1. Write an explicit integral for the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$
y=\frac{4}{9} x^{2}, y=\frac{13}{9}-x^{2} ; \text { about the } x \text {-axis }
$$

Answer:

$$
V=\pi \int_{-1}^{1}\left[\left(\frac{13}{9}-x^{2}\right)^{2}-\left(\frac{4}{9} x^{2}\right)^{2}\right] \mathrm{d} x
$$

2. Use the method of cylindrical shells to write an explicit integral for the volume V generated by rotating the region bounded by the given curves about the y-axis.

$$
y=12 e^{-x^{2}}, y=0, x=0, x=1
$$

Sketch the region and a typical shell.

Answer:

$$
V=24 \pi \int_{0}^{1} x e^{-x^{2}} \mathrm{~d} x
$$

3. Evaluate the integral. (Use C for the constant of integration. Assume $m \neq 0$.)

$$
\int t \sinh (m t) \mathrm{d} t
$$

Answer:

$$
=\frac{t}{m} \cosh (m t)-\frac{1}{m^{2}} \sinh (m t)
$$

4. Evaluate the integral. (Use C for the constant of integration.)

$$
\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) \mathrm{d} x
$$

Answer:

$$
=\frac{1}{\pi}\left(\frac{1}{3} \sin ^{3}(\pi x)-\frac{2}{5} \sin ^{5}(\pi x)+\frac{1}{7} \sin ^{7}(\pi x)\right)+C
$$

5. Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$
\int \frac{3 x^{2}-19 x+46}{(2 x+1)(x-2)^{2}} d x
$$

Answer:

$$
=\frac{9}{2} \ln |2 x+1|-3 \ln |x-2|-\frac{4}{x-2}+C
$$

6. Evaluate the integral. (Use C for the constant of integration.)

$$
\int x^{3} \sqrt{16-x^{2}} d x
$$

Answer:

$$
\begin{aligned}
& =\int 4^{5} \sin \theta\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta \mathrm{~d} \theta \\
& =\frac{\left(16-x^{2}\right)^{5 / 2}}{5}-\frac{16\left(16-x^{2}\right)^{3 / 2}}{3}
\end{aligned}
$$

7. If the infinite curve $y=e^{-3 x}, x \geq 0$ is rotated about the x-axis, find the surface area of the resulting surface.

Answer:

$$
\begin{aligned}
& =-\frac{2 \pi}{9} \lim _{t \rightarrow \infty} \int_{\arctan (3)}^{\arctan \left(3 e^{-3 t}\right)} \sec ^{3}(\theta) \mathrm{d} \theta \\
& =-\left.\frac{2 \pi}{9} \lim _{t \rightarrow \infty} \frac{1}{2}(\sec (\theta) \tan (\theta)+\ln |\sec (\theta)+\tan (\theta)|)\right|_{\arctan (3)} ^{\arctan \left(3 e^{-3 t}\right)} \\
& =\frac{\pi}{9}((3 \sqrt{10})+\ln (\sqrt{10}+3))
\end{aligned}
$$

8. The air in a room with volume $180 \mathrm{~m}^{3}$ contains 0.15% carbon dioxide initially. Fresher air with only 0.05% carbon dioxide flows into the room at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$ and the mixed air flows out at the same rate.
Find the percentage of carbon dioxide in the room as a function of time t (in minutes).
What happens with the percentage of carbon dioxide in the room in the long run?
Answer: NOT READY YET
9. Write TWO explicit integrals, one in x and one in y, for the length of the curve $y=\cos (x)$ for $0 \leq x \leq \pi$. DRAW A SKETCH!

Answer:

$$
=\int_{0}^{\pi} \sqrt{1+\sin ^{2}(x)} d x
$$

$$
=\int_{-1}^{1} \sqrt{1+\frac{1}{1-y^{2}}} \mathrm{~d} y
$$

10. Solve the initial value problem:

$$
x y^{\prime}=y+3 x^{2} \sin x, y(\pi)=0
$$

Answer:

$$
\begin{aligned}
y & =-3 x \cos x+C x \\
C & =-3
\end{aligned}
$$

So the particular solution is $y=-3 x \cos x-3 x$.
11. Solve the initial value problem:

$$
x y^{\prime}=y^{2}, y(1)=1
$$

Answer:

$$
\begin{aligned}
& y=\frac{1}{C-\ln |x|} \\
& y=\frac{1}{1-\ln |x|}
\end{aligned}
$$

12. Find an equation $(y=\ldots)$ of the tangent to the curve at the given point.

$$
x=\cos t+\cos 2 t, y=\sin t+\sin 2 t,(x, y)=(-1,1)
$$

Answer:

$$
\Longrightarrow y=2 x+3
$$

13. Find the Taylor series polynomial of order 3 for the function $y=\sinh (x)$ anchored at $x_{0}=3$.

Answer:

$$
=\sinh (3)+\cosh (3)(x-3)+\sinh (3) \frac{(x-3)^{2}}{2}+\cosh (3) \frac{(x-3)^{3}}{6}
$$

14. Let $r=f(\theta)=4 \sin (\theta)$
(A) Sketch the graph of $r=f(\theta)$ for $0 \leq \theta \leq 2 \pi$ in CARTESIAN coordinates and identify ALL minima and maxima.

Answer:

We can see from this that a maximum occurs at $\theta=\pi / 2$ and a minimum occurs at $\theta=3 \pi / 2$.
(B) Using (A) sketch the graph of $r=f(\theta)$ in POLAR.
Answer: The graph should be a circle of radius 2 , repeating every π radians, centered at $(x, y)=(0,2)$. The top, bottom, and sides of the circle should correspond to the horizontal and vertical tangents you find in the following steps.
(C)-(D): Use the fact that the
slope in parametric is: $m=\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$.
(C) Find all (r, θ) points where the curve as a HORIZONTAL tangent.
Answer: Since $r=4 \sin \theta$, then $x=4 \sin \theta \cos \theta$ and $y=4 \sin ^{2} \theta$. Then we have that

$$
\begin{gathered}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\frac{\mathrm{~d} x}{\mathrm{~d} \theta}}=\frac{8 \sin \theta \cos \theta}{4 \cos ^{2} \theta-4 \sin ^{2} \theta} \\
(0,0),(4, \pi / 2),(0, \pi),(-4,3 \pi / 2),(0,2 \pi)
\end{gathered}
$$

(D) Find all (r, θ) points where the curve as a VERTICAL tangent.
Answer:

$$
\left(\frac{\pi}{4}, \frac{4}{\sqrt{2}}\right),\left(\frac{3 \pi}{4}, \frac{4}{\sqrt{2}}\right),\left(\frac{5 \pi}{4},-\frac{4}{\sqrt{2}}\right),\left(\frac{7 \pi}{4},-\frac{4}{\sqrt{2}}\right)
$$

(E) By transforming coordinates from polar \rightarrow Cartesian, find a CARTESIAN equation for this curve.
Answer: This is a circle centered at $(0,2)$ with radius 2 , as we saw from the plot.

$$
x^{2}+(y-2)^{2}=4
$$

15. Determine the convergence of the following integral. If convergent, compute its value.
$\int_{0}^{3} \frac{2}{3-x} d x$
Answer:
Diverges
16. Determine the convergence of the following integral. If convergent, compute its value.
$\int_{0}^{3} \frac{2}{(3-x)^{2}} d x$
Answer:

Diverges

17. Determine the convergence of the following integral. If convergent, compute its value.
$\int_{4}^{\infty} \frac{2}{(3-x)} d x$
Answer:

Diverges

18. Find the radius of convergence and interval of convergence of the series.
(a) $\sum_{n=0}^{\infty} 4^{n} \frac{(x-2)^{n}}{n!}$

Answer:

$$
\begin{gathered}
\text { Radius of Convergence }=\infty \\
\text { Interval of Convergence }=(-\infty, \infty)
\end{gathered}
$$

(b) $\sum_{n=0}^{\infty}(-1)^{n+1}\left(n^{2}+1\right) \frac{(x+5)^{n}}{3^{n}}$

Answer:

$$
\text { Radius of Convergence }=3
$$

Interval of Convergence $=(-8,-2)$

