
SUPPLEMENTARY INFORMATION:

Interactions and scattering of quantum vortices in a polariton fluid

Supplementary Note 1:

Model implementation and experimental data

assimilation

For our numerics we rescale space using (x, y) = ξ ×
(X,Y ) where ξ =

√

~/(mφν) and time using τ = ν × t
where ν is an arbitrary frequency chosen such that one
unit of computational time τ is equivalent to one ps in
the original system. Using these rescalings, the equations
of motion in rescaled space (X,Y ) and time τ yield:
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where ḡ12 = −0.1, γψ = 0.001, γφ = 0.2, ωR = 4.1,
χ̃ = 0.0128, ǫ = 10−4, ξ = 1.5415 µm, and ν = 1012 s−1.

In order to be able to manipulate the phase of the
pump for the numerical computations, we employed a
standard nonlinear least squares fitting routine using the
following ansatz for the phase portion:

ϕ(xi, yi, ai, bi, ϕ0) = θ0 + θ1 + θ2 + ϕ0, (3)

where ϕ0 is a constant phase (shift) ansatz parameter
and the θi contributions are given by:

θ0 = a0R0 + b0R
2

0
, (4)

θ1 = a1R1 + b1R
2

1
+ S1 w1, (5)

θ2 = a2R2 + b2R
2

2
+ S2 w2, (6)

where Si are the vortex charges, wi and (R1, R2) are
the angles and distances measured from the centers of
the vortices (xi, yi) which in turn are ansatz parameters.
The ansatz parameters ai and bi provide the linear and
quadratic coefficients for the radial dependence on the
phase of the fit. The distance R0 is measured from the
point (x0, y0), another fitting parameter, that accounts
for the center of the main radial gradient of phase that,
in turn, provides the inward (or outward, after a suitable
modification) current flow generated by the pump. Once
a pump profile is given from the experiment (modulus
and phase), we apply a standard nonlinear least squares
fitting algorithm to find the best parameter combination.
It is worth mentioning that in order to get convergence,
the fitting procedure had to be started with a judicious
choice of initial parameters that were relatively close to
the desired solution. Furthermore, the cost function was

designed to get rid of the phase discontinuity of ϕ (af-
ter writing it modulo 2π) by constructing the continuous
phase function ϕ̄ = ϕ × [ϕ ≤ π] + (2π − ϕ) × [ϕ > π]
where [q] denotes the boolean operation 1 if q is true and
0 otherwise.
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Supplementary Fig. 1: Reproducing the rotation in-

version. Mutual angle as a function of time for a tight (σ = 4
µm) Gaussian pump. The solid (blue) and dashed (red) lines
correspond, respectively, to the cases without and with dissi-
pation. For short times (t < 6 ps) the dynamics is dominated
by the counter-clockwise rotation induced by vortex-vortex
interaction. However, the emergence of circular ripples in the
background density is responsible for a rotational reversal of
the vortices starting at 6 ps. After the circular ripples ex-
pand towards the periphery of the density (t > 8 ps), the
vortices are left to continue their mutual interactions in the
counter-clockwise direction.

Supplementary Note 2:

Vortex rotation inversion

As noted in the main text, for large pump powers (see
P4−6 in Fig. 1 of the main text), the vortices experience
rotation reversal —namely a rotation in the opposite di-
rection to the vortex-vortex interaction. We ascribe this
unexpected rotation inversion to the gradual emergence
of (circular) radial density ripples as reported in Refs. [1–
4]. As the vortices ride on the inside of the circular rip-
ples, the radial density gradient induces a rotational ve-
locity that is in the clockwise direction, namely, in the op-
posite direction of the (counter-clockwise) vortex-vortex
interaction. Therefore, for large enough powers, and thus
deep enough circular density ripples, the local density
gradient experienced by the vortices is strong enough to
slow down and even overcome the mutual vortex-vortex
rotation. As a consequence, these vortices are observed
to change the rotational direction for large pump powers.
Our numerical model implemented with the parameter
values described in the previous section produce the ra-
dial ripples at a distance larger than the location of the
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Supplementary Fig. 2: Manipulation of the phase and

flow for the pump corresponding to a same-charge

vortex pair. Phase maps (top line of panels) are shown in a
120 × 120 microns window while the flow maps (bottom line
of panels) are shown in a smaller 40 × 40 microns window.
(A) The original phase retrieved from the experiment. After
spatially fitting the strength and phase of the pump, it is
possible to only keep the contribution due to the vortex pair
[see panel B] or to revert the sign of the background phase
(namely, the phase not coming from the vortex pair) [see panel
C] to change the direction of the background flow without
altering the charge of the vortices. (B) Corresponding flow
map to the full pump depicted in panel A. (E) After removing
the contribution from the vortex pair the flow map clearly
shows an inward flow. (F) Outward flow corresponding to
the background phase depicted in panel C.

vortices and thus missing the above-mentioned vortex ro-
tation inversion. Nonetheless, by modifying the model
parameters —specifically by making the pump spot nar-
rower and appropriately choosing the initial location of
the vortices— our model is able to reproduce the vortex
rotation reversal as depicted in Supplementary Fig. 1.
We have checked that the rotation inversion is only af-
fected weakly by changes in the dissipation (contrast the
two curves depicted in Supplementary Fig. 1).

Supplementary Note 3:

Slow inward drift induced by pump imprinting

Using the phase fitting algorithm described in the Sup-
plementary Note 1 we are able to control the different
(e.g., radial and azimuthal) contributions to the phase of
the pump. For instance, starting with the phase distribu-
tion in Supplementary Fig. 2A, we can extract the contri-
bution of the (essentially azimuthal) vortex pair field con-
tained in it [see Supplementary Fig. 2B]. It is important
to stress that the phase profile contains all the velocity
flows imparted by the pump. Specifically, the gradient
of the phase in the condensate can be associated with
the fluid velocity. In panel D of Supplementary Fig. 2
we depict the velocity flow associated with the experi-

Supplementary Fig. 3: Orbits for a same-charge vor-

tex pair. Mutual angle (A) and distance (C) as a function of
time. The red-to-blue hues correspond to increasingly strong
pump powers. All angles and distances are measured, respec-
tively, in radians and microns. Angle vs. distance in linear
(B) and log-log scales (D). For guidance, panels D and H also
show, using thin dashed lines, slopes corresponding to the
power laws θ̇ ∝ d−2 and θ̇ ∝ d−3. Panels A–D correspond to
a pump with an inward flow (the one use in the experiments)
while panels E–H correspond to a pump with an outward flow.
Note that despite the pump flow pushing vortices outward in
panel (G), for large pump powers, the vortices still get closer
to each other for intermediate times.

mental phase pump of panel A. Now, by removing the
contribution due to the vortices from the phase of the
pump, it is possible to extract an approximately radial
phase gradient that is responsible for an inward flow as
depicted in panel E. It is this inward flow —referred to
as an external effect in the main text— that is responsi-
ble for the initial movement of the vortices, particularly
at low pump powers (i.e., weak nonlinearity) where the
vortices interact weakly.
In fact, in order to qualitatively pinpoint the con-

tribution due to this inward flow on the vortex inter-
actions/trajectories, we designed an alternative phase
pump with the same two vortices but the opposite radial
phase gradient [see panel C] which gives rise to an out-
ward flow [see panel F]. The results from the simulations
using the original inward flow and the modified outward
flow are depicted, respectively, in the top and bottom
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quartet of panels in Supplementary Fig. 3. The respec-
tive left columns depict the vortex-vortex angle (top sub-
panels) and distance (bottom subpanels) as a function of
time. Note that the numerics confirm the experimen-
tal observation that the intervortex distance initially de-
creases [see panel C] due to the inward flow provided by
the pump. However, at later times and, more strongly
so, for stronger pump powers, the vortices tend to ap-
proach each other (the origin of this unusual behavior is
explained in the next section) leading to scattering-like
events. It is crucial to investigate if the inward flow is
solely responsible for these scattering events. It is pre-
cisely for such purpose that we reverse-engineered all the
different contributions of the experimental phase profiles
in order to obtain those of Supplementary Fig. 2C. By
doing so, while preserving (i) the same density profile,
(ii) the vortex locations and (iii) their charges, we are
able to revert the inward flow to an outward one. The
resulting intervortex distance is depicted in Supplemen-
tary Fig. 3G. As it is clear from the figure, the outward
flow is indeed responsible for pushing the vortices out-
ward (at least for weak pumping powers). However, as
the pump power is raised, surprisingly, the vortices again
tend to approach each other leading to scattering col-
lisions. Therefore, we conclude that the inward flow
provided by the pump radial phase gradient is respon-
sible for the weakly approaching dynamics observed in
Fig. 1 of the main text and, in turn, helps to initiate the
scattering-like collision events. Nonetheless, more impor-
tantly, there is another (nonlinear) process that is chiefly
responsible for pushing the vortices closer to each other
and thus leading to their scattering dynamics. It is this
effect that we are now interested in describing.

Supplementary Note 4:

Vortex-vortex apparent attraction

When describing the origin of vortex motion in conden-
sates it is crucial to realize that the motion that a vortex
experiences when embedded in a complex background is
due to two, approximately independent, velocity contri-
butions: [5]

(i) a velocity in the direction of the background’s phase
gradient and

(ii) a velocity that is perpendicular to density gradient
of the background.

Therefore, not only phase gradients but also density
gradients of the background drive the vortex dynamics.
When two vortices are placed sufficiently far apart from
each other (a few healing lengths away) in an approxi-
mately flat-density background, the dominant contribu-
tion to the motion of each vortex is the azimuthal phase
gradient introduced by the presence of the other vor-
tex (rotational effect of regime I described in the main
text). However, in our case, as we now show, sizeable

Supplementary Fig. 4: Understanding the effective at-

traction between vortices. (A) Experimental image of the
density for P6 in Fig. 1 of the main text depicting the spiral
gradients in density at t = 19 ps. (B–D) Snapshots for the
density computed by our model corresponding to the follow-
ing times: (B) at maximum pump power (t = 5 ps), (C)
during rapid decrease of inter-vortex distance (t = 12.5 ps),
and (D) at minimum inter-vortex distance (t = 22 ps). The
whole sequence is reported in the Supplementary Movie 5.

density gradients are also present and need to be also
considered when vortices are close to each other. In fact,
the approaching of the vortices described previously is
a consequence of the background density gradients ac-
quiring a spiral shape. See for instance Supplementary
Fig. 4A where the snapshot of the experimental density
at t = 19 ps is depicted. In this plot, the density gra-
dients seem to lose their initial symmetry and they ap-
pear as spiral-like due to the rise of an azimuthal com-
ponent in the density gradient. The emergence of this
effect can be understood by closely following the dynam-
ics in the Gross-Pitaevskii (GP) model. The system is
pumped with two vortices embedded within a Gaussian
background. The resulting dynamics are depicted in pan-
els B–D in Supplementary Fig. 4. Panel B correspond to
t = 5 ps when the pump is about to reach its maximum
strength and the condensate is locked by the pump. It
is clear from this panel that the resulting density con-
tains a small hump at the center that is created by the
inward flow provided by the radial phase gradient of the
pump (see above). However, more importantly, although
the vortices cannot perform a rotation around the center
because their positions are locked by the forcing pump,
they induce a state where the central hump has a “twist”
due to the flow induced by the vortices (through their
phases). Upon release of the pump, the vortices follow a
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combination of the following regimes: (a) the inward (or
outward) push due to the initial pump radial phase gradi-
ent remaining in the background, (b) the vortex-vortex
rotation due to their phases, and (c) a velocity that is
perpendicular to the density gradient of the “main” cen-
tral hump and other background density gradients. It is
the last ingredient (being not purely radial) that starts
accelerating the inward motion of the vortices. A few pi-
coseconds later, the central hump is replaced by density
spirals due to the intrinsic rotation between vortices [see
panel C]. These spiral gradients create a guiding “chan-
nel” for the vortices and effectively produce an inward
pull that is responsible for the observed inward motion
of the vortices leading to the scattering-like events. Per-
forming an exhaustive parametric search controlling the
different terms in Supplementary Eqs. (2) and (3), we
have concluded that the minimal model that can repro-
duce the effective “attraction” between vortices contains
(i) the photonic kinetic energy term, (ii) the intrinsic
excitonic nonlinear term, and (iii) the Rabi coupling be-
tween the exciton and photon fields. The combination of
these terms is responsible for the spiral channelling lead-
ing to the scattering-like events. In fact, we have verified
that altering the relative masses between the two compo-
nents (ǫ = 1 or ǫ = 0), eliminating losses (γψ = γφ = 0),
removing the inter-spin nonlinear interaction (g12 = 0),
and/or removing the spinor-coupling term (χ = 0) leads
to the same qualitative phenomenology of the spiraling
channels.
Finally, after the vortices have scattered from each

other, the background density gradient retakes an ap-
proximate radial shape [see panel D in Supplementary
Fig. 4] and it thus no longer contributes to the radial
motion of the vortices. After this scattering-like event,
vortices drift outwards due to the dissipative terms in
the system while their angular rotation slows down as
the vortices are further apart from each other and that
the overall density is decreasing (and so is the nonlinear-
ity responsible for vortex-vortex motion).

Supplementary Note 5:

Vortex scattering

As described in the main text, as the vortices expe-
rience an apparent effective attraction, they eventually
collide in a scattering-type event. We emulate the exper-
imental vortex dynamics depicted in Fig. 2 of the main
text using our GP model. The results, using the same
conditions as in the experiment, are depicted in Supple-
mentary Fig. 5 and qualitatively match the experimental
observations. In particular, the panels A and C, report-
ing the intervortex angle and distance over time, respec-
tively, confirm the scattering events and the collisions
to be faster for larger populations (i.e., larger nonlin-
earities). Furthermore, the angular velocity plotted in
panels B and D validates that the vortex-vortex inter-
action is highly nonlinear and corresponds to a faster

Supplementary Fig. 5: Vortex scattering. Numerical
vortex scattering corresponding to the experimental vortex
scattering of Fig. 2 of the main text. Intervortex angle (A)
and distance (C) as a function of time. The red-to-blue hues
correspond to increasingly strong pump powers. Angular
speed vs. distance in linear (B) and log-log scales (D). For
guidance, panel D also shows, using thin dashed lines, slopes
corresponding to the power laws θ̇/d2 and θ̇/d3. The setup is
the same as in Fig. 1 of the main text but for vortices starting
closer to each other.

power law than for standard vortices in a superfluid with
θ̇ ∝ 1/d2. In fact, the log-log plot depicted in Supplemen-

tary Fig. 5D shows that the θ̇ vs. d curves lie below 1/d2

and 1/d3 as in the experimental data depicted in Fig. 3
of the main text. This again suggests that the faster de-
cay of the angular velocity when compared to an atomic
BEC might be attributed to the exponential decrease in
density that in turn weakens the vortex-vortex interac-
tion.

Supplementary Note 6:

Toy-model for the vortex-vortex rotation

Finally, let us understand the saturation of the vor-
tex rotation as the overall density decreases (i.e., satura-
tion of the rotation, as seen from the sigmoid shapes of
the Fig. 1 of the main text). In a Hamiltonian (atomic)
BEC model, we expect that the vortex-vortex interaction
through their phase fields results in a tangential drive
depending monotonically on the local and instantaneous
density ρ(x, y, t) (polariton population) [6, 7]. The quan-
tized phase winding of each single vortex is equal to 2π
along any path around the vortex. Hence the associated
azimuthal wavevector is equal to k = 2π/(2π · d) with d
the distance from the core. Such azimuthal k represents
the linear speed of the induced rotation. Therefore, the
angular speed for two well-separated vortices —i.e. with
core sizes, or healing length, smaller than their mutual
separation so that they chiefly interact through their
phases— of equal charge, asymmetrically placed from the
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center, can be described by:

θ̇ =
f(ρ)

d2
(7)

where θ is the intervortex angle, d is the intervortex sep-
aration, and f is an increasing function such that f → 0
when ρ → 0 (as vortices do not interact in the linear
limit). To simplify our exposition, let us assume that
our system operates in a regime of moderate densities
for which one could take the first order approximation
for f as f(ρ) = B ρ where B is a constant depending on
the physical parameters of the system. If we now assume
that the temporal and spatial variations of the density
are slow, the main contribution to the vortex-vortex in-
teraction will be mediated by the local, in space and time,
density where the vortices are embedded. Thus, we ar-
rive at the following adiabatic toy-model for the angular
speed between same-charge vortices:

θ̇(t) = B
ρ(r0, t)

d2
(8)

where ρ(r0, t) is the background density at a distance r0
from the center at time t. Now, let us write a differen-
tial equation for the time behavior of the local density
as the pump is raised and decreased. As in the experi-
ments, we consider a Gaussian (in time) pulse pump with
power A (this maximum pulse power occurs at time t0)
and time width q. As we are operating in a regime where
the vortex core size is small compared to the size of the
background density cloud, it is reasonable, for this coarse
vortex-vortex interaction model, to neglect spatial vari-
ations on the background density in the vicinity of the
vortex location. Doing so, and incorporating the dissipa-
tion rate γ of the lower polariton (LP) branch, yields the
following approximate evolution equation for the local
(constant in space) density:

ρ̇(t) = A exp

(

− (t− t0)
2

q2

)

− γ ρ(t). (9)

Upon double time integration of Supplementary Eqs. (8)
and (9), we obtain the following functional form for the
inter-vortex angle dynamics:

θ(t) = θ0 +
qAB
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, (10)

which corresponds to a saturation of the angle as t→ ∞.
As explained above, a couple of approximations were

used in order to obtain this toy model for vortex-vortex
interactions. Our goal is to understand from a qualitative

level some of the dynamics observed in the experiments.
In particular, we are interested in describing the satu-
ration effects of the rotation that are observed (mainly
at low densities) in Fig. 1 of the main text. For that
purpose we now consider, for simplicity, the inter-vortex
distance, as seen in the experimental dynamics, to fol-
low the linear relation d = d0 − 2vt. It is important to
mention that this linear dependence for d(t) is not con-
sidered in the derivation of Supplementary Eq. (10) but
only used during the fitting of the experimental data of
the inter-vortex angle θ(t). We use, as measured in the
experiments, d0 = 15.6 µm and v = 0.04 µm/ps. The pa-
rameters A and B were used together as a single fitting
parameter. The parameters q and t0 represent the pulse
width (set to 2 ps) and central time, respectively, while γ
is the decay rate of the LP branch (γ = 1/τ ∼ 0.2 ps−1).
The free parameters in the fit were only θ0, t0 and AB.
The results of the fitting procedure, depicted in Fig. 1D
of the main text, show that the above toy-model is able
to capture well the saturation of the rotation dynam-
ics for vortex-vortex interactions (specially for low den-
sities). The retrieved coefficients for the pump strengths
are: AB = 0.96, 1.58, 2.56, 3.65, 5.08, 6.22, that corre-
spond to the experimental populations: P1−6 ≡ 60 · 103,
150·103, 300·103, 0.6·106, 1.0·106, and 1.5·106 polaritons.
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