Sec. 11.9: Power Series
7. (6 pts) Using the fact that function $f(x)$ can be written by the following series: find the series representation (using the Σ notation) for the following functions: $f(x)=\sum_{n=0} \frac{(-1)^{n}}{4^{n}}$,
(a) (2 pts) $g(x)=3 f\left(x^{2}\right)$

$$
g(x)=\sum_{n=1}^{\infty} \square
$$

(b) (2 pts) $h(x)=\frac{d}{d x}\left[4 x f\left(x^{3}\right)\right]$

$$
h(x)=\sum_{n=1}^{\infty}
$$

(c) (2 pts) $w(x)=\int x f\left(x^{4}\right) d x \quad$ [The constant C is already written for you].

7. (8 pts) Compute the Taylor polynomial of order 3 (i.e. third degree polynomial) for $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{B} \boldsymbol{x}+\boldsymbol{C} \boldsymbol{e}^{\boldsymbol{A x}}$ about $\boldsymbol{x}=\mathbf{0}$.

$$
g(x) \approx
$$

8. (5 pts) Suppose that you are given the graph of the function $f(x)$ depicted on the right. Let us denote $T_{n}(x)$ the Taylor polynomial approximation of order $n[n=0$ denotes a constant, $n=1$ denotes a LINEAR approximation, $n=$ 2 denotes a QUADRATIC approximation, etc...]. Sketch the graphs of the following Taylor approximations:
(a) T_{0} at $\boldsymbol{x}=\mathbf{0}$ (use a thin solid line).
(b) T_{2} at $\boldsymbol{x}=\mathbf{0}$ (use a dashed line).
(c) T_{0} at $\boldsymbol{x}=\mathbf{3}$ (use a thin solid line).
(d) T_{1} at $\boldsymbol{x}=3$ (use a dashed line).
(e) T_{2} at $\boldsymbol{x}=5.5$ (use a dashed line).

Sec. 10.1: Curves Defined by Parametric Equations

Sec. 10.2: Calculus with parametric Equations (tangents, areas, arclength
Find an equation $(y=\ldots)$ of the tangent to the curve at the given point.

$$
x=\cos t+\cos 2 t, y=\sin t+\sin 2 t,(x, y)=(-1,1)
$$

Find the exact length of the curve. $\quad x=1+3 t^{2}, \quad y=4+2 t^{3}, \quad 0 \leqslant t \leqslant 1$

Find the area enclosed by the x-axis and the curve $x=t^{3}+1, y=2 t-t^{2}$

Sec. 10.3: Polar Coordinates
Let $\quad r=f(\theta)=4 \sin (\theta)$
(A) Sketch the graph of $r=f(\theta)$ for $0 \leq \theta \leq 2 \pi$ in CARTESIAN coordinates and identify ALL minima and maxima.

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

(C)-(D): Use the fact that the
slope in parametric is: $m=\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
(C) Find all (r, θ) points where the curve as a HORIZONTAL tangent.
(D) Find all (r, θ) points where the curve as a VERTICAL tangent.
(A) Sketch the graph of $r=f(\theta)$
for $0 \leq \theta \leq 2 \pi$ in CARTESIAN
coordinates and identify ALL
minima and maxima.

