ACTIVITY\#13 - Math 151 - Calculus II - Spring 2021

Professor/TA:
Sec:
RedID:
NAME (printed): \qquad Partners:
(Family Name) (First Name)
$\overline{\text { Calculus on PARAMETRIC and POLAR eqns. A little birdy told me that the final includes similar problems!!! }}$
(1) PARAMETRIC: Let's do some calc: Consider the curve \mathcal{P} defined by: $\left\{\begin{array}{ll}x=t^{2} \\ y & =t^{3}-3 t\end{array} \quad\right.$ for $\quad-2 \leq t \leq 2$.
(i) Show that \mathcal{P} has two tangents at the point $(3,0)$ and find their slopes.
(ii) Find the points on \mathcal{P} where the tangent is horizontal.
(iii) Find the points on \mathcal{P} where the tangent is vertical.
(iv) Using the above information and using the starting and finishing points at $t=-2$ and $t=+2$, respectively, sketch the curve and the tangent lines. Use arrows to indicate the direction the curve is traced.
(2) POLAR: Consider the curve \mathcal{C} defined by:

$$
r=F(\theta)=1-\sin \theta
$$

(i) Sketch the graph of $F(\theta)$ for $0 \leq \theta \leq 2 \pi$ in Cartesian coordinates. Clearly indicate the points where (a) $F(\theta)=0$, and the points at which F attains a local (b) maximum or (c) minimum.

(ii) By using the results you obtained in the previous point, sketch \mathcal{C} in POLAR coordinates for $0 \leq \theta \leq 2 \pi$.
(iii) Write \mathcal{C} in parametric form by using:

$$
\left\{\begin{array}{l}
x=r \cos (\theta)=F(\theta) \cos (\theta) \\
y=r \sin (\theta)=F(\theta) \sin (\theta)
\end{array}\right.
$$

From this perform the following tasks.
You'll need the slope in parametric: $m(\theta)=\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{d x}$.
(a) Find ALL horizontal points of tangency.

(b) Find ALL vertical points of tangency.
(c) Sketch all these tangents in the polar plot. [You might use this to enhance your graph!]. Do you see the ©? This curve is called a cardioid (from the Greek word " $\kappa \alpha \rho \delta \iota \alpha$ " meaning heart).

