Name (Print):
Spring 2021
Week 14
Section \# \qquad
(P667\#37) 1. Sketch the curve with the given polar equation by first sketching the graph of r as a function of θ in Cartesian coordinates. $r=2 \cos \mathbf{4 \theta}$.
(P667\#47)
2. The figure shows a graph of r as a function of θ in Cartesian coordinates. Use it to sketch the corresponding polar curve.

(P673\#17) 3. Write an integral for area of the region enclosed by one loop of the curve: $\boldsymbol{r}=4 \cos 3 \boldsymbol{\theta}$.
(P673\#21) 4. Write an integral for the region enclosed by the INNER loop of the curve: $\boldsymbol{r}=\mathbf{1}+\mathbf{2} \sin \boldsymbol{\theta}$.
(P673\#47) 5. Write an integral for the length of the polar curve $\boldsymbol{r}=\boldsymbol{\theta}^{\mathbf{2}}$ for $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{2 \pi}$.
(P673\#48) 6. Write an integral for the length of the polar curve $\boldsymbol{r}=\mathbf{2}(\mathbf{1}+\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta})$.

