposed herein persist in the pres-
ence of the magnetic trap and optical lattice (OL), i.e.,
parabolic and sinusoidal potentials [20], which are impor-
tant ingredients of experimental BEC setups.

Assuming that the nonlinear interactions are weak rel-
ative to the confinement in the transverse dimensions, the
transverse size of the condensate is much smaller than its
lengths. In this case, the BEC is a “cigar-shaped” one,
and the GP equations take an effectively 1D form [21]:

i
∂uj

∂t
= −m1

mj

∂2uj

∂x2
+

2∑
k=1

ajk|uk|2uj +Vj(x)uj , (j = 1, 2)

(1)
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where uj(x, t) are the mean-field wave functions of the
two species, t and x are, respectively, measured in units
of 2/ω1⊥ and the transverse harmonic-oscillator length
a1⊥ ≡ √

�/(m1ω1) (mj and ωj⊥ are the mass and trans-
verse confining frequency of each species), while �ω1⊥/2
is the energy unit. The coefficients ajk in equation (1), re-
lated to the three scattering lengths αjk (note that α12 =
α21) through ajk = 4πm1(αjk/a1⊥)(mj + mk)/(mjmk),
account for collisions between atoms belonging to the same
(ajj) and different (ajk, j �= k) species; they are counter-
parts of the, respectively, self-phase and cross-phase mod-
ulation in nonlinear optics. While in optics only specific
ratios of the nonlinear coefficients are relevant (such as
aij/aii = 2 or aij/aii = 2/3 [6]), in the BEC context
the interactions are tunable [9,15], especially because they
can be modified by means of the Feshbach resonance (i.e.,
by magnetic field affecting the sign and magnitude of the
scattering length of the interatomic collisions) [22]. The
Feshbach resonance allows one to switch between attrac-
tive and repulsive interaction [23], and even to switch it
periodically in time, by means of an ac magnetic field,
which allows one to create a self-confined 2D BEC with-
out the magnetic trap [24].

In this work, we consider the case with m1 = m2 ≡ m
and a11 = a22, which corresponds to the most experimen-
tally feasible mixture of two different hyperfine states of
the same atom species, or, approximately, to different iso-
topes of the same alkali metal, trapped in the potential
including the magnetic trapping and OL components:

V1(x) = V2(x) ≡ V (x) =
(
Ω2/2

)
x2+V0 sin2(kx+φ). (2)

In equation (2), Ω2 ≡ 2ω2
x/ω2

⊥ (ω1x = ω2x ≡ ωx are the
confining frequencies in the axial direction) and V0 (mea-
sured in units of the recoil energy [20]) set the respective
potential strengths, k is the wavenumber of the interfer-
ence pattern of the laser beams forming the OL, and φ
is an adjustable phase parameter (φ ∈ {0, π/2}). To esti-
mate physical parameters, we resort to a mixture of two
different spin states of 87Rb, confined in a trap with the
transverse frequency ω1⊥ = 183 rad/s, which implies that
the length and time units are 2 µm and 5.46 ms, respec-
tively.

We consider a rather general case, in which the inter-
atomic interactions in the first species are repulsive [there-
fore, we will use the normalization a11 ≡ +1 in Eqs. (1)],
while in the other species they may be either attractive
or repulsive. As concerns the interactions between the dif-
ferent species, they are, typically, repulsive. Nevertheless,
in the case of two different spin states of the same atom
species, the Feshbach resonance between such states is
possible too (experimental studies of the Feshbach reso-
nance in this case are currently in progress [25]), therefore
attractive inter-species interactions may be relevant, and
this case is also considered below. The solutions reported
herein, and their existence and stability regimes are sum-
marized in Table 1.

In most cases the existence and stability of the solu-
tion families is investigated numerically. The numerical
method was implemented as follows: we first seek sta-

Table 1. Existence and stability of structures in the binary
BEC. In the “existence” column, +/− indicates the repul-
sive/attractive character of the respective inter-atomic interac-
tion which is necessary for the solution to exist. The “stability”
column indicates the sign of the coefficient a22 (we normalize
a11 ≡ +1, and set a22 = ±1) and an interval of the values of
a12 for which the solution is stable.

Types of solitons Existence Stability
a22 a12 a22 a12

Domain wall + + +1 > 1
Dark-antidark + + +1 (0, 0.7]
Dark-gray + − +1 [−0.83, 0)
Bright-antidark − − −1 (−1, 0)
Bright-gray − + −1 > 0

tionary solutions by means of Newton iterations which
are applied to the steady-state equations µuj = −uj,xx +∑2

k=1 ajk|uk|2uj + V (x)uj (µ is the chemical potential).
Subsequently, we perform the linear-stability analysis of
the obtained soliton solutions u

(0)
j (x), setting the per-

turbed solution to be

uj = e−iµt
[
u

(0)
j (x) + ε

(
bje

−iωt + cje
iω∗t

)]
,

where ω ≡ ωr + iωi is a (generally, complex) perturbation
eigenfrequency. Then, the ensuing linear stability prob-
lem [26] is solved for the eigenfrequencies and eigenfunc-
tions {bj , c

∗
j}. Whenever the solution is unstable, we also

examine its evolution in direct simulations of the full equa-
tions (1), using a fourth-order Runge-Kutta time integra-
tor with the time step dt = 0.005 (27.3 µs in physical
units). To initiate the instability development, a uniformly
distributed random perturbation of amplitude ∼ 10−4 was
typically added to an unstable solution.

We now examine in detail the solutions shown in Ta-
ble 1. First, in the absence of the external potential, a
family of domain walls can be found in an exact form for
the special case, a12 = 3a11 = 3a22:

uj(x, t) = Ae−iµt
[
1 + (−1)j tanh(ηx)

]
, (3)

where the chemical potential is µ = 4a12A
2, and η2 =

2a12A
2 (they follow the pattern of domain-wall solutions

found long ago in the context of coupled Ginzburg-Landau
equations [27]). These solutions exist only if a12 > 0 and
µ > 0. Similar patterns were found in reference [12] and
other related structures were also predicted to occur in
higher dimensions [28].

We have confirmed the existence and stability of the
domain walls by direct numerical simulations (not shown
here), using numerical continuation to extend them to the
case a12 �= 3a11, where the analytical solution is not avail-
able. We have thus found that the domain walls exist and
are stable for values of a12 down to a12 = 1. The case
a12 = 2 is relevant to nonlinear optics; stability of the
domain wall family for this case was suggested by recent
numerical results obtained for a similar discrete coupled-
NLS model [29]. Here, we find that these solutions are ro-
bust as well for other values of a12, and, as will be shown
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Fig. 1. Left: the top panel shows the number of atoms (in normalized units) in each component (circles and stars) of the
dark-antidark soliton. The middle and bottom left panels show the spatial profiles of this solution for a12 = 0.2 and a12 = 0.5,
while the right panels show the respective spectral planes (ωr, ωi) of the corresponding eigenfrequencies, as found from the
linearized equations (ωi = 0 implies linear stability). Right: the top panels show the number of atoms in each component of
the dark-gray soliton and the instability growth versus a12. The middle and bottom left panels show the spatial profiles of this
solution for a12 = −0.5 and a12 = −0.99, while the right panels show the respective spectral planes.

below, also in the presence of the external potential in
equation (2).

Proceeding to the other solutions in Table 1, we first
note that, upon fixing a11 ≡ +1, we set a22 = ±1 for the
repulsive and attractive interactions in the second species.
Although setting |a22| to be 1 formally limits the general-
ity of the results, it has been checked that taking |a22| �= 1
produces results similar to those displayed here.

Given that we have assumed the first component as
being always self-repulsive, we look for solutions starting
from the uncoupled limit (a12 = 0) by taking an initially
uniform distribution in this component, u1 ≡ 1. If the
second component is also repulsive, we take a dark soliton
as its initial configuration. If it is self-attractive, a bright
soliton is initially set in it.

The case of the self-repulsion and dark soliton in the
second component, with the inter-species coefficient being
repulsive too, a12 > 0 gives rise to a stationary antidark
soliton (i.e., a hump on top of a nonzero flat background)
in the first component, see the left panel in Figure 1. It
is easy to understand this structure, as the atoms in the
first component, being repelled by the matter in the sec-
ond one, concentrate in an effective potential well gener-
ated by the dark soliton (void) in it. Antidark solitons
are well-known to occur when higher-order effects (such
as third-order dispersion) or a saturable nonlinearity are
present in the single-component NLS equations, which is
possible in optics [7]. In that case, the antidark soliton
is usually described by a KdV-type asymptotic equation
(for the elevation on top of the flat background), and is not
stationary, running at the respective velocity of sound [7].
The two-species soliton with the antidark component, pre-
sented here, is the first example of a stationary antidark
soliton, that we are aware of, in a model without higher-
order nonlinearities and dispersions. It is also the first
prediction of antidark solitons in BECs, which suggests

that an experimental verification would be of particular
interest.

If, on the contrary, the interaction between the two
self-repelling species is attractive (a12 < 0; right panel in
Fig. 1), then the void (dark soliton) in the second com-
ponent effectively repels the matter in the first one, and
thus generates a dip, i.e. a gray soliton in it (for a detailed
description, see Ref. [7]). Such solitons exist in the regu-
lar NLS equation, but there (as well as in other instances
of their presence that we are aware of) they travel at a
nonzero speed (the faster the shallower the dip is), while
here the gray solitons are stationary.

The bound dark-antidark two-component states per-
sist for 0 < a12 ≤ 0.7, while the dark-gray bound-state
branch continues down to a12 = −1, getting appreciably
unstable in the region −1 < a12 < −0.83. In the latter
case, the time evolution (not shown here) leads to forma-
tion of moving dark-gray soliton complexes.

Similar results were obtained for the last two branches
of the new solutions: if the second component is now
self-attractive, then the attractive interaction between
the BEC species (a22 = −1, a12 < 0; see left panel in
Fig. 2) gives rise to bright-antidark solitons (whose ex-
istence is explained by the fact that the bright soliton
attracts matter in the other component). Such a type of
two-component solitons was predicted in optics [30], but
there it cannot exist without the third-order dispersion.
In our case, this solution branch terminates at a12 = −1,
since both states become completely flat.

Lastly, if the bright soliton repels matter in the other
component, it naturally induces a dip in it, thus generating
a bright-gray soliton in the case of a22 = −1, a12 > 0
(right panel Fig. 2). It is noteworthy that this bright-gray
branch is extremely robust; we were able to follow such
stable solutions down to a12 = −3.

We have also examined these novel solutions in the
presence of the OL [i.e., for V0 �= 0, Ω = 0 in Eq. (2)].



184 The European Physical Journal D

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

20

40

60

N

a
12

−10 −5 0 5 10
0

0.5

1

u j(x
)

x −50 0 50
−1

−0.5

0

0.5

1

ω
i

ω
r

−30 −20 −10 0 10 20 30
0

0.5

1

u j(x
)

x −50 0 50
−1

−0.5

0

0.5

1

ω
i

ω
r

0 0.5 1 1.5 2 2.5 3
0

20

40

60

N

a
12

−10 −5 0 5 10
0

0.5

1

1.5

u j(x
)

x −50 0 50
−1

−0.5

0

0.5

1

ω
i

ω
r

−10 −5 0 5 10
0

0.5

1

1.5

u j(x
)

x −50 0 50
−1

−0.5

0

0.5

1

ω
i

ω
r

Fig. 2. Left: same as Figure 1 but for the bright-antidark solitons. The middle and bottom panels are for a12 = −0.5 and
a12 = −0.99, respectively. Right: the branch of coupled bright-gray solitons. The middle and bottom panels are for a12 = 0.2
and 0.5, respectively.
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Fig. 3. Left: the bright-antidark branch (the middle and bottom panel are for a12 = −0.5 and −1, respectively) in the presence
of the potential V (x) = 0.01x2 + 0.5 sin2(x), see equation (2). Right: the same for the domain-wall solutions (the middle and
bottom panels are for a12 = 3 and 2, respectively).

We have found them to be typically stable when φ = 0,
and unstable when φ = π/2 (as might be expected, since
the solution is then placed, respectively, at a minimum and
maximum of the potential). However, there are exceptions
to this rule. For instance, dark-antidark bound solitons for
a12 = 0.5 are unstable at φ = 0, in intervals 0.04 ≤ V0 ≤
0.055 and 0.09 ≤ V0 ≤ 0.29. This oscillatory instability,
involving a quartet of eigenvalues, will be examined in
detail elsewhere.

We have also identified all the solution branches in
the presence of the magnetic trap, as well as in the case
when both the magnetic trap and the OL are present.
The branches are extremely robust in the presence of the
magnetic trap. In particular, Figure 3 shows the branches
for the bright-antidark bound state (left panel) and do-
main walls (right panel), which are always stable in the
presence of the combined potential with Ω2 = 0.02 and
V0 = 0.5. In particular, for a mixture of two different spin
states of 87Rb, the confining frequencies corresponding to
this value of Ω are ωx = 18.3 rad/s and ω1⊥ = 183 rad/s

in the transverse and axial directions, respectively. Then,
the four cases shown in Figure 3 correspond to the mix-
ture containing, in the first and second species, 2×104 and
6 × 103 atoms (a12 = −0.5), 2 × 104 and 3 × 103 atoms
(a12 = −1), 7.4 × 103 in each component (a12 = 3), and,
finally, 7.6 × 103 atoms in each component (a12 = 2),
respectively.

Finally, we notice that the increasing interaction be-
tween the components can play a stabilizing role for solu-
tions that are unstable in the OL with φ = π/2 (Fig. 4).
The dark-antidark coupled state serves as an example, be-
ing unstable for 0 < a12 < 0.4 and stable for a12 > 0.4
(left panel). The instability evolution is shown in the right
panel for a12 = 0.2: the dark soliton becomes mobile and
starts to oscillate in the combined potential. For the phys-
ical example mentioned above, the numbers of atoms in
the two components corresponding to the latter case are
104 and 1.6 × 104, respectively.

In conclusion, we have presented a number of novel
families of composite solutions in the generic two-species
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Fig. 4. Left: the dark-antidark solution branch for φ = π/2. The branch is unstable at a12 < 0.4 (an example is displayed for
a12 = 0.2, in the middle panel), and then it gets stabilized (see an example for a12 = 0.86 in the bottom panel). Right: time
evolution of the unstable soliton in the case a12 = 0.2 with a random perturbation of an amplitude ∼ 10−4 added to the initial
condition. The instability leads to an oscillating dark soliton. The time unit is 5.46 ms, hence the onset of instability occurs
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BEC model. In particular, the first possibility to create
an antidark soliton in BECs is predicted. In most cases,
the compound solitons and domain walls are very robust,
keeping the stability in the presence of the parabolic and
periodic potentials. In some cases, the new solutions are
relevant to optical models as well. It would be of interest
to look for such states experimentally.
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21. V.M. Pérez-Garćıa et al., Phys. Rev. A 57, 3837 (1998);
L. Salasnich et al., Phys. Rev. A 65, 043614 (2002); Y.B.
Band, I. Towers, B.A. Malomed, Phys. Rev. A 67, 023602
(2003)

22. S. Inouye et al., Nature 392, 151 (1998); E.A. Donley et al.,
Nature 412, 295 (2001)

23. P.G. Kevrekidis et al., Phys. Rev. Lett. 90, 230401 (2003)
24. F.Kh. Abdullaev et al., Phys. Rev. A 67, 013605 (2003);

H. Saito, M. Ueda, Phys. Rev. Lett. 90, 040403 (2003)
25. D.S. Hall, private communication
26. C. Sulem, P.L. Sulem, The Nonlinear Schrödinger

Equation (Springer-Verlag, New York, 1999) [see partic-
ularly Sect. 4.1 and references therein]. The resulting lin-
earization problem is a matrix eigenvalue problem (in the
finite difference setting) whose solution is provided by stan-
dard numerical linear algebra packages

27. B.A. Malomed, A.A. Nepomnyashchy, M.I. Tribelsky,
Phys. Rev. A 42, 7244 (1990)

28. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998); B.D.
Esry, C.H. Greene, Phys. Rev. A 59, 1457 (1999); D.T.
Son, M.A. Stephanov, Phys. Rev. A 65, 063621 (2002)

29. P.G. Kevrekidis et al., Phys. Rev. E 67, 036614 (2003)
30. D.J. Frantzeskakis, Phys. Lett. A 285, 363 (2001)


