
Sequences and Series Review

Sequences
In your own words, define what a sequence is.

A sequence can be . (infinite, finite, both)

1. Find a formula for the general term an, starting at n = 0, for the sequence {an}∞n=0. [HINT: Transform all numbers to
fractions and identify patterns for numerators and denominators.]

{an}∞n=0 =
{
−1, 4

3 , 1,
14
27 ,

19
81 , ...

}

an =

2. Find a formula for the general term an, starting at n = 3, for the sequence {an}∞n=3.
[
HINT : 1 = e0

20

]
{an}∞n=3 =

{
1, e2 ,

e2

4 ,
e3

8 , ...
}

an =

A finite sequence is simply a finite list of numbers that follow a pattern (BORING). An infinite list of numbers following a
pattern (Infinite sequence) is much more interesting. One thing we do with infinite sequences is observe whether or not that
list of numbers following a pattern approaches a finite number. If the limit of that sequence is a finite number, we say that
the sequence CONVERGES TO THAT NUMBER, otherwise we say the sequence DIVERGES

Let {an} be a sequence such that lim
n→∞

an = L.

1. If L =∞, then {an} . (converges to L, diverges)

2. If L is a finite number, then {an} . (converges to L, diverges)

Determine whether the sequence {an}n=∞
n=0 converges or diverges. If the sequence converges, what does it converge to?

1. an = 5n− 1
3n

2. an = en−37

2n−520

3. an = 20n5 − 7n4 + 1
n− 13n5 + 17
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Series
A series is the sum of a .

A series can be . (infinite, finite, both)

We can denote a finite series as SN =
N∑

n=k

an and an infinite series as S∞ =
∞∑

n=k

an.

Write an expression for the sum of the first 15 even numbers. (Hint: S15 = 2 + 4 + · · · )

S15 =

Write the sum of the first 15 even numbers as a series.[
HINT: SN =

N∑
k=1

ak

]

S15 =
∑

k=1

Write an infinite sum for even numbers [2 + 4 + 6 + · · · ] as a
series with index k starting at 7.[
HINT: S∞ =

∞∑
k=7

ak

]

S∞ =
∑

k=7

As shown above, series notation is convenient for representing a sum of many terms that follow a pattern. One of the most
interesting things that we do with series is investigate the idea of whether or not it is possible to sum up an infinite amount
of numbers to never exceed a finite number. When this infinite sum of numbers approaches a finite number, we say the series

(converges, diverges), and if the infinite sum of numbers goes to positive/negative infinity,

we say the series (converges, diverges).

The sequence {an}∞n=4 = 10n2 + 1
4 + 2n2 converges to 5. If we sum up all the terms in that sequence we get the series S∞ =

∞∑
k=4

ak.

Since the sequence converges to 5, we can think of the series essentially adding an infinite amount of 5’s in the long run. Hence,

we expect the sum of these numbers to go to (infinity, a number, neither). Therefore the

series (converges, diverges, neither converges nor diverges)

Fill in the blanks with converges, diverges, or cannot say convergent/divergent which makes the statement true.

1. If lim
n→∞

an =∞, then
∞∑

n=k

an .

2. If lim
n→∞

an = c (c is a non-zero number), then
∞∑

n=k

an .

3. If lim
n→∞

an = 0, then
∞∑

n=k

an .

Use the results above to help you complete the following statement.

1. If
∑
an converges, then lim

n→∞
an = .

Noteworthy properties of Series:

1.
∞∑

n=k

7 + 13 cos2(2n)− 3en

4n + 1 = 7
∞∑

n=k

1
4n + 1 + 13

∞∑
n=k

cos2(2n)
4n + 1 − 3

∞∑
n=k

en

4n + 1

2.
∞∑

n=k

4n sin (3n) 6=
∞∑

n=k

4n
∞∑

n=k

sin (3n)
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Three Classic Series
P-Series

P-Series =
∞∑

n=k

1
np

1. Of the three variables, n, k, p, which one(s) are fixed numbers?

2. Of the three variables, n, k, p, which one(s) must be whole numbers?

3. The P-Series is convergent if p (<,≤,=, >,≥) 1.

4. The P-Series is divergent if p (<,≤,=, >,≥) 1.

Geometric Series

Geometric Series =
∞∑

n=k

arn

1. Of the four variables, n, k, a, r, which one(s) are fixed numbers?

2. Of the four variables, n, k, a, r, which one(s) must be whole numbers?

3. The Geometric Series is convergent if |r| 1(<,≤,=, >,≥)

4. The Geometric Series is divergent if |r| 1(<,≤,=, >,≥)

5. Does the constant a play any role in the convergence of the Geometric Series? (Yes or No)

6. For the INFINITE Geometric Series, we know that if it converges it converges to ”blank”
1− ”blank” = 1−

Harmonic Series

Harmonic Series =
∞∑

n=k

1
n

1. The Harmonic Series is a classic example of a series whose sequence portion tends to

(∞, zero, −∞), however the series is (convergent, divergent).

The Harmonic Series illustrates how the sequence converging to zero does not imply the series will converge. Due to this
non-triviality, we explore some of the tests/methods discovered by the brilliant mathematicians before us. These tests have
already been proven to be true and examining why they are true is outside the scope of this course, however it is encouraged
that you at least think a bit about why they make sense. Throughout the remainder of this material, try to keep in mind
that we are exploring the possibility of adding an infinite amount of numbers to never exceed a finite number. If you are still
having a hard time wrapping your head around this possibility, maybe the following Geometric Series will help:

∞∑
k=0

.1
[

1
10

]k

= .1 + .01 + .001 + .0001 + · · · (What number is this sum ”converging” to?)
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Divergence Test

If lim
n→∞

an 6= 0, then
∑
an .

What does the Divergence Test tell us about each series? Does the test imply the series converges, diverges, or
cannot say convergent/divergent.

1. S1 =
∞∑

k=1

8k + 7 + 6k3

12k + 5

S1

2. S2 =
∞∑

k=3

πk+2

e1−k

S2

3. S3 =
∞∑

k=0

πk

(k + 2)!

S3

4. S4 =
∞∑

k=100

1
k

S4

5. S5 =
∞∑

k=13
(π − e)−k

S5

The Divergence Test is one method that we can use to determine whether a series .
(converges, diverges, or both)

If the sequence part of the series converges to a nonzero finite number, the Divergence Test

. (says that the series converges, says that the series di-
verges, says nothing about the convergence of the series)

If the sequence part of the series converges to zero, the Divergence Test

. (says that the series converges, says that the series di-
verges, says nothing about the convergence of the series)
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Integral Test
Fill in the blank with converges, diverges, or cannot say convergent/divergent which makes the statement true.

Let
∞∑

n=k

an be a series, and let f(n) = an. IF f is CONTINUOUS, EVENTUALLY STRICTLY NON-NEGATIVE, and

EVENTUALLY STRICTLY DECREASING on the interval [k,∞), then

1. If we can show that
∫∞

k
f(x) dx converges, then we can conclude by the Integral Test that

∞∑
n=k

an

.

2. If we can show that
∫∞

k
f(x) dx diverges, then we can conclude by the Integral Test that

∞∑
n=k

an

.

“Eventually Strictly” Non-Negative and Decreasing because we can split the series into a finite series with non-positive or
non-decreasing sequence part PLUS infinite series with strictly positive and decreasing sequence part.
i.e.

∞∑
n=k

an =
p∑

n=k

an +
∞∑

n=p
an

Use the theorem above to fill in the blanks.
This test only works if, on the interval we are interested in ”[k,∞)”, f is:

1.

2.

3.

Use the Integral Test to determine the convergence of the series S =
∞∑

k=0

k3 − 2
k5 + 1

STEPS:
1. Define a continuous function for the sequence part of the series. (i.e. an = f(n) where n is a whole number from 0 to
∞ ⇒ make a new function f(x) where x is a real number between 0 and ∞)

Let f(x) =

2. We clearly have that f is continuous on the interval [0,∞).

3. However, for x ∈ [0,∞), f(x) < 0 for x ∈ [0, 21/3). Rather than completely scrapping this test, we apply a little bit of

ingenuity. Note that S =
∞∑

k=0

k3 − 2
k5 + 1 = −2

1 −
1
2 +

∞∑
k=2

k3 − 2
k5 + 1. If the infinite series S =

∞∑
k=2

k3 − 2
k5 + 1 converges/diverges

then S = −2− 1
2 +S must also converge/diverge. So we apply the Integral Test to this new series, with f(x) = x3 − 2

x5 + 1
for x ∈ [2,∞), which is clearly positive on the interval [2,∞).

4. Now we need to show that f(x) is decreasing for x ∈ [2,∞) so that we meet all three criteria that enables us to use
the Integral Test. Best way to show this is to take the derivative of f(x) and ensure that the derivative is eventually
strictly negative for x ∈ [2,∞).

f ′(x) =

Is the derivative strictly less than zero eventually for x ∈ [2,∞)? If so, clearly state how you know this to be true.
[HINT: Plot the derivative]
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5. Now that we have CLEARLY shown that all criteria have been met, we may now use the Integral Test. The integral test
tells us that if

∫∞
2 f(x) dx converges/diverges then S converges/diverges. Since S = −2− 1

2 +S, S converging/diverging
implies S converges/diverges. Determine whether

∫∞
2 f(x) dx converges or diverges. [HINT: Comparison Test for

Integrals may be useful here.]

6. Therefore we have that
∫∞

2 f(x) dx . (converges, diverges)
Therefore we have by the Integral Test S must also . (converge, diverge)

So finally we have that the original series, S =
∞∑

k=0

k3 − 2
k5 + 1, . (converges, diverges)

Use the Integral Test to determine whether the series S =
∞∑

k=3

e3k√
π2k2 − 1

converges or diverges. Be sure to (1) define f(x),

(2) clearly state why or why not f(x) satisfies the first two criteria, (3) test if the third criteria is met, [if any of the criteria are
not met stop there and conclude that ”Cannot apply Integral Test”] (4) show

∫∞
3 f(x) dx converges/diverges, (5) conclude

that the series S converges/diverges by the Integral Test.

Can we apply the Integral Test to the following series? If not, state why. Explain in terms of having already defined your
function f(x). [HINT: Are the 3 criteria met for the Integral Test?]

1.
∞∑

k=0

5− k
k3 + 1

2.
∞∑

k=2

πk

k(k + 2)(4− k)

3.
∞∑

k=1

ek

2k

4.
∞∑

k=1

1
k
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Direct Comparison Test
Fill in the blanks with converges or diverges which makes the statement true.

Let
∑
an and

∑
bn be series with an, bn ≥ 0 and an ≤ bn ∀n, then

1. If the larger series,
∑
bn, then the smaller series,

∑
an, .

2. If the smaller series,
∑
an, then the larger series,

∑
bn, .

If one wants to use the Direct Comparison Test for
∑
an and

∑
bn, an and bn must be .

(continuous, positive, non-negative, convergent, divergent)

Let
∑
an and

∑
bn be series with an, bn ≥ 0 and an ≤ bn ∀n.

1. If
∑
bn converges, then the Direct Comparison Test says .

(
∑
an converges,

∑
an diverges, nothing about

∑
an)

2. If
∑
an diverges, then the Direct Comparison Test says .

(
∑
bn converges,

∑
bn diverges, nothing about

∑
bn)

Use the Direct Comparison Test to determine the convergence of the series S =
∞∑

n=1
an =

∞∑
n=1

3 sin2(5n) + 7
ne + 18 + cos(nπ) .

STEPS:
1. What do you believe the convergence of the series to be?

Think about the long run behavior of the sequence. Does the numerator or denominator dominate?
If the numerator dominates, we are summing numbers that are increasing. Therefore we should expect the series to

. (converge, diverge) If the denominator dominates, we are summing numbers that are

decreasing in size. Therefore the series (may, must) converge. [HINT: Think about
the Harmonic Series]

If we believe the series S converges we must find a series
∑
bn that is

(greater, less) than S that we know is . (convergent, divergent) If we believe the series

S diverges we must find a series
∑
bn that is (greater, less) than S that we know is

. (convergent, divergent)

Observing the sequence part of S, we see that in the numerator we will only have value between 7 and 10. In the

denominator, ne is the dominating term. Thus S ≈
∞∑

n=1

#
ne

= #
∞∑

n=1

1
ne

. So we expect S to

(converge, diverge). Therefore we must find a bn that is (greater, less) than

an = 3 sin2(5n) + 7
ne + 18 + cos(nπ) . In addition, we must also know that

∑
bn is . (convergent,

divergent)
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2. Since we believe S to be convergent, construct bn by maximizing an.

0 ≤ 3 sin2(5n) + 7
ne + 18 + cos(nπ) ≤

3[1] + 7
ne + 18 + [−1] = < = bn

0 ≤ ︸ ︷︷ ︸
S or

∑
bn

≤ ︸ ︷︷ ︸
S or

∑
bn

3. So we have the series
∑
bn (converges, diverges) since it is a P-Series with

p 1(≤, >), and since S =
∞∑

n=3

3 sin2(5n) + 7
ne + 1 is (greater, less) than

∑
bn

the Direct Comparison Test tells us that S is . (convergent, divergent)

Use the Direct Comparison Test to determine whether the series S =
∞∑

k=1

πk(sin2 (k) + 7)
3k

converges or diverges. Be sure to

(1) Clearly define the sequence bk that you are comparing to the sequence part of S, (2) Show that the inequality criteria is
met [i.e. both sequences are greater than or equal to zero and which of the two sequences is greater], (3) Explain how you
know

∑
bk is convergent/divergent, (4) Conclude that the series S converges/diverges by the Direct Comparison Test.

Key things to keep in mind when using this test:

1. We must pick a series
∑
bn such that we know its convergence, therefore it is useful to select which type of series?

(Harmonic Series, P-Series, Geometric Series, All three series)

2. This test can only be applied when the sequence part of the two series we are comparing are

(nonzero, convergent, divergent, non-negative, positive)

3. Is it enough to know that an and bn are non-negative, which of an and bn is greater, and the convergence of
∑
an or∑

bn in order to apply the Direct Comparison Test to
∑
an and

∑
bn? Explain. [HINT: Let an, bn ≥ 0, an ≤ bn, and∑

an be convergent. What can we say about the convergence of
∑
bn?]
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Alternating Series
An Alternating Series is an infinite series such that the terms in the sum alternate in sign (i.e. #−# + #−# + ·). We have

already established that the Harmonic Series is (convergent, divergent), however when we

add in a factor of (−1)n we get the alternating series S =
∞∑

n=1
(−1)n 1

n
which is . (convergent,

divergent).List the first 5 terms of each series and state whether or not the series is an Alternating Series.

Alternating Series? (Yes or No)

1.
∞∑

t=2
(−1)2tπ + e

4t
=

2.
∞∑

r=0
(−1)3r+1π

2 + r

er
=

3.
∞∑

k=0
(−1)k (−5)4k+1

(−13)k
=

The following test enables us to determine if an alternating series is convergent, granted that the series meets the criteria.

Alternating Series Test

Let S =
∞∑

n=k

(−1)nan or S =
∞∑

n=k

(−1)n+1an where an ≥ 0 ∀n. Then if,

1. lim
n→∞

an = , AND

2. an is a decreasing sequence

then the series S . (converges, diverges)

NOTE: To show that an is decreasing, set f(n) = an. If f ′(n) < 0 ∀n ∈ [k,∞) then f(n) is decreasing ⇒ an is decreasing.

Fill in the blank with converges or diverges which makes the statement true. [Keep in mind that the Divergence Test does
not specify anything about the sign of the sequence portion of the series.]

1. If lim
n→∞

an 6= 0, then
∞∑

n=k

(−1)nan .

2. Let f(n) = an. If f ′(n) > 0 ∀n ∈ [k,∞) then f(n) is increasing ⇒ an is increasing ⇒
∞∑

n=k

(−1)nan

.

Keep in mind that this test only works if we are dealing with an Alternating Series. A cheap way of verifying is to list the
first five terms in the sum and see if we get terms that alternate in sign, however, a more clever method would be to try to
massage the series into the form

∞∑
n=k

(−1)nan or
∞∑

n=k

(−1)n+1an where an ≥ 0. Here is an example of how to accomplish such

task.

S =
∞∑

n=3
(−1)2n+1 (−5)4n+1

(−13)n−1 =
∞∑

n=3
(−1)2n+1 (−1)4n+1(5)4n+1

(−1)n−1(13)n−1 =
∞∑

n=3
(−1)[2n+1]+[4n+1]−[n−1] (5)4n+1

(13)n

=
∞∑

n=3
(−1)5n+3 (5)4n+1

(13)n
=
∞∑

n=3
[(−1)4]n(−1)n(−1)2(−1)1 (5)4n+1

(13)n
=
∞∑

n=3
(−1)n(−1)1 (5)4n+1

(13)n
=
∞∑

n=3
(−1)n+1 (5)4n+1

(13)n
X
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Use the Alternating Series Test to prove the series S =
∞∑

n=4
(−1)3n+7 (−n)3

n4 + 2 converges.

STEPS:

1. ”Massage” the series into the form S =
∞∑

n=k

(−1)nan or S =
∞∑

n=k

(−1)n+1an where an ≥ 0 ∀n to verify that S is in fact

an Alternating Series.

S =
∞∑

n=4
(−1)3n+7 (−n)3

n4 + 2 =

2. Now that we have an Alternating Series in the form
∞∑

n=k

(−1)nan or
∞∑

n=k

(−1)n+1an where an ≥ 0, let us verify that we

meet the first criteria that lim
n→∞

an = 0.

lim
n→∞

an =

3. The second criteria that must be met is that an must be a decreasing sequence. Verify that an is a decreasing se-
quence by defining a continuous function, f(x) where x ∈ [4,∞), and verifying that the derivative is EVENTUALLY
STRICTLY NEGATIVE for x ∈ [4,∞).

f(x) =

f ′(x) =

Is f ′(x) < 0 ∀x ∈ [4,∞)? . (Yes, No) So we have that f is an/a

(increasing, decreasing) (sequence, function),

which implies that an is an/a (increasing, decreasing) .

(sequence, function)

4. Therefore, by the (Direct Comparison, Alternating Series, Divergence)

Test, S =
∞∑

n=4
(−1)3n+7 (−n)3

n4 + 2 . (converges, diverges)

Can the following series be ”massaged” into the form S =
∞∑

n=k

(−1)nan or S =
∞∑

n=k

(−1)n+1an where an ≥ 0 ∀n. (i.e. Is the

series an Alternating Series?)

S =
∞∑

n=3
(−1)3n+1 (−5)4n+1

(−13)n−1 =
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Absolutely Convergent vs. Conditionally Convergent
After the discovery of Alternating Series, two new terms were created to describe ”how convergent” an Alternating Series is.
These terms are Conditionally Convergent and Absolutely Convergent. We say an Alternating Series, S =

∞∑
n=k

(−1)nan or

S =
∞∑

n=k

(−1)n+1an where an ≥ 0 ∀n, is Absolutely Convergent if the sum of the absolute value of every term in the series

converges.
(

i.e. S =
∞∑

n=k

|(−1)nan| or S =
∞∑

n=k

|(−1)n+1an| converges
)

. We say an Alternating Series, S =
∞∑

n=k

(−1)nan

or S =
∞∑

n=k

(−1)n+1an where an ≥ 0 ∀n, is Conditionally Convergent if S is not Absolutely Convergent and it passes the

Alternating Series Test.

Key things to note about Absolute and Conditional Convergence:

1. (Absolutely, Conditionally) convergent is a ”better/stronger” form of

convergence than (Absolutely, Conditionally) convergent.

2. If a series is (Conditionally, Absolutely) convergent then it is also

(Conditionally, Absolutely) convergent.

3. A convergent series consisting of strictly positive terms is inherently

(Absolutely, Conditionally, Absolutely AND Conditionally) Convergent.

4. Due to the previous three facts, it would be wise to check for
(Absolute, Conditional) convergence first when investigating the convergence of an Alternating Series.

Use any of the previous tests to determine whether the Alternating Series S =
∞∑

m=1
(−1)3m+2 πm3

e100m4 is Absolutely Convergent,

Conditionally Convergent, or Divergent.
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Limit Comparison Test

Let
∑
an and

∑
bn be series with an ≥ 0 and bn > 0 ∀n. Let lim

n→∞

an

bn
= L.

Fill in the blank with both series converge, both series diverge, or test is inconclusive which makes the statement true.

Assume that we know
∑
an or

∑
bn converges.

1. If L =∞ or L = 0, then .

2. If L is a nonzero finite number, then .

Assume that we know
∑
an or

∑
bn diverges.

1. If L =∞ or L = 0, then .

2. If L is a nonzero finite number, then .

Much like the Direct Comparison Test, we must select some series such that we know it’s convergence. However, the selection
process for this test can be a bit more straightforward, as we will discover.

Let us investigate the convergence of the series S =
∞∑

n=2

4
√

3n5 + 1− 5n2

n3/4 + n4 − 2
using the Limit Comparison Test.

STEPS:
1. Our first step is to pick a series such that we know it’s convergence. One viable option is to simply guess. So let’s try

the Harmonic Series.

lim
n→∞

an

bn
= lim

n→∞

4
√

3n5 + 1− 5n2

n3/4 + n4 − 2
1
n

= lim
n→∞

4
√

3n5 + 1− 5n2

n3/4 + n4 − 2
× n

1 =

Since lim
n→∞

an

bn
= and we know that the Harmonic Series is divergent, the Limit Comparison Test

tells us (nothing about S, S is convergent, S is divergent)

2. Picking the Harmonic Series did not work and we could take another random guess to test, however one trick/technique
would be to look at the asymptotics (long run behavior) of the sequence. In the numerator we expect the first term
to dominate out of the two terms, therefore in the numerator we have long run behavior similar to n5/2. In the
denominator we expect the second term of the three terms to dominate, therefore we have long run behavior similar to

n4. Combining the long run behavior of the numerator and denominator we get bn = n5/2

n4 = n5/2

n8/2 = 1
n3/2 . So let us

now test the series
∞∑

n=2
bn.

lim
n→∞

an

bn
= lim

n→∞

4
√

3n5 + 1− 5n2

n3/4 + n4 − 2
1

n3/2

= lim
n→∞

4
√

3n5 + 1− 5n2

n3/4 + n4 − 2
× n3/2

1 =

Since lim
n→∞

an

bn
= the Limit Comparison Test tells us

(nothing about S, S and
∞∑

n=2

1
n3/2 have the same convergence)

3.
∞∑

n=2

1
n3/2 is a/an (Geometric Series, Alternating Series, P-Series, Har-

monic Series)
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4. State what you know about the convergence of the series,
∞∑

n=2

1
n3/2 , and what is it specifically about that type of series

that makes it convergent or divergent.

5. Therefore, by the Limit Comparison Test we have that the series S =
∞∑

n=2

4
√

3n5 + 1− 5n2

n3/4 + n4 − 2

(converges, diverges).

Use the Limit Comparison Test to determine whether the series S =
∞∑

n=1

2n + 13n2 + n100

2nn90 converges or diverges. Be sure

to (1) Clearly define the series bn that you are ”comparing/testing” with S [pick bn by observing the asymptotics of the
sequence portion of S], (2) Show that the limit of the ratio of bn and the sequence portion of S is a finite nonzero number,
(3) Explain how you know

∑
bn is convergent/divergent, (4) Conclude that the series S converges/diverges by the Limit

Comparison Test.
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Ratio Test
Let

∑
an be a series. Let

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

Fill in the blank with converges, diverges, or convergence cannot be determined with this test.

1. If L < 1, then
∑
an .

2. If L = 1, then
∑
an .

3. If L > 1, then
∑
an .

Note that this test does not have any prerequisite requirements for the series being studied. Also, this test does not involve
the use of another series. Therefore applying this test is fairly straightforward. The one caveat we have is

the case when L 1(<,=, >), we have that the test is inconclusive, therefore we must

. (attempt the Ratio Test again, try another test)

Let us investigate the convergence of the series S =
∞∑

n=0

(−1)n24n

(2n+ 1)! using the Ratio Test.

STEPS:
1. Take the limit of the (n+ 1)th term over the nth term.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+124(n+1)

(2(n+ 1) + 1)!
(−1)n24n

(2n+ 1)!

∣∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ 24(n+1)

(2(n+ 1) + 1)! ×
(2n+ 1)!

24n

∣∣∣∣ =

2. Since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ 1(<,=, >), the Ratio Test tells us .

(nothing about S, S converges, S diverges)

Use Ratio Test to determine whether the series S =
∞∑

n=1

(−1)n[2 · 4 · 6 · · · (2n)]
[2 · 5 · 8 · · · (3n− 1)] converges or diverges. Be sure to (1) Show

all your work when taking the limit, and (2) Conclude that the series S converges/diverges or cannot be determined by the
Ratio Test.
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