FINAL Review

1. Write an explicit integral for the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$
y=\frac{4}{9} x^{2}, y=\frac{13}{9}-x^{2} ; \text { about the } x \text {-axis }
$$

2. Use the method of cylindrical shells to write an explicit integral for the volume V generated by rotating the region bounded by the given curves about the y-axis.

$$
y=12 e^{-x^{2}}, y=0, x=0, x=1
$$

Sketch the region and a typical shell.
3. Evaluate the integral. (Use C for the constant of integration. Assume $m \neq 0$.)

$$
\int t \sinh (m t) d t
$$

4. Evaluate the integral. (Use C for the constant of integration.)

$$
\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) d x
$$

5. Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$
\int \frac{3 x^{2}-19 x+46}{(2 x+1)(x-2)^{2}} d x
$$

6. Evaluate the integral. (Use C for the constant of integration.)

$$
\int x^{3} \sqrt{16-x^{2}} d x
$$

7. If the infinite curve $y=e^{-3 x}, x \geq 0$ is rotated about the x-axis, find the surface area of the resulting surface.
8. The air in a room with volume $180 \mathrm{~m}^{3}$ contains 0.15% carbon dioxide initially. Fresher air with only 0.05% carbon dioxide flows into the room at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$ and the mixed air flows out at the same rate.
Find the percentage of carbon dioxide in the room as a function of time t (in minutes).
What happens with the percentage of carbon dioxide in the room in the long run?
9. Write TWO explicit integrals, one in x and one in y, for the length of the curve $y=\cos (x)$ for $0 \leq x \leq \pi$. DRAW A SKETCH!
10. Solve the initial value problem:

$$
x y^{\prime}=y+3 x^{2} \sin x, y(\pi)=0
$$

11. Solve the initial value problem:

$$
x y^{\prime}=y^{2}, y(1)=1
$$

12. Find an equation $(y=\ldots)$ of the tangent to the curve at the given point.

$$
x=\cos t+\cos 2 t, y=\sin t+\sin 2 t,(x, y)=(-1,1)
$$

13. Find the Taylor series polynomial of order 3 for the function $y=\sinh (x)$ anchored at $x_{0}=3$.
14. Let $r=f(\theta)=4 \sin (\theta)$
(A) Sketch the graph of $r=f(\theta)$ for $0 \leq \theta \leq 2 \pi$ in CARTESIAN coordinates and identify ALL minima and maxima.
(B) Using (A) sketch the graph of $r=f(\theta)$ in POLAR.
(C)-(D): Use the fact that the
slope in parametric is: $m=\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$.
(C)-(D): Use the fact that the
slope in parametric is: $m=\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$.
(C) Find all (r, θ) points where the curve as a HORIZONTAL tangent.
(D) Find all (r, θ) points where the curve as a VERTICAL tangent.
(E) By transforming coordinates from polar \rightarrow Cartesian, find a CARTESIAN equation for this curve.

-

15. Determine the convergence of the following integral. If convergent, compute its value.
$\int_{0}^{3} \frac{2}{3-x} d x$
16. Determine the convergence of the following integral. If convergent, compute its value.
$\int_{0}^{3} \frac{2}{(3-x)^{2}} d x$
17. Determine the convergence of the following integral. If convergent, compute its value.
$\int_{4}^{\infty} \frac{2}{(3-x)} d x$
18. Find the radius of convergence and interval of convergence of the series.
(a) $\sum_{n=0}^{\infty} 4^{n} \frac{(x-2)^{n}}{n!}$
(b) $\sum_{n=0}^{\infty}(-1)^{n+1}\left(n^{2}+1\right) \frac{(x+5)^{n}}{3^{n}}$

