Mixing Problems - Math 151 - Calculus II - Spring 2021

1. Consider a 20 L bucket initially filled to the brim with fresh water. Sea water containing 20 g of salt per liter is pumped at a rate of $5 \mathrm{~L} / \mathrm{min}$ and is allowed to drain from the brim (i.e., the bucket is always completely full). The liquid is maintained well mixed at all times.
(a) Write a differential equation AND its initial condition for the AMOUNT OF SALT IN THE BUCKET $y(t)$ (in grams) as a function of time t.

Diff. Eq.:
, Initial Condition:
(b) Find the general solution to this differential equation.

General sol: $y(t)=$
(c) Find the particular solution satisfying the initial condition.

Particular sol: $y(t)=$
(d) of the differential equation you found in (a) and (ii) include a sketch (in bold) of the solution you obtained in (c) above.

(e) What will be the amount of salt M (in grams) in the bucket after a very long time? Explain!

$$
M=
$$

2. Mixing problem: Dialysis treatment removes urea (or other waste products) from a patient's body by diverting some blood flow to a filter that completely filters out the urea such that a clean blood flow (without urea) is channelled back into the patient while the patient's total blood volume is kept constant. An average individual has 5 liters of blood and a standard dialysis flow is 2 liters per minute. Suppose that the patient starts the dialysis treatment with a concentration of urea of $\mathbf{3}$ grams/liter.
(a) Write a differential equation \& its initial condition [i.e. the total amount of urea (in grams) in the patient at the beginning of the dialysis] for the TOTAL AMOUNT OF UREA in the patient $y(t)$ (in grams) as a function of time t (in minutes).
(b) Find the general solution to this differential equation.

Diff. Eq.: , Iinitial Condition:
$y(t)=$
(c) Find the particular solution satisfying the initial condition.
(d) (i) Draw a sketch for the direction field of the differential equation you found in (a) and (ii) include a sketch (in bold) of the solution you obtained in (c) above.
(e) (i) What is the amount of urea (in grams) left inside the patient after $1 / 2$ hour of dialysis?
(ii) How long would it take for the amount of urea to be half of the amount before treatment?

(iii) According to the solution found in (c), how much urea will be left in the patient if the dialysis continues forever?
Explain!
3. A tank with 400 liters of beer initially contains 5% alcohol (by volume). Beer with 4% alcohol is pumped into the tank at a rate of $\mathbf{3} \mathbf{L} / \mathbf{m i n}$ and the mixture is pumped out at the same rate.
(a) Write a differential equation and its initial condition for the percentage $\boldsymbol{p}(\boldsymbol{t})$ of alcohol in the tank (\boldsymbol{t} is measured in minutes).

Diff. Eq.:

, Ininitial Condition:
(b) Find the general solution to this differential equation.

$$
p(t)=
$$

(c) Find the particular solution satisfying the initial condition.

$$
p(t)=
$$

(d) (i) Draw a sketch for all possible solutions to this differential equation and (ii) include a sketch (in bold) of the solution obtained in (c).
(e) (i) What is the percentage of alcohol in the tank after $1 / 2$ hour?
(ii) According to the solution found in (c), what is the alcohol percentage if we wait forever? Explain! Why?

4. A tank with $\mathbf{1 0 0 0}$ liters of water initially contains $\mathbf{4} \mathrm{g}$ of calcium. Water with a concentration of $\mathbf{2} \mathbf{~ m g} / \mathrm{L}$ (milligrams/liter) is pumped into the tank at a rate of $\mathbf{1} \mathbf{L} / \mathbf{m i n}$ and the mixture is pumped out at the same rate.
(a) Write a differential equation and its initial condition for, $\boldsymbol{y}(\boldsymbol{t})$, the TOTAL amount of calcium in grams (not milligrams!) in the tank. (t is measured in minutes. Note: $\mathbf{1 g}=\mathbf{1 , 0 0 0} \mathbf{~ m g}$).

Diff. Eq.:
, Initial Condition:
(b) Find the general solution to this differential equation.

$$
y(t)=
$$

(c) Find the particular solution satisfying the initial condition.

$$
y(t)=
$$

(d) (i) Draw a sketch for all possible solutions to this differential equation and (ii) include a sketch (in bold) of the solution obtained in (c).
(e) (i) What is the amount of calcium in the tank after $1 / 2$ hour?
(ii) According to the solution found in (c), what is the amount of calcium if we wait forever? Explain! Why?

