1.

$$
\left\{\frac{1}{2},-\frac{4}{3}, \frac{9}{4},-\frac{16}{5}, \frac{25}{6}, \ldots\right\}
$$

numerator: $1,2^{2}, 3^{2}, 4^{2}, 5^{2}, \ldots$
denominator: $2,3,4,5,6, \ldots$
alternating: $(-1)^{n+1}$
starting @ $n=1$: $a_{n}=\frac{(-1)^{n+1} n^{2}}{n+1}$
2.
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{5^{n}}{3^{n}}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{3}}+\sum_{n=1}^{\infty} \frac{5^{n}}{3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}+\sum_{n=1}^{\infty}\left(\frac{5}{3}\right)^{n}$
p-series, $p=3>1$
convergent

$$
\text { (a) } \begin{aligned}
\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^{n}}=\sum_{n=1}^{\infty} \text { rftr|n }(-3)^{-1}\left(-\frac{3}{4}\right)^{n} & =\sum_{n=1}^{\infty}-\frac{1}{3}\left(-\frac{3}{4}\right)^{n}|r| \\
& =\frac{\frac{1}{4}}{1+3 / 4}=\frac{\frac{1}{4}}{7 / 4}=\frac{1}{7}
\end{aligned}
$$

converges to $\frac{f . t}{1-r}$

$$
|r|=\left|-\frac{3}{4}\right|<1
$$

converges to

$$
|r|=\frac{5}{3}>1
$$

divergent germ. series
$\therefore \sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{5^{n}}{3^{n}}\right)$ is divergent.
3.

$$
\begin{aligned}
& S=\sum_{n=1}^{\infty} \frac{3}{n(n+1)} \quad \frac{3}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}=\frac{3}{n}-\frac{3}{n+1} \\
& 3=A(n+1)+B n \rightarrow A=3, \quad B=-3 \\
& S_{n}=\sum_{i=1}^{n}\left(\frac{3}{i}-\frac{3}{i+1}\right)=\left(\frac{3}{1}-\frac{3}{12}\right)+\left(\frac{3}{2}-\frac{3}{3}\right)+\left(\frac{3}{3}-\frac{3}{4}\right)+\left(\frac{3}{4}-\frac{3}{5}\right)+\ldots+ \\
& \left(\frac{3}{n-2}-\frac{3}{n-1}\right)+\left(\frac{3}{n-1}-\frac{3}{n}\right)+\left(\frac{3}{n}-\frac{3}{n+1}\right) \\
& =3-\frac{3}{h+1} \\
& S=l_{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(3-\frac{3}{n+1}\right)=3
\end{aligned}
$$

$\therefore S$ converges to 3
4.

$$
\begin{aligned}
& 1 . \overline{8}=1.8888 \ldots=1+\frac{8}{10}+\frac{8}{100}+\frac{8}{1000}+\cdots \\
&=1+\sum_{n=1}^{\infty} 8\left(\frac{1}{10}\right)^{n} \quad \text { geometric } \\
&|r|=\frac{1}{10}<1
\end{aligned}
$$

$$
=1+\frac{\frac{8}{10}}{1-1 / 10}
$$

So converges to $\frac{f . t}{1-r}$

$$
=1+\frac{8 / 10}{9 / 10}=1+8 / 9=18 / 9=17 / 9
$$

5. (a)

$$
\begin{aligned}
& Q_{1}=100 \mathrm{mg} \\
& Q_{2}=100(0.2)+100=120 \mathrm{mg} \\
& Q_{3}=100(0.2)^{2}+100(0.2)+100=120(0.2)+100=124 \mathrm{mg}
\end{aligned}
$$

(b) $Q_{n+1}=0.2 Q_{n}+100$
(c)

$$
Q_{4}=100(0.2)^{3}+100(0.2)^{2}+100(0.2)+100
$$

$$
Q_{n}=\sum_{i=1}^{n} 100(0.2)^{i-1}
$$

$$
\text { in the long run }=l_{n \rightarrow \infty} Q_{n}=\sum_{i=1}^{\infty} 100(0.2)^{i-1}
$$

convergent geometric $w|\quad| r \mid=0.2<1$

$$
=\frac{100}{1-2 / 10}=\frac{100}{8 / 10}=125
$$

$$
\frac{f . t .}{1-r}
$$

6. a) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ positive, continuous, decreasing decreasing? show $f^{\prime}(x)<0 \quad f(x)=\frac{x}{x^{2}+1}$

$$
\begin{array}{r}
f^{\prime}(x)=\frac{1\left(x^{2}+1\right)-2 x(x)}{\left(x^{2}+1\right)^{2}} \\
f^{\prime}(x)<0 \text { if } \quad x^{2}+1-2 x^{2}<0 \\
-x^{2}+1<0 \\
1<x^{2}
\end{array}
$$

$$
1<x \quad \checkmark \text { decreasing on }(1, \infty)
$$

Now, $\int_{1}^{\infty} \frac{x}{x^{2}+1} d x$

$$
\begin{aligned}
=\int_{2}^{\infty} \frac{1}{2 u} d u=l_{t \rightarrow \infty} \int_{2}^{t} \frac{1}{2} \cdot \frac{1}{u} d u & =\left.\frac{1}{2} l_{t \rightarrow \infty} \ln |u|\right|_{2} ^{t} \\
& =\frac{1}{2} \varliminf_{t \rightarrow \infty} \ln |t|-\ln 2=\infty
\end{aligned}
$$

\therefore the integral diverges.
\therefore By the Integral Test, since $\int_{1}^{\infty} \frac{x}{x^{2}+1} d x$ diverges, $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ also diverges.
b) $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}} \quad$ positive, continuous, decreasing
decreasing? $f^{\prime}(x)<0 \quad f(x)=x^{2} e^{-x^{3}}$

$$
\begin{aligned}
f^{\prime}(x) & =2 x e^{-x^{3}}+x^{2}\left(-3 x^{2} e^{-x^{3}}\right) \\
& =2 x e^{-x^{3}}-3 x^{4} e^{-x^{3}} \\
& =e^{-x^{3}}\left(2 x-3 x^{4}\right) \quad e^{-x^{3}}>0
\end{aligned}
$$

So, $f^{\prime}(x)<0$ if $2 x-3 x^{4}<0$
if $x\left(2-3 x^{3}\right)<0$
if $\quad 2-3 x^{3}<0$
if $3 x^{3}>2$
if $\quad x^{3}>2 / 3$
\checkmark decreasing for $x \geqslant 1$
Now, $\int_{1}^{\infty} x^{2} e^{-x^{3}} d x=\int_{1}^{\infty} \frac{x^{2}}{e^{x^{3}}} d x$

$$
\begin{aligned}
& u=x^{3} \\
& d u=3 x^{2} d x \\
& \frac{1}{3} d u=x^{2} d x
\end{aligned}
$$

$$
=\int_{1}^{\infty} \frac{1}{3} \cdot e^{-u} d u
$$

$$
=\varliminf_{t \rightarrow \infty} \int_{1}^{t} \frac{1}{3} e^{-u} d u=\varliminf_{t \rightarrow \infty}-\left.\frac{1}{3} e^{u}\right|_{1} ^{t}=\varliminf_{t \rightarrow \infty}\left[-\frac{1}{3} e^{-t}+\frac{1}{3} e^{-1}\right]=\frac{1}{3 e}
$$

\therefore the interval converges.
\therefore By the Integral Test, since $\int_{1}^{\infty} x^{2} e^{-x^{3}} d x$ converges, $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$ also converges.
7. a) $\sum_{n=1}^{\infty} \frac{1}{n^{3}+8} \quad \frac{1}{n^{3}+8}<\frac{1}{n^{3}} \quad \sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges by p-series, $p=3>1$.
\therefore By comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^{3}+8}$ also converges.
b) $\sum_{n=1}^{\infty} \frac{6^{n}}{5^{n}-1} \frac{6^{n}}{5^{n}-1}>\frac{6^{n}}{5^{n}} \quad \sum_{n=1}^{\infty} \frac{6^{n}}{5^{n}}=\sum_{n=1}^{\infty}\left(\frac{6}{5}\right)^{n}$ is a geometric series with

$$
|r|=b / 5>1
$$

$\therefore \sum_{n=1}^{\infty} \frac{6^{n}}{5^{n}-1}$ diverges by comparison test. so it diverges.
8. a) $\sum_{n=1}^{\infty} \frac{\sqrt{1+n}}{2+n} \quad b_{n}=\frac{\sqrt{n}}{n}=\frac{1}{\sqrt{n}} ; a_{n}=\frac{\sqrt{1+n}}{2+n}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\varliminf_{n \rightarrow \infty} \frac{\sqrt{1+n}}{2+n} \cdot \sqrt{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n+n^{2}}}{2+n}=l_{n \rightarrow \infty} \frac{\sqrt{n / n^{2}+n^{2} / n^{2}}}{2 / n+n / n}
$$

$\therefore \sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ behave similarly.

$$
\begin{array}{r}
=\lim _{h \rightarrow \infty} \frac{\sqrt{1 / n+1}}{2 / n+1}=1, \underset{\substack{\text { finite } \\
\text { number }}}{ } \\
>0
\end{array}
$$

$\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent p-series with $p=\frac{1}{2}<1$.
$\therefore \sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{\sqrt{1+n}}{2+n}$ is also divergent.
b) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{4}+1}}{n^{3}+n} \quad b_{n}=\frac{\sqrt{n^{4}}}{n^{3}}=\frac{n^{2}}{n^{3}}=\frac{1}{n} ; a_{n}=\frac{\sqrt{n^{4}+1}}{n^{3}+n}$
$\varliminf_{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{4}+1}}{n^{3}+n}, n=1>0$ finite number.
$\therefore \sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ behave similarly. $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (harmonic series)
$\therefore \sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{\sqrt{n^{4}+1}}{n^{3}+n}$ is also divergent.
9. a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3+5 n} \quad b_{n}=\frac{1}{3+5 n}$

Check: (i) $\ell_{n \rightarrow \infty} b_{n}=0$
(ii) b_{n} decreasing
(i) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{3+5 n}=0$
\therefore series converges by AST
(ii) $b_{n+1}=\frac{1}{3+5(n+1)} ; b_{n}=\frac{1}{3+5 n}$
$b_{n+1}<b_{n}$ since $3+5(n+1)>3+5 n$
b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+4} \quad b_{n}=\frac{n^{2}}{n^{3}+4}$

Check (i) $\underbrace{}_{n \rightarrow \infty} b_{n}=0$
(ii) bn decreasing
(i) $\sum_{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}+4}=\lim _{n \rightarrow \infty} \frac{n^{2} / n^{3}}{n^{3} / n^{3}+4 / n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{\frac{n}{1+4 / n^{3}}}=0$
(ii)

$$
\begin{aligned}
& f(x)=\frac{x^{2}}{x^{3}+4} \quad f^{\prime}(x)=\frac{2 x\left(x^{3}+4\right)-3 x^{2}\left(x^{2}\right)}{\left(x^{3}+4\right)^{2}} \\
& f^{\prime}(x)<0 \quad \text { if } 2 x\left(x^{3}+4\right)-3 x^{2}\left(x^{2}\right)<0 \\
& \text { if } 2 x^{4}+8 x-3 x^{4}<0
\end{aligned}
$$

$$
\text { if } \quad 8 x-x^{4}<0
$$

$$
x\left(8-x^{3}\right)<0
$$

$$
\text { if } \quad 8-x^{3}<0
$$

$$
8<x^{3}
$$

if $x>2$ decreasing on $(2, \infty)$
$\therefore \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+4}$ converges by Alternating Series Test.
10. (a) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}} \quad \lim _{n \rightarrow \infty} \frac{e^{n}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{e^{n}}{2 n}=\operatorname{lH}_{n \rightarrow \infty} \frac{e^{n}}{2}=\infty \neq 0$
$\therefore \sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$ diverges by test for divergence
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-1}{n^{2}+1} \quad \lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}+1}=1$ So, $\lim _{n \rightarrow \infty}(-1)^{n} \frac{n^{2}-1}{n^{2}+1}$ ONE.
\therefore the series diverges by test for divergence.
11. (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$

Check absolute value: $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{\sqrt{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad \begin{array}{r}\text { divergent } \\ p=1 / 2<1\end{array}$

$$
p=1 / 2<1
$$

Original series: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} \quad b_{n}=\frac{1}{\sqrt{n}}$
(i) $e_{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$
(ii) $b_{n+1}=\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}=b_{n}$
$b_{n+1}<b_{n}$ since $\sqrt{n+1}>\sqrt{n}$
so b_{n} is decreasing
$\therefore \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges by AST.
$\therefore \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is conditionally convergent.
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}+1}$

Check absolute value: $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{3}+1}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{3}+1} \quad \frac{1}{n^{3}+1}<\frac{1}{n^{3}}$

$\therefore \sum_{n=1}^{\infty} \frac{1}{n^{3}+1}$ converges.
$\therefore \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}+1}$ is absolutely convergent.
12.(a)

Note: endpoints were not checked since the question didn't ask for it

$$
L=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{(n+1)^{2}} \cdot \frac{n^{2}}{(-1)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}|x| \frac{n^{2}}{(n+1)^{2}}=|x|<1
$$

Radius of convergence $=1$, interval of convergence: $(-1,1)$
12. b) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$

$$
L=\ell_{n \rightarrow \infty}^{!}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\ell_{n \rightarrow \infty}|x| \frac{n!}{(n+1)!}=\varliminf_{n \rightarrow \infty}|x| \cdot \frac{1}{n+1}=0
$$

\therefore radius of convergence $=\infty$; Interval : $(-\infty, \infty)$

$$
\begin{array}{ll}
& \sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{2}+1} \\
L= & \varliminf_{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+1)^{2}+1} \cdot \frac{n^{2}+1}{(x-2)^{n}}\right|=l_{n \rightarrow \infty}|x-2| \cdot \frac{n^{2}+1}{(n+1)^{2}+1}=|x-2|<1 \\
\quad & -1<x-2<1 \\
\quad \text { radius of convergence }=1 & 1<x<3
\end{array}
$$

interval: $(1,3)$
13. $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
(a)

$$
\begin{aligned}
\left(\frac{1}{1+x}\right)^{\prime}=\frac{-1}{(1+x)^{2}} \quad \text { So } \frac{1}{(1+x)^{2}} & =-\left(\frac{1}{1+x}\right)^{\prime} \frac{1}{1+x}=\frac{1}{1-(-x)^{\prime}}=\sum_{n=0}^{\infty}(-x)^{n} \\
& =-\left(\sum_{n=0}^{\infty}(-x)^{n}\right)^{\prime} \\
& =-\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right)^{\prime} \\
& =-\sum_{n=1}^{\infty}(-1)^{n} n x^{n-1}=\sum_{n=1}^{\infty}(-1)^{n+1} n x^{n-1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
&\left(\frac{1}{(1+x)^{2}}\right)^{1}=\frac{-2}{(1+x)^{3}} \text { so, } g(x)=\frac{1}{(1+x)^{3}}=-\frac{1}{2}\left(\frac{1}{(1+x)^{2}}\right)^{\prime} \\
&=-\frac{1}{2}\left(\sum_{n=1}^{\infty}(-1)^{n+1} n x^{n-1}\right)^{\prime} \\
&=-\frac{1}{2} \sum_{n=2}^{\infty}(-1)^{n+1} n(n-1) x^{n-2} \\
& g(x)=\sum_{n=2}^{\infty} \frac{(-1)^{n} n(n-1) x^{n-2}}{2}
\end{aligned}
$$

c) $h(x)=\frac{x^{2}}{(1+x)^{3}}$

$$
\begin{aligned}
h(x)=x^{2} \cdot g(x) & =x^{2} \sum_{n=2}^{\infty} \frac{(-1)^{n} n(n-1) x^{n-2}}{2} \\
& =\sum_{n=2}^{\infty} \frac{(-1)^{n} n(n-1) x^{n}}{2}
\end{aligned}
$$

14. Show

$$
\begin{aligned}
& \begin{array}{l}
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \text { is a } \\
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n x^{2 n-1}}{(2 n)!}
\end{array} \\
& f^{\prime \prime}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n(2 n-1) x^{2 n-2}}{(2 n)!} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n-2}}{(2 n-2)!} \\
& f^{\prime \prime}(x)+f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n-2}}{(2 n-2)!}+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2(n+1)-2}}{(2(n+1)-2)!}+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n)!}+\frac{(-1)^{n} x^{2 n}}{(2 n)!}=0
\end{aligned}
$$

15. (a) $f(x)=x e^{x}, \quad a=0$

$$
\begin{array}{ll}
f(x)=x e^{x} & f(0)=0 \\
f^{\prime}(x)=e^{x}+x e^{x} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=2 e^{x}+x e^{x} & f^{\prime \prime}(0)=2 \\
f^{\prime \prime \prime}(x)=3 e^{x}+x e^{x} & f^{\prime \prime \prime}(0)=3 \\
f^{(4)}(x)=4 e^{x}+x e^{x} & f^{(4)}(0)=4
\end{array}
$$

Taylor series:

$$
\begin{aligned}
& f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
& \quad+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\frac{f^{(4)}(a)}{4!}(x-a)^{4}+\ldots
\end{aligned}
$$

$$
f(x) \approx x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{6}
$$

(b)

$$
\begin{array}{ll}
f(x)=\sin x, & a=\pi / 6 \\
f(x)=\sin x & f\left(\frac{\pi}{6}\right)=\frac{1}{2} \\
f^{\prime}(x)=\cos x & f^{\prime}(\pi / 6)=\sqrt{3} / 2 \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(\pi / 6)=-\frac{1}{2} \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}(\pi / 6)=-\sqrt{3} / 2
\end{array}
$$

(c) $f(x)=(1-x)^{-2}, \quad a=0$

(d)

$$
\begin{array}{ll}
f(x)=\ln (1+x), & a=0 \\
f(x)=\ln (1+x) & f(0)=\ln (1)=0 \\
f^{\prime}(x)=(1+x)^{-1} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-(1+x)^{-2} & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=2(1+x)^{-3} & f^{\prime \prime \prime}(0)=2 \\
f^{(4)}(x)=-6(1+x)^{-4} & f^{(4)}(0)=-6
\end{array}
$$

$$
\begin{aligned}
& \text { c) } f(x)=\sqrt{x}, \quad a=4 \\
& f(x)=x^{1 / 2} \quad f(4)=2 \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \quad f^{\prime}(4)=\frac{1}{4} \\
& f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}=-\frac{1}{4 \sqrt{x^{3}}} \quad f^{\prime \prime}(4)=-\frac{1}{32} \\
& f^{\prime \prime \prime}(x)=\frac{3}{8} x^{-5 / 2}=\frac{1}{8 \sqrt{x^{5}}} \quad f^{\prime \prime \prime}(4)=\frac{3}{256}
\end{aligned}
$$

$$
\begin{aligned}
& f(x) \approx 2+\frac{1}{4}(x)+\frac{-\frac{1}{32}}{2!}(x)^{2}+\frac{\frac{B}{256}}{3!}\left(x^{3}\right. \\
& f(x) \approx 2+\frac{1}{4}(x)-\frac{1}{64}(x)^{2}+\frac{1}{512}(x)^{3}
\end{aligned}
$$

circled x 's should be replaced with $(\mathrm{x}-4)$

