ACTIVITY#12 — Math 151 — Calculus II — Spring 2021

Professor/TA:		Sec:		RedID:	
NAME (printed):			Partners:		
	(Family Name)	(First Name)			
Parametric equations: application to Bézier curves and CAD. Bézier curves are used in computer-aided design (CAD)					
and are named after the French Pierre Bézier (1910-1999), who worked in the automotive industry.					

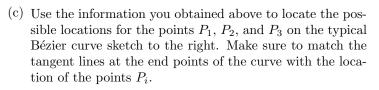
(1) A cubic Bézier curve is determined by four points $P_0(x_0, y_0)$, $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, and $P_3(x_3, y_3)$, and is defined by the parametric equation:

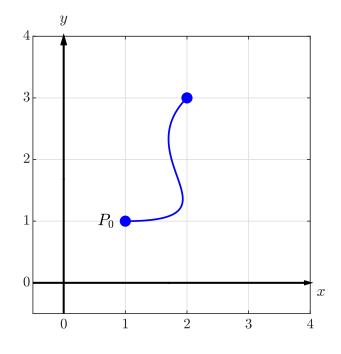
$$P(t): \begin{cases} x(t) = f(t) = x_0 (1-t)^3 + 3x_1 t (1-t)^2 + 3x_2 t^2 (1-t) + x_3 t^3 \\ y(t) = g(t) = y_0 (1-t)^3 + 3y_1 t (1-t)^2 + 3y_2 t^2 (1-t) + y_3 t^3 \end{cases}$$
(1)

for $0 \le t \le 1$. First let us understand what the four points $P_i(x_i, y_i)$ represent graphically.

(a) What points do you recover when t = 0 and t = 1?

(b) Using the formula for the slope of a parametric curve (you will learn this in class very soon): $m = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ compute the slopes m_0 and m_3 at the points, respectively, P(t=0) and P(t=1) found above. Simplify as much as possible and interpret these slopes with respect to the position of the points P_i .



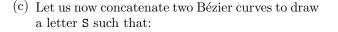


(2) Let us "play" a bit with Bézier curves.

- (a) Use the following desmos code to play around with the curves you get by varying the points P_i . Note in particular the slope that the points P_1 and P_2 allow you to define. Desmos code: https://www.desmos.com/calculator/rhkn2fzb1a
- (b) Let us draw, using a single Bézier curve, a letter C such that:
 - (i) the lower end (P_0) coincides with the point (2,1),
 - (ii) it has height one, and
 - (iii) the tangent lines at the end points are horizontal.

Find the coordinates of the four points P_i that generate such letter. Draw a sketch of this letter C and the points and the slopes at P_0 and P_3 .

Could you get a 'nicer' C by modifying the slopes of the tangent lines? Overlay the sketch of your improved letter C in the sketch to the right.

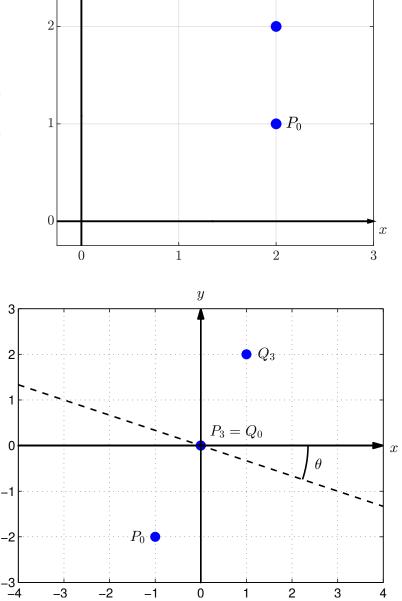


- (i) it starts at (-1, -2) and ends at (1, 2),
- (ii) passes through the origin,
- (iii) it is symmetric with respect to the origin,

(iv) has an inflection point at the origin with a tangent line making an angle of θ as depicted.

To do this let us define TWO Bézier curves with points (P_0, P_1, P_2, P_3) and (Q_0, Q_1, Q_2, Q_3) .

What condition(s) on the points P_2 and Q_1 need to be satisfied so that the letter is *smooth* at *all* points?



Fill the blanks for all the points' the coordinates [where a and θ (see angle in the figure) are positive c constants that slightly change the shape details of the letter S]:

$$P_{0}\begin{pmatrix} -1\\ -2 \end{pmatrix}, P_{1}\begin{pmatrix} 1\\ -2 \end{pmatrix}, P_{2}\begin{pmatrix} a\\ \hline \end{pmatrix}, P_{3}\begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$Q_{0}\begin{pmatrix} 0\\ 0 \end{pmatrix}, Q_{1}\begin{pmatrix} \hline \\ \hline \\ \hline \\ \hline \end{pmatrix}, Q_{2}\begin{pmatrix} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{pmatrix}, Q_{3}\begin{pmatrix} 1\\ 2 \end{pmatrix}$$

Draw *all* the points and associated tangent lines in the sketch. Desmos code: https://www.desmos.com/calculator/njc1cqobpx