Sec. 6.1: Areas Between Curves
2. (3 pts) [SDSU M151 S21 MiniTest1 V1 Q02 26/Feb/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are $\mathbf{1 0} \mathbf{~ m i n s}$ (or more) left on the clock!!! No late submissions!]
Find an integral (or integrals) for the area enclosed by the curves:

$$
y=f(x)=x^{2}+2 x \quad \text { and } \quad y=g(x)=-x^{2}+4
$$

You do NOT need to compute the integral(s).
Sketch the curves!!!

$A=$

Sec. 6.2: Volumes (by slices, disks and washers)

4. (4 pts) [SDSU M151 S21 MiniTest1 V1 Q04 26/Feb/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are 10 mins (or more) left on the clock!!! No late submissions!]

Volumes by slices.

The law of similar triangles states that

$$
\frac{x_{2}}{x_{1}}=\frac{y_{2}}{y_{1}},
$$

with the distances as depicted in the figure. Similarly, it can be shown that the areas depicted in the figure are related through

$$
\frac{\mathcal{A}_{2}}{\mathcal{A}_{1}}=\left(\frac{x_{2}}{x_{1}}\right)^{2}=\left(\frac{y_{2}}{y_{1}}\right)^{2}
$$

Use this fact and the methods learned in class to compute the volume of a cone of height \boldsymbol{H} and with an arbitrary shape base of area \mathcal{A}. Draw a diagram clearly indicating all objects/labels that you used.

Sec. 6.3: Volumes by Cylindrical Shells
3. (4 pts) [SDSU M151 S21 MiniTest1 V1 Q03 26/Feb/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are 10 mins (or more) left on the clock!!! No late submissions!]
Using the method of volumes by SHELLS, write an integral (or integrals) for the solid generated by rotating about the $\boldsymbol{x}=\mathbf{- 2}$ line (note that the line is off-axis!) the shaded region on the figure. Do NOT forget to sketch a typical shell for this object.

$V=$

Sec. 7.1: Integration by Parts

b) (3 pts) $I_{2}=\int x^{a} \ln (x) d x$, where a is a constant with $a>1$.

Sec. 7.2: Trigonometric Integrals

a) (3 pts) $I_{1}=\int \cos ^{3}(x) \sin ^{q}(x) d x$, where \boldsymbol{q} an even constant.

$$
I_{1}=
$$

Sec. 7.3: Trigonometric Substitution
6. (4 pts) [SDSU M151 S21 MiniTest1 V1 Q06 26/Feb/2021 5:00-6:10pm PDT-Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are 10 mins (or more) left on the clock!!! No late submissions!]
Using trigonometric substitution REWRITE the following \boldsymbol{x}-integral as a $\boldsymbol{\theta}$-integral containing only trigonometric functions. Do NOT compute the integral!
$I_{4}=\int_{0}^{3} \frac{x^{3}}{\sqrt{x^{2}+9}} d x$.

Sec. 7.4: Integration of Rational Functions by Partial Fractions

4. (4 pts) Partial Fractions:
[SDSU M151 F20 MiniTest2 V1 Q4 02/Dct/2020 3:00-4:10pm PDT - Do NOT share/distribute/post/upload]
[Remember to stop solving and submit when there are $\mathbf{1 0} \mathbf{m i n s}$ (or more) left on the clock!!! No late submissions!]
Integrate $\quad I_{4}=\frac{7 x+5}{x^{2}+x-2}$
```
I
```

Sec. 7.8: Improper Integrals
5. (3 pts) Improper integrals:
[SDSU M151 S21 MiniTest2 V2 Q5 19/Mar/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are $\mathbf{1 0} \mathbf{~ m i n s}$ (or more) left on the clock!!! No late submissions!]
Let $0 \leq h(x) \leq 3 x$ for $x \geq 0$. Using the Comparison Theorem,(a) determine whether the integral

$$
I_{2}=\int_{1}^{\infty} \frac{2+h(x)}{x^{3}} d x
$$

converges or diverges. (b) If convergent give an upper bound. Show all work!
(a) Convergence for I_{2} :
(b) Upper bound for I_{2} :

Sec. 8.1: Arc Length

2. (4 pts) Arclength: Write BOTH an \boldsymbol{x} AND a \boldsymbol{y} integral for the length of the curve

$$
y=f(x)=4+3 \cos x \quad \text { for } \quad 0 \leq x \leq 2 \pi
$$

Graph the function. You do NOT need to compute the integral! Hint\#1: you may need one of these derivatives:

- $[\arccos x]^{\prime}=\left[\cos ^{-1} x\right]^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \bullet[\arcsin x]^{\prime}=\left[\sin ^{-1} x\right]^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$

Hint\#2: for the y integral you might want to use the symmetry of the function.
[SDSU M151 S21 MiniTest2 V2 Q2 19/Mar/2021 5:00-6:10pm PDT Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are $\mathbf{1 0} \mathbf{~ m i n s}$ (or more) left on the clock!!! No late submissions!]

Over $x: \quad L_{x}=\int \square \square d x$

Sec. 8.2: Area of a Surface of Revolution
3. (4 pts) Areas for surfaces of revolution:
[SDSU M151 S21 MiniTest2 V2 Q3 19/Mar/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are $\mathbf{1 0} \mathbf{~ m i n s}$ (or more) left on the clock!!! No late submissions!]

Write BOTH an x and a y integral for the SURFACE AREA obtained, by rotating about the line $\boldsymbol{x}=\boldsymbol{-} \boldsymbol{B}$, the function $g(x)$ as depicted in the plot.
Note that rotation is NOT about the y-axis!

Sec. 9.3: Separable Equations

6. (4 pts) Differential Equations:
[SDSU M151 S21 MiniTest2 V2 Q6 19/Mar/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload]
[Remember to stop solving and submit when there are $\mathbf{1 0} \mathbf{~ m i n s}$ (or more) left on the clock!!! No late submissions!]
For the following differential equation: $\quad 2 y^{\prime}-\frac{1}{y}=\mathbf{0}$
(a) Find the general solution

$$
\text { (a) General sol: } y(x)=
$$

(b) Find the particular solution satisfying the initial condition: $\boldsymbol{y}(5)=\mathbf{- 1}$.
(b) Particular sol: $y(x)=$
(c) Sketch a few solutions (encompassing the WHOLE available space in the graph below) using THIN lines and sketch using a THICK line the particular solution you found in (b).

2. (3 pts) Linear Differential Equations:
[SDSU M151 S21 MiniTest3 V1 Q2 9/Apr/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload] [Remember to stop solving and submit when there are 10 mins (or more) left on the clock!!! No late submissions!]
(a) Give first GENERAL solution and then (b) the PARTICULAR solution satisfying the initial condition. $\frac{d y}{d x}-\boldsymbol{A} y-2 e^{\boldsymbol{A} x}=0$ with $\boldsymbol{y}(0)=\mathbf{5}, \quad$ where \boldsymbol{A} is a constant.
(a) General solution: $y(x)=$
(b) Particular solution: $y(x)=$
[extra ($+\mathbf{1} \mathbf{p t s}$)]: Verify that the general solution you found does indeed solve the differential equation:

Sec. 11.2: Series (only geometric series and its applications)

9. (5 pts) Many plants and animals have developed roots and vascular systems that optimize the intake/exchange of environmental resources. This has lead to many of these system to take fractal shapes. Assume we have a branching system where each mother branch splits into TWO daughter branches and so on as depicted in the figure.
Assume in our case that the main mother branch has a length $\ell_{0}=1$ and that all daughter branches have a length ℓ_{i+1} that is $1 / 4$ of their mother branch length $\ell_{i}\left[\right.$ i.e. $\left.\ell_{i+1}=\ell_{i} / 4\right]$. Compute the TOTAL LENGTH L of this branch system (including ALL branches) after an infinite number of splits. [Note that there is only one mother branch!]

Sec. 11.6: Ratio Test: interval and radius of convergence (NO absolute convergence and NO Root test)
7. (3 pts) Using the RATIO test, determine the radius AND the interval of convergence of the following infinite series. Do NOT study convergence at the end points. Explain what you are doing and show all your work! [SDSU M151 S21 MiniTest3 V1 Q9 9/Apr/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload]
[Remember to stop solving and submit when there are 10 mins (or more) left on the clock!!! No late submissions!]
$S_{4}=\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2}}{5^{n}}(2 x-3)^{n}$

| Radius of conv.: | Interval of conv.: |
| :--- | :--- |$<x<$

Sec. 11.9: Representations of Functions as Power Series

Use the fact that the exponential function $e^{x}=\sum_{n=0}^{\infty} x^{n}$, find the series representation (using the Σ notation) for the following functions:
(a) $g(x)=\frac{d}{d x}\left[4 x e^{x^{3}}\right]$

$$
g(x)=\sum_{n=0}^{\infty} \square
$$

(b) $h(x)=\int e^{x^{2}} d x \quad$ [The constant C is already written for you].
$h(x)=\sum_{n=0}^{\infty}+\boldsymbol{C}$

Sec. 11.10: Taylor and Maclaurin Series (NO Taylor inequality and NO remainder)
Compute the Taylor polynomial of order 2 (i.e. second degree polynomial) for $f(x)=A \cos (\omega x+\phi)$ about $\boldsymbol{x}=\boldsymbol{B}$, where $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{\omega}, \boldsymbol{\phi}$, are CONSTANTS.

```
f(x)\approx
```

Sec. 10.1: Curves Defined by Parametric Equations

Sec. 10.2: Calculus with parametric Equations

Consider the following parametric equation for $0 \leq t \leq 2 \pi$:

$$
\left\{\begin{array}{l}
x(t)=\sin (t)+\cos (t) \\
y(t)=\sin (t)
\end{array}\right.
$$

whose graph is depicted in the figure.
[Hint: $\cos (\pi / 4)=\sin (\pi / 4)=\sqrt{2} / 2$]
a) Using calculus, find ALL the points (x, y) that correspond to vertical AND horizontal tangency points. Show ALL your work... No work shown \rightarrow no points!

Horizontal $t=3,(x, y)=(\quad, \quad) \quad, \quad(x, y)=(\quad, \quad)$
Vertical: \square $t=$,$(x, y)=($

Consider the following parametric curve:

$$
\left\{\begin{array}{l}
x(t)=\sin (t) \\
y(t)=1+\cos (4 t)
\end{array} \quad \text { for }-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\right.
$$

whose graph is depicted in the figure.
a) Write an explicit integral for the TOTAL length of the curve. [You do NOT need to compute the integral].

$L=\int \square$ \square $d \square$
b) Write an explicit integral for the shaded area. [You do NOT need to compute the integral].
$A=\square$

Sec. 10.3: Polar Coordinates

7. (2.5 pts) Polar Equations:
[SDSU M151 S21 MiniTest4 V2 Q7 30/Apr/2021 5:00-6:10pm PDT - Do NOT share/distribute/post/upload]
[Remember to stop solving and submit when there are $\mathbf{1 0} \mathbf{~ m i n s ~ (o r ~ m o r e) ~ l e f t ~ o n ~ t h e ~ c l o c k ! ! ! ~ N o ~ l a t e ~ s u b m i s s i o n s !] ~}$
The figure to the right represents the Cartesian $[(x, y)]$ plot of $y=f(x)$. Use this graph to sketch the polar curve $[(r, \theta)]$ traced by $r=f(\theta)$ for $0 \leq \theta \leq 2 \pi$.

Sec. 10.4: Areas and Lengths in Polar Coordinates

$$
A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

17-21 Find the area of the region enclosed by one loop of the curve.
20. $r=2 \sin 5 \theta$

45-48 Find the exact length of the polar curve.
45. $r=2 \cos \theta, \quad 0 \leqslant \theta \leqslant \pi$

