Math 151
Spring 2019
Apr 2018

Name(Print)
RedID
Section \#/TA

MIDTERM 3 PRACTICE PROBLEMS

You do not need to turn this worksheet in.

1. Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues. Be sure to specify where " n " begins.

$$
\left\{\frac{1}{2},-\frac{4}{3}, \frac{9}{4},-\frac{16}{5}, \frac{25}{6}, \ldots\right\}
$$

2. Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^{n}}$
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{5^{n}}{3^{n}}\right)$
3. Determine whether the series is convergent or divergent by expressing s_{n} as a telescoping sum. If it is convergent, find its sum.

$$
\sum_{n=1}^{\infty} \frac{3}{n(n+1)}
$$

4. Express the number as a ratio of integers. $1 . \overline{8}=1.8888 \ldots$
5. A doctor prescribes a $100-\mathrm{mg}$ antibiotic tablet to be taken every eight hours. Just before each tablet is taken, 20% of the drug remains in the body.
(a) How much of the drug is in the body just after the second tablet is taken? After the third tablet?
(b) If Q_{n} is the quantity of the antibiotic in the body just after the nth tablet is taken, find an equation that expresses Q_{n+1} in terms of Q_{n}.
(c) What quantity of the antibiotic remains in the body in the long run?
6. Use the Integral Test to determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
(b) $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$
7. Determine whether the series converges or diverges. (Direct Comparison Test)
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{3}+8}$
(b) $\sum_{n=1}^{\infty} \frac{6^{n}}{5^{n}-1}$
8. Determine whether the series converges or diverges. (Limit Comparison Test)
(a) $\sum_{n=1}^{\infty} \frac{\sqrt{1+n}}{2+n}$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{4}+1}}{n^{3}+n}$
9. Test the series for convergence or divergence. (Alternating Series Test)
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3+5 n}$
(b) $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+4}$
10. Test the series for convergence or divergence. (Test for divergence)
(a) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{2}+1}$
11. Determine whether the series is absolutely convergent or conditionally convergent.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}+1}$
12. Find the radius of convergence and interval of convergence of the series.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{2}+1}$
13. Express the function as the sum of a power series.
(a) Use differentiation to find a power series representation for $f(x)=\frac{1}{(1+x)^{2}}$

What is the radius of convergence?
(b) Use part (a) to find a power series for $g(x)=\frac{1}{(1+x)^{3}}$
(c) Use part (b) to find a power series for $h(x)=\frac{x^{2}}{(1+x)^{3}}$
14. Show that the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

is a solution of the differential equation

$$
f^{\prime \prime}(x)+f(x)=0
$$

15. Use the definition of a Taylor series to find the first four nonzero terms of the series for $f(x)$ centered at the given value of a.
(a) $f(x)=x e^{x}, \quad a=0$
(c) $f(x)=\sqrt{x}, \quad a=4$
(b) $f(x)=\sin x, \quad a=\pi / 6$
(d) $f(x)=\ln (1+x), \quad a=0$
