Must Know Material for Mini-test\#3 - M151 - Calculus II - Spring 2021

This sheet contains a list of the material that MUST be second nature to you in preparation for Mini-test\#3. In addition to studying the following Calc-II material that will be included in Mini-test\#2:

- Sec. 9.5: Linear Equations (Integrating Factor)
- Sec. 11.1: Sequences
- Sec. 11.2: Series (inc. Geometric Series and Telescopic)
- Sec. 11.3: Integral Test and Estimates of Sums (inc. p-Test)
- Sec. 11.4: The Comparison Tests (Sandwich/Direct Comparison Test and Limit Comparison Test)
- Sec. 11.5: Alternating Series
- Sec. 11.6: Absolute Convergence and the Ratio Test and Root Test
- Sec. 11.7: Strategy for Testing Series
- Sec. 11.8: Power Series (interval and radius of convergence using Ratio test)

You must also be very confident with ALL the material from Calc-I. You can have a look at the following review material from Calc-I:

- [Derivatives] [Practice problems with solutions]
- [Integrals] [Practice problems with solutions]

You must also be very confident with ALL the material covered in previous Mini-tests. You can have a look at the following "Must know material for previous Mini-Tests":

- http://carretero.sdsu.edu/teaching/M-151/MTs/MiniTest1_must_know.pdf
- http://carretero.sdsu.edu/teaching/M-151/MTs/MiniTest2_must_know.pdf

In addition to studying ALL Calc-I and Calc-II material above, you must be very confident with the following basic and fundamental topics/formulas/techniques/tricks/hints/etc.:

GENERAL:

- If the problem has a constant (like α, A, β, etc.) just carry it through! It is a constant for the problem and it should be left untouched. Think about the way that you carry π around in expressions without using its actual numerical value [in fact it is *much* easier to write π than writing $3.141592653589793238462 \ldots$...].

DIFFERENTIAL EQUATIONS:

- Solve linear, 1st order, DEs by integrating factor: put equation in $y^{\prime}+P y=Q$ form, multiply BOTH SIDES of DE by integrating factor $I=\exp \left(\int P\right)$, and integrate [do not forget your constant!].
- Knowing the difference between the general solutions to the DE (the one with the arbitrary constant) and the particular solution (the one that passes through a specific initial condition).

SEQUENCES and SERIES:

- Sum of geometric series. This always works: $\sum_{n=\ldots}^{\infty} b r^{n \pm \ldots}=\frac{\text { first term }}{1-r} \quad$ (provided $|r|<1$).
- Recognize a pattern in a series and put it in the form of a geometric series.
- Put a number with infinite repetition of decimals digits into a fraction using series.
- Series tests: (Must check precise conditions before applying!)
- Geometric series. $(|r|<1)$
- p-test. ($\sum \frac{1}{n^{p}}$ conv. for $p>1$)
- Integral test. (f cont., $f>0, f \downarrow$)
- Telescopic sum (use partial fractions).
- Sandwich/Direct Comparison test. ($a_{n}>0$ and $b_{n}>0$, i.e. need bottom bread slice!)
- Limit comparison test. $\left(a_{n}>0\right.$ and $\left.b_{n}>0\right)$
- Alternating series. $\left(a_{n}=(-1)^{n} b_{n}, b_{n} \downarrow, b_{n} \rightarrow 0\right)$
- Ratio test. ($L<1$ conv., $L>1$ div., $L=1$ inconclusive)
- Convergence vs. Absolute Convergence vs. Conditionally Convergent. [Abs. Conv. \Rightarrow Conv.]
- Sec. 11.7 (including ALL of its examples and exercises): very much recommended!
- Activity\#10: https://carretero.sdsu.edu/teaching/M-151/labs/lab10_series_applications.pdf
- Construct series from a word problem. (cf. compounding interest problems, drug delivery problems, etc... [see exercises with word problems from Sec. 11.2]).
- Construct a series from a percentage problem [remember that the $p \%$ of a quantity Q is $\frac{p}{100} Q$ and if you compound you get $\left.\frac{p}{100} Q+Q=\left(1+\frac{p}{100}\right) Q\right]$.
- Computing interval of convergence for power series (usually using the ratio test).
- Being able to determine the radius of convergence (if only convergent about $a \Rightarrow R=0$ and if convergent everywhere $\Rightarrow R=\infty)$. Remember that R is half of the length of the interval of convergence.
- Remember: $|x-A|<B \Rightarrow-B<x-A<B$ [and thus $-B+A<x<B+A$].
- For power series, ratio test fails at end points \Rightarrow replace x by the end points and check for convergence of the resulting series. Do NOT study convergence at the end points if you are told not to do so!
- If requested to use test X , then use test X and NOT test Y! If you do not use the indicated test you will earn NO points.

