Must Know Material for Mini-test\#2 - M151 - Calculus II - Spring 2021

This sheet contains a list of the material that MUST be second nature to you in preparation for Mini-test\#2. In addition to studying the following Calc-II material that will be included in Mini-test\#2:

- Sec. 7.8: Improper Integrals
- Sec. 8.1: Arc Length
- Sec. 8.2: Area of a Surface of Revolution
- Sec. 9.1: Modeling with Differential Equations
- Sec. 9.2: Direction Fields and Euler's Method
- Sec. 9.3: Separable Equations (inc. orthogonal curves AND mixing problems)
- Sec. 9.4: Models of Population Growth [Please refer to activity\#8: link

You must also be very confident with ALL the material from Calc-I. You can have a look at the following review material from Calc-I:

- [Derivatives] [Practice problems with solutions]
- [Integrals] [Practice problems with solutions]

You must also be very confident with ALL the material covered in Mini-tests \#1 and \#2. You can have a look at the following "Must know material for previous Mini-Tests":

- http://carretero.sdsu.edu/teaching/M-151/MTs/MiniTest1_must_know.pdf

In addition to studying ALL Calc-I and Calc-II material above, you must be very confident with the following basic and fundamental topics/formulas/techniques/tricks/hints/etc.:

- ALWAYS use the limit $t \rightarrow \pm \infty$ and $t \rightarrow a^{ \pm}$for, respectively, improper integrals of type I and type II.
- Comparison (sandwich) Theorem for improper integrals. Do not forget to check if all functions are ≥ 0.
- Arc length formula: $L=\int_{a}^{b} d s$ were $d s=\sqrt{1+(d y / d x)^{2}} d x$ or $d s=\sqrt{1+(d x / d y)^{2}} d y$.
- Area of revolution: $A=\int_{a}^{b} \operatorname{circ} \times d s=\int_{a}^{b} 2 \pi r \times d s=\int_{x_{1}}^{x_{2}} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ or $\int_{y_{1}}^{y_{2}} 2 \pi g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y$.
- Solve DEs by separation of variables: do not forget constant (that will be determined by initial conditions). Note: always try separation of variables before integrating factor.
- Knowing the difference between the general solutions to the DE (the one with the arbitrary constant) and the particular solution (the one that passes through a specific initial condition).
- Being able to determine when a population is increasing/decreasing/stationary from the differential equation: $d P / d t=f(P)$. Namely, where is the function f positive/negative/zero respectively.
- Drawing the 2D direction field for $y^{\prime}=f(x, y)$ (inc. trajectories starting at particular initial conditions).
- Being able to quickly sketch (i.e. without tabulating) all basic functions: lines, parabolas (including roots and vertex), logarithms, exponentials, trigonometric, and polynomials (using only their roots and their limits at $\pm \infty)$.
- Remember that when solving something like: $y^{2}=b l a \Rightarrow y= \pm \sqrt{b l a}$ or $|y|=b l a \Rightarrow y= \pm(b l a)$ you should not forget the \pm, otherwise you throwing away HALF of the solutions!
- When simplifying constants in the general solution to DEs remember that $3 C_{1} \rightarrow C_{2}$ or $C_{1}+C_{2} \rightarrow C_{3}$ where C_{1}, C_{2}, C_{3} are arbitrary constants. However keep in mind that if C is an arbitrary constant: if $e^{C} \rightarrow K$ then $K \leq 0$ or if $\cos (C) \rightarrow K$ then $-1 \leq K \leq 1$, etc...
- If the problem has a constant (like α, A, β, etc.) just carry it through! It is a constant for the problem and it should be left untouched. Think about the way that you carry π around in expressions without using its actual numerical value [in fact it is *much* easier to write π than writing 3.141592653589793238462...].
Also, be careful with algebra! See must-know material for previous Mini-Test and also:
- $e^{a \ln (x)}$ is NOT $a x$ but $e^{a \ln (x)}=e^{\ln \left(x^{a}\right)}=x^{a}$.

