1. Write an explicit integral for the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$
y=\frac{4}{9} x^{2}, y=\frac{13}{9}-x^{2} ; \text { about the } x \text {-axis }
$$

Solution:

$$
\begin{aligned}
\frac{4}{9} x^{2}=\frac{13}{9}-x^{2} & \Longleftrightarrow \frac{13}{9} x^{2}=\frac{13}{9} \\
& \Longleftrightarrow x^{2}=1 \\
& \Longleftrightarrow x= \pm 1
\end{aligned}
$$

So these are the bounds for our region, and so,

$$
V=\pi \int_{-1}^{1}\left[\left(\frac{13}{9}-x^{2}\right)^{2}-\left(\frac{4}{9} x^{2}\right)^{2}\right] \mathrm{d} x
$$

2. Use the method of cylindrical shells to write an explicit integral for the volume V generated by rotating the region bounded by the given curves about the y-axis.

$$
y=12 e^{-x^{2}}, y=0, x=0, x=1
$$

Sketch the region and a typical shell.

Solution:

A typical shell is a cylinder with height $12 e^{-x^{2}}$ and a base diameter going from $-x$ to x, where $0 \leq x \leq 1$. All shells have a surface area of $2 \pi r h$ (the top and bottom is not included) and are centered at the axis of rotation. The radius is x.
Anyway, we use cylindrical shells, and so

$$
\begin{aligned}
V=\int_{0}^{1} 2 \pi r h & =\int_{0}^{1} 2 \pi(x)\left(12 e^{-x^{2}}\right) \mathrm{d} x \\
& =24 \pi \int_{0}^{1} x e^{-x^{2}} \mathrm{~d} x
\end{aligned}
$$

3. Evaluate the integral. (Use C for the constant of integration. Assume $\mathrm{m} \neq 0$.)

$$
\int t \sinh (m t) \mathrm{d} t
$$

Solution: We use integration by parts

$$
\begin{array}{rl}
u=t & \mathrm{~d} v=\sinh (m t) \\
\mathrm{d} u=\mathrm{d} t & v=\frac{1}{m} \cosh (m t) \\
\Longrightarrow \int t \sinh (m t) \mathrm{d} t & =\frac{t}{m} \cosh (m t)-\int \frac{1}{m} \cosh (m t) \mathrm{d} t \\
& =\frac{t}{m} \cosh (m t)-\frac{1}{m^{2}} \sinh (m t)
\end{array}
$$

4. Evaluate the integral. (Use C for the constant of integration.)

$$
\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) \mathrm{d} x
$$

Solution:

$$
\begin{aligned}
\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) \mathrm{d} x & =\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) \mathrm{d} x \\
& =\int \sin ^{2}(\pi x)\left(\cos ^{2}(\pi x)\right)^{2} \cos (\pi x) \mathrm{d} x \\
& =\int \sin ^{2}(\pi x)\left(1-\sin ^{2}(\pi x)\right)^{2} \cos (\pi x) \mathrm{d} x \\
& =\int \sin ^{2}(\pi x)\left(1-2 \sin ^{2}(\pi x)+\sin ^{4}(\pi x)\right) \cos (\pi x) \mathrm{d} x \\
& =\int\left(\sin ^{2}(\pi x)-2 \sin ^{4}(\pi x)+\sin ^{6}(\pi x)\right) \cos (\pi x) \mathrm{d} x
\end{aligned}
$$

Now let $u=\sin (\pi x)$, and so $\mathrm{d} u=\pi \cos (\pi x) \mathrm{d} x \Longleftrightarrow \frac{1}{\pi} \mathrm{~d} u=\cos (\pi x) \mathrm{d} x$. Then we have

$$
\begin{aligned}
& =\frac{1}{\pi} \int\left(u^{2}-2 u^{4}+u^{6}\right) \mathrm{d} u \\
& =\frac{1}{\pi}\left(\frac{1}{3} u^{3}-\frac{2}{5} u^{5}+\frac{1}{7} u^{7}\right)+C \\
& =\frac{1}{\pi}\left(\frac{1}{3} \sin ^{3}(\pi x)-\frac{2}{5} \sin ^{5}(\pi x)+\frac{1}{7} \sin ^{7}(\pi x)\right)+C
\end{aligned}
$$

5. Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$
\int \frac{3 x^{2}-19 x+46}{(2 x+1)(x-2)^{2}} d x
$$

Solution: We are going to use integration by partial fraction decomposition. We already have a factorized denominator, and in fact, we have one unique and one twice-repeated factor. So...

$$
\begin{aligned}
& \frac{3 x^{2}-19 x+46}{(2 x+1)(x-2)^{2}}=\frac{A}{2 x+1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} \\
\Longleftrightarrow & 3 x^{2}-19 x+46=A(x-2)^{2}+B(2 x+1)(x-2)+C(2 x+1) \\
\Longleftrightarrow & 3 x^{2}-19 x+46=A\left(x^{2}-4 x+4\right)+B\left(2 x^{2}-3 x-2\right)+C(2 x+1) \\
\Longleftrightarrow & 3 x^{2}-19 x+46=(A+2 B) x^{2}+(-4 A+-3 B+2 C) x+(4 A-2 B+C)
\end{aligned}
$$

So we arrive at the system of equations:

$$
\begin{gathered}
\left\{\begin{array}{l}
A+2 B=3 \\
-4 A-3 B+2 C=-19 \\
4 A-2 B+C=46
\end{array}\right. \\
\left\{\begin{array}{l}
A=3-2 B \\
-4(3-2 B)-3 B+2 C=-19 \\
4(3-2 B)-2 B+C=46
\end{array}\right. \\
\left\{\begin{array}{l}
A=3-2 B \\
-12+8 B-3 B+2(34+10 B)=-19 \\
C=34+10 B
\end{array}\right. \\
\left\{\begin{array}{l}
A=3-2 B \\
25 B=-75 \\
C=34+10 B
\end{array}\right.
\end{gathered}
$$

From the above we get that $A=9, B=-3$, and $C=4$, and so we have

$$
\begin{aligned}
\int \frac{3 x^{2}-19 x+46}{(2 x+1)(x-2)^{2}} \mathrm{~d} x & =\int\left(\frac{9}{2 x+1}+\frac{-3}{x-2}+\frac{4}{(x-2)^{2}}\right) \mathrm{d} x \\
& =\frac{9}{2} \ln |2 x+1|-3 \ln |x-2|-\frac{4}{x-2}+C
\end{aligned}
$$

6. Evaluate the integral. (Use C for the constant of integration.)

$$
\int x^{3} \sqrt{16-x^{2}} d x
$$

Solution: This is a trig sub problem. We want to represent $\sqrt{16-x^{2}}$ as a side in a right triangle. Draw the triangle on your own paper for practice.
We will call one of the non- 90° angles θ. Its opposite side will be x, its adjacent side will be $\sqrt{16-x^{2}}$, and its hypotenuse will be 4. Use the Pythagorean Theorem to check that $a^{2}+b^{2}=c^{2}$. Now note:

$$
\begin{aligned}
\sin (\theta) & =x / 4 \\
x & =4 \sin (\theta) \\
\mathrm{d} x & =4 \cos (\theta) \mathrm{d} \theta
\end{aligned}
$$

and:

$$
\begin{aligned}
\cos (\theta) & =\frac{\sqrt{16-x^{2}}}{4} \\
\sqrt{16-x^{2}} & =4 \cos (\theta)
\end{aligned}
$$

Substituting into the original integral gives:

$$
\begin{aligned}
& \int 4^{5} \sin ^{3} \theta \cos ^{2} \theta \mathrm{~d} \theta \\
& =\int 4^{5} \sin \theta\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta \mathrm{~d} \theta
\end{aligned}
$$

Now use a u-sub with $u=\cos (\theta)$ and $\mathrm{d} u=-\sin (\theta) \mathrm{d} \theta$.

$$
\begin{aligned}
& =\int-4^{5}\left(1-u^{2}\right) u^{2} \mathrm{~d} u \\
& =\int 4^{5}\left(u^{4}-u^{2}\right) \mathrm{d} u \\
& =4^{5}\left[\frac{u^{5}}{5}-\frac{u^{3}}{3}\right] \\
& =4^{5}\left[\frac{\cos ^{5} \theta}{5}-\frac{\cos ^{3} \theta}{3}\right] \\
& =4^{5}\left[\frac{\left(16-x^{2}\right)^{5 / 2}}{5 * 4^{5}}-\frac{\left(16-x^{2}\right)^{3 / 2}}{3 * 4^{3}}\right] \\
& =\frac{\left(16-x^{2}\right)^{5 / 2}}{5}-\frac{16\left(16-x^{2}\right)^{3 / 2}}{3}
\end{aligned}
$$

7. If the infinite curve $y=e^{-3 x}, x \geq 0$ is rotated about the x-axis, find the surface area of the resulting surface.

Solution: This problem is really multiple problems in one, and covers many topics from Midterms 1 and 2.

$$
\begin{aligned}
\text { Surface Area }_{a \leq x \leq b} & =2 \pi \int_{a}^{b} y \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \\
& =2 \pi \int_{0}^{\infty} e^{-3 x} \sqrt{1+\left(-3 e^{-3 x}\right)^{2}} \mathrm{~d} x \\
& =2 \pi \lim _{t \rightarrow \infty} \int_{0}^{t} e^{-3 x} \sqrt{1+9 e^{-6 x}} \mathrm{~d} x
\end{aligned}
$$

Now let $u=3 e^{-3 x}$, then $\mathrm{d} u=-9 e^{-3 x} \mathrm{~d} x \Longleftrightarrow-\frac{1}{9} \mathrm{~d} u=e^{-3 x} \mathrm{~d} x$, and so after changing our bounds of integration, we have

$$
=-\frac{2 \pi}{9} \lim _{t \rightarrow \infty} \int_{3}^{3 e^{-3 t}} \sqrt{1+u^{2}} \mathrm{~d} u
$$

Now we will make the substitution $u=\tan \theta$, then $\mathrm{d} u=\sec ^{2}(\theta) \mathrm{d} \theta$. So...

$$
\begin{aligned}
& =-\frac{2 \pi}{9} \lim _{t \rightarrow \infty} \int_{\arctan (3)}^{\arctan \left(3 e^{-3 t}\right)} \sqrt{1+\tan ^{2}(\theta)} \sec ^{2}(\theta) \mathrm{d} \theta \\
& =-\frac{2 \pi}{9} \lim _{t \rightarrow \infty} \int_{\arctan (3)}^{\arctan \left(3 e^{-3 t}\right)} \sqrt{\left.\sec ^{2}(\theta)\right)} \sec ^{2}(\theta) \mathrm{d} \theta \\
& =-\frac{2 \pi}{9} \lim _{t \rightarrow \infty} \int_{\operatorname{arcctan}(3)}^{\arctan \left(3 e^{-3 t}\right)} \sec ^{3}(\theta) \mathrm{d} \theta
\end{aligned}
$$

So it could be that you have derived $\int \sec ^{3} \theta \mathrm{~d} \theta$ before, but either way, it is kind of long and an exercise on its own. You can find the proof at https://www.math.ubc.ca/ feldman/m121/secx.pdf.

$$
=-\left.\frac{2 \pi}{9} \lim _{t \rightarrow \infty} \frac{1}{2}(\sec (\theta) \tan (\theta)+\ln |\sec (\theta)+\tan (\theta)|)\right|_{\arctan (3)} ^{\arctan \left(3 e^{-3 t}\right)}
$$

At this point, notice that $\tan (\arctan (x))=x$ for any x , and $\sec (\arctan (x))=\sqrt{1+x^{2}}$ for any x (draw out a triangle and use $\tan (\theta)=x=x / 1=$ opposite/adjacent). So then we have

$$
\begin{aligned}
& =-\frac{\pi}{9} \lim _{t \rightarrow \infty}\left[\left(\left(\sqrt{1+9 e^{-6 t}}\right)\left(3 e^{-3 t}\right)+\ln \mid \sqrt{1+9 e^{-6 t}}+3 e^{-3 t}\right)-\left(\left(\sqrt{1+3^{2}}\right)(3)+\ln \left|\sqrt{1+3^{2}}+3\right|\right)\right] \\
& =-\frac{\pi}{9}\left[((\sqrt{1})(0)+\ln |\sqrt{1}+0|)-\left(\left(\sqrt{1+3^{2}}\right)(3)+\ln \left|\sqrt{1+3^{2}}+3\right|\right)\right] \\
& =-\frac{\pi}{9}[0-((3 \sqrt{10})+\ln (\sqrt{10}+3))] \\
& =\frac{\pi}{9}((3 \sqrt{10})+\ln (\sqrt{10}+3))
\end{aligned}
$$

8. The air in a room with volume $180 \mathrm{~m}^{3}$ contains 0.15% carbon dioxide initially. Fresher air with only 0.05% carbon dioxide flows into the room at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$ and the mixed air flows out at the same rate.

Find the percentage of carbon dioxide in the room as a function of time t (in minutes).
What happens with the percentage of carbon dioxide in the room in the long run?

Solution: NOT READY YET

9. Write TWO explicit integrals, one in x and one in y, for the length of the curve $y=\cos (x)$ for $0 \leq x \leq \pi$. DRAW A SKETCH!

Solution:

$$
\begin{aligned}
L & =\int_{x_{\min }}^{x_{\max }} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \\
& =\int_{0}^{\pi} \sqrt{1+\left(\frac{\mathrm{d}}{\mathrm{~d} x} \cos (x)\right)^{2}} \mathrm{~d} x \\
& =\int_{0}^{\pi} \sqrt{1+(-\sin (x))^{2}} \mathrm{~d} x \\
& =\int_{0}^{\pi} \sqrt{1+\sin ^{2}(x)} \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
L & =\int_{y_{\min }}^{y_{\max }} \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y \\
& =\int_{-1}^{1} \sqrt{1+\left(\frac{\mathrm{d}}{\mathrm{~d} y} \arccos (y)\right)^{2}} \mathrm{~d} y \\
& =\int_{-1}^{1} \sqrt{1+\left(\frac{-1}{\sqrt{1-y^{2}}}\right)^{2}} \mathrm{~d} y \\
& =\int_{-1}^{1} \sqrt{1+\frac{1}{1-y^{2}}} \mathrm{~d} y
\end{aligned}
$$

10. Solve the initial value problem:

$$
x y^{\prime}=y+3 x^{2} \sin x, y(\pi)=0
$$

Solution:

This problem is not separable, and requires an integrating factor. Note that we have to get the problem into the correct form, $y^{\prime}+P(x) y=Q(x)$, before solving.

$$
\begin{aligned}
x y^{\prime} & =y+3 x^{2} \sin x \\
\Longleftrightarrow y^{\prime} & =\frac{y}{x}+3 x \sin x \\
\Longleftrightarrow y^{\prime}-\frac{1}{x} y & =3 x \sin x
\end{aligned}
$$

So we define our integrating factor as

$$
I(x)=e^{\int P(x) \mathrm{d} x}=e^{-\int \frac{1}{x} \mathrm{~d} x}=e^{-\ln |x|}=x^{-1}=\frac{1}{x}
$$

Then we multiply both sides of the D.E. by the integrating factor, and by the chain rule,

$$
\begin{aligned}
\frac{1}{x} \cdot\left(y^{\prime}-\frac{1}{x} y\right) & =(3 x \sin x) \cdot \frac{1}{x} \\
\Longleftrightarrow \frac{\mathrm{~d}}{\mathrm{~d} x} \cdot\left(\frac{1}{x} y\right) & =3 \sin x \\
\Longleftrightarrow \frac{1}{x} y & =3 \int \sin x \mathrm{~d} x \\
\Longleftrightarrow \frac{1}{x} y & =-3 \cos x+C \\
\Longleftrightarrow y & =-3 x \cos x+C x
\end{aligned}
$$

Now utilizing the initial condition $y(\pi)=0$, we have that

$$
\begin{aligned}
y(\pi)=-3 \pi \cos \pi+C \pi & =0 \\
\Longleftrightarrow 3 \pi+C \pi & =0 \\
\Longleftrightarrow C & =-3
\end{aligned}
$$

So the particular solution is $y=-3 x \cos x-3 x$.
11. Solve the initial value problem:

$$
x y^{\prime}=y^{2}, y(1)=1
$$

Solution: This is definitely separable; see,

$$
\begin{aligned}
x y^{\prime} & =y^{2} \\
\Longleftrightarrow x \frac{\mathrm{~d} y}{\mathrm{~d} x} & =y^{2} \\
\Longleftrightarrow y^{-2} \mathrm{~d} y & =x^{-1} \mathrm{~d} x \\
\Longleftrightarrow \int y^{-2} \mathrm{~d} y & =\int x^{-1} \mathrm{~d} x \\
\Longleftrightarrow-\frac{1}{y} & =\ln |x|+C_{0} \\
\Longleftrightarrow \frac{1}{y} & =C-\ln |x| \quad C=-C_{0} \\
\Longleftrightarrow y & =\frac{1}{C-\ln |x|}
\end{aligned}
$$

Now we use the initial condition $y(1)=1$ to get the particular solution,

$$
y=\frac{1}{1-\ln |x|}
$$

12. Find an equation $(y=\ldots)$ of the tangent to the curve at the given point.

$$
x=\cos t+\cos 2 t, y=\sin t+\sin 2 t,(x, y)=(-1,1)
$$

Solution: Notice that we were given the Cartesian coordinate $(-1,1)$. Since our curve is defined parametrically, we will need to see at what time t our curve passes through this point. So, we set $x=-1$ and $y=1$

$$
\begin{aligned}
& \cos t+\cos 2 t=-1 \\
& \Longleftrightarrow \cos t+2 \cos ^{2} t-1=-1 \\
& \Longleftrightarrow 2 \cos ^{2} t+\cos t=0 \\
& \Longleftrightarrow \cos t(2 \cos t+1)=0 \\
& \Longleftrightarrow \cos t=0 \text { or } \cos t=-\frac{1}{2} \\
& \Longleftrightarrow t=\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{3 \pi}{2}
\end{aligned}
$$

For the y-coordinate, it is perhaps fastest to check if $y=1$ at any of the previous values of t. After checking the four possible values of t, we get that that $(x, y)=(-1,1) \Longleftrightarrow t=\pi / 2$.
So now that we have the time that our curve passes through $(-1,1)$, we can find the equation of the tangent line. First, we must find the slope, $\frac{\mathrm{d} y}{\mathrm{~d} x}$:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}} \\
& =\frac{\cos t+2 \cos 2 t}{-\sin t-2 \sin 2 t}
\end{aligned}
$$

At the time $t=\pi / 2$, we have

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{t=\pi / 2}=\left.\frac{\cos t+2 \cos 2 t}{-\sin t-2 \sin 2 t}\right|_{\pi / 2}=\frac{-2}{-1}=2
$$

So now, we can use the point-slope form of the line:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
\Longrightarrow y-(1) & =2(x-(-1)) \\
\Longrightarrow y-1 & =2 x+2 \\
\Longrightarrow y & =2 x+3
\end{aligned}
$$

13. Find the Taylor series polynomial of order 3 for the function $y=\sinh (x)$ anchored at $x_{0}=3$.

Solution:

$$
\begin{aligned}
\sinh (x) & \approx \sinh (3)+\left.\frac{d}{d x} \sinh (x)\right|_{x=3} \frac{(x-3)}{2!}+\left.\frac{d^{2}}{d x^{2}} \sinh (x)\right|_{x=3} \frac{(x-3)^{2}}{2!}+\left.\frac{d^{3}}{d x^{3}} \sinh (x)\right|_{x=3} \frac{(x-3)^{3}}{3!} \\
& =\sinh (3)+\cosh (3)(x-3)+\sinh (3) \frac{(x-3)^{2}}{2}+\cosh (3) \frac{(x-3)^{3}}{6}
\end{aligned}
$$

14. Let $r=f(\theta)=4 \sin (\theta)$
(A) Sketch the graph of $r=f(\theta)$
for $0 \leq \theta \leq 2 \pi$ in CARTESIAN
coordinates and identify ALL
minima and maxima.

Solution:

We can see from this that a maximum occurs at $\theta=\pi / 2$ and a minimum occurs at $\theta=3 \pi / 2$.
(B) Using (A) sketch the graph of $r=f(\theta)$ in POLAR.

Solution:

The graph should be a circle of radius 2 , repeating every π radians, centered at $(x, y)=(0,2)$. The top, bottom, and sides of the circle should correspond to the horizontal and vertical tangents you find in the following steps.
(C)-(D): Use the fact that the $\frac{d y}{d y}$
slope in parametric is: $m=\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$.
(C) Find all (r, θ) points where the curve as a HORIZONTAL tangent.
Solution: Since $r=4 \sin \theta$, then $x=4 \sin \theta \cos \theta$ and $y=4 \sin ^{2} \theta$. Then we have that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\frac{\mathrm{~d} x}{\mathrm{~d} \theta}}=\frac{8 \sin \theta \cos \theta}{4 \cos ^{2} \theta-4 \sin ^{2} \theta}
$$

A horizontal tangent will occur when $\frac{d y}{d x}=0$, so,

$$
\begin{aligned}
\frac{8 \sin \theta \cos \theta}{4 \cos ^{2} \theta-4 \sin ^{2} \theta} & =0 \\
\Longleftrightarrow 8 \sin \theta \cos \theta & =0 \\
\Longleftrightarrow \theta & =0, \pi / 2, \pi, 3 \pi / 2,2 \pi
\end{aligned}
$$

So we have

$$
\begin{gathered}
r(0)=0 \\
r(\pi / 2)=4 \\
r(\pi)=0 \\
r(3 \pi / 2)=-4 \\
r(2 \pi)=0 \\
(0,0),(4, \pi / 2),(0, \pi),(-4,3 \pi / 2),(0,2 \pi)
\end{gathered}
$$

(D) Find all (r, θ) points where the curve as a VERTICAL tangent.
Solution: A vertical tangent will occur when our derivative is undefined, i.e., the denominator of our slope is 0 . So ,

$$
\begin{aligned}
4 \cos ^{2} \theta-4 \sin ^{2} \theta & =0 \\
\Longleftrightarrow 4 \cos ^{2} \theta & =4 \sin ^{2} \theta \\
\Longleftrightarrow 1 & =\tan ^{2} \theta \\
\Longleftrightarrow \theta & =\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
\end{aligned}
$$

So we have

$$
\begin{aligned}
r\left(\frac{\pi}{4}\right) & =\frac{4}{\sqrt{2}} \\
r\left(\frac{3 \pi}{4}\right) & =\frac{4}{\sqrt{2}} \\
r\left(\frac{5 \pi}{4}\right) & =-\frac{4}{\sqrt{2}} \\
r\left(\frac{7 \pi}{4}\right) & =-\frac{4}{\sqrt{2}}
\end{aligned}
$$

$$
\left(\frac{\pi}{4}, \frac{4}{\sqrt{2}}\right),\left(\frac{3 \pi}{4}, \frac{4}{\sqrt{2}}\right),\left(\frac{5 \pi}{4},-\frac{4}{\sqrt{2}}\right),\left(\frac{7 \pi}{4},-\frac{4}{\sqrt{2}}\right)
$$

Note: You may also write $\frac{4}{\sqrt{2}}=2 \sqrt{2}$, which is certainly cleaner.
(E) By transforming coordinates from
polar \rightarrow Cartesian, find a CARTESIAN
equation for this curve.

Solution:

Since $x=r \cos \theta$ and $y=r \sin \theta$, then $x^{2}+y^{2}=r^{2}$. We will use this in the following steps:

$$
\begin{aligned}
r & =4 \sin \theta \\
r^{2} & =4 r \sin \theta \\
x^{2}+y^{2} & =4 y \\
x^{2}+y^{2}-4 y & =0 \\
x^{2}+(y-2)^{2}-4 & =0 \\
x^{2}+(y-2)^{2} & =4
\end{aligned}
$$

This is a circle centered at $(0,2)$ with radius 2 , as we saw from the plot.

$$
x^{2}+(y-2)^{2}=4
$$

15. Determine the convergence of the following integral. If convergent, compute its value.
$\int_{0}^{3} \frac{2}{3-x} d x$
Solution:

> Diverges
16. Determine the convergence of the following integral. If convergent, compute its value. $\int_{0}^{3} \frac{2}{(3-x)^{2}} d x$

Solution:

Diverges
17. Determine the convergence of the following integral. If convergent, compute its value. $\int_{4}^{\infty} \frac{2}{(3-x)} d x$
Solution:
Diverges
18. Find the radius of convergence and interval of convergence of the series.
(a) $\sum_{n=0}^{\infty} 4^{n} \frac{(x-2)^{n}}{n!}$

Solution:

$$
\begin{gathered}
\text { Radius of Convergence }=\infty \\
\text { Interval of Convergence }=(-\infty, \infty) \\
\hline
\end{gathered}
$$

(b) $\sum_{n=0}^{\infty}(-1)^{n+1}\left(n^{2}+1\right) \frac{(x+5)^{n}}{3^{n}}$

Solution:

$$
\begin{gathered}
\text { Radius of Convergence }=3 \\
\text { Interval of Convergence }=(-8,-2)
\end{gathered}
$$

