(P549 #9) 1. Find the exact length of the curve: $y = 1 + 6x^{3/2}$, $0 \le x \le 1$

(P550 #44) 2. The figure shows a telephone wire hanging between two poles at x=-b and x=b. It takes the shape of a catenary with equation $y=c+a\cosh(x/a)$. Find the length of the wire.

3. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

(a)
$$\int_0^\infty \frac{1}{x^2} \, dx$$

(p534 #30) (b)
$$\int_{1}^{2} \frac{x}{(x-1)^{2}} dx$$

4. Use the Comparison Theorem to determine whether the integral is convergent or divergent. If convergent please find an upper bound.

(p535 #49) (a)
$$\int_{1}^{\infty} \frac{x}{x^3 + 1} dx$$

(p535 #50) (b)
$$\int_{1}^{\infty} \frac{1 + \sin^2 x}{\sqrt{x}} dx$$