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(a) For what values of A is det(A A — B) = 07
{b) Isthere a vector x for which Ax = Bx?

In Exercises 1O and 11, verify that the given matrix has determinant —1.

100 001
10 A=|001 1. B=41010
0190 10 O)
32 -4
12. Compute the cofactor matrices Ay, Ay and Ay when A = 01 5
00 6
02 -4 5
13. Compute the cofactor matrices B, , B,,, and B,, when B = b7 10
1P 23’ 43 0 (} (} _1
34 2 -~10

14. Find values of A where the determinant of the matrix

A—1 0 -1
A = 0 A~—-1 1
-] 1 A

vanishes,
15. Suppose that two n x p matrices A and B are row equivalent. Show that there 1s an invertible
n x n matrix P such that B = PA.

16. Let A be an invertible n x n matrix and let & € R" be a column vector. Let B, bethe n x n
matrix obtained from A by replacing the jth column of A by the vector b. Let x = (x|, ..., x )’
be the unigue solution to Ax = b. Then Cramer’s rule siates that

det(Bj}

X, = oA (8.1.13)

Prove Cramer’s rule.
Hint Let A, be the jth column of A so that A, = Aej. Show that

,i—l-li U %C’”).

B_,- = Ale ] jej_lixte

Using this product, compute the determinant of B}, and verify (8.1.13).

EIGENVALUES

In this section we discuss how to find eigenvalues forann x n matrix A. This discussion
paralfels the discussion for 2 x 2 matrices given in Section 4.8. As we noted in that
section, A is a real eigenvalue of A if there exists a nonzero eigenvector v such that

Av = AV, (8.2.1)
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It follows that the matrix A — 4/ is singular, since
(A Al )v =0
Theorem §.1.7 implies that
det(A — Al ) = 0.
With these observations in mind, we can make the following definition:

Definition 8.2.1 Ler A be an n x n matrix. The characteristic polynomial of A is

P} = det{A — Al ).

In Theorem 8.2.3 we show that p, (1) is indeed a polynomial of degree  in . Note
here that the roots of p, are the eigenvalues of A. As we discussed, the real eigenvalues
of A are roots of the characteristic polynomial. Conversely, if A is a real root of p,,
then Theorem 8.1.7 states that the matrix A — AJ is singular and therefore that there
exists a nonzero vector v such that (8.2.1) is satisfied. Similarly. by using this extended
algebraic definition of eigenvalues. we allow the possibility of complex eigenvalues.
The complex analog of Theorem 8.1.7 shows that if A is a complex eigenvalue, then
there exists a nonzero complex rz-vector v such that (8.2.1) is satisfied.

Exampie 8.2.2 Let A be an n x n lower triangular matrvix. Then the diagonal entries
are the eigenvalues of A.
We verifv this statement as follows:

() a. — A

il

Since the determinant of a triangular matrix is the product of the diagonal entries, it
follows that

p,a)=Aa, —Ar)--la, — A (8.2.2)

and hence that the diagonal entries of A are roots of the characteristic polynomial. A
similar argument works if A is upper iriangular.

It follows from (8.2.2) that the characteristic polynomial of a triangular matrix is
a polynomial of degree n and that

PR = (=D)"A 4 b, A A by (8.2.3)

for some real constants &, ..., b . In fact, this statement is true in general.
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Theorem 8.2.3  Let A be ann x n matrix. Then p, is a polynomial of degree n of the
form (8.2.3).

Proof: Let C be ann x 1 matrix whose entries have the form €+ d, )L Then det(C)
is a polynomial in A of degree at most n. We verify this statement by induction. It is
easily verified when n = 1, since then C = (¢ + dA) for some real numbers ¢ and d.
Then det(C’) = ¢ + di, which is a polynomial of degree at most one. (It may have
degree zero if d = 0.) So assume that this statement is true for (n — 1) x (n — 1)
matrices. Recall from (8.1.9) that

det(C) = (CH -§_ d]l)\‘) det(cll) + et (wi)”“{“; (Cin + d]_n}") det(Cin)’r

By induction each of the determinants C |; 1s a polynomial of degree at mostn — 1. It
follows that multiplication by ¢, + du}k yields a polynomial of degree at most n in .
Since the sum of polynomials of degree at most 1 is a polynomial of degree at most 71,
we have verified our assertion,

Since A — Al is a matrix whose entries have the desired form, it follows that
p (A} is a polynomial of degree at most n in A. To complete the proof of this theorem
we need to show that the coefficient of 1" is (—1)". Again we verify this statement by
induction. This statement is easily verified for 1 x 1 matrices; we assume that it is true
for (n — 1) x (n — 1) matrices. Again use (8.1.9) to compute

det(A — A1) = (a,, — A)det(B)) — a, det(B,,) + - - + (=1)""'a, det(B, ).

where B, are the cofactor matrices of A — Af . From our previous observation, all of
the terms det(BU) are polynomials of degree at most # — 1. Thus, in this expansion,
the only term that can contribute a term of degree n is

—Adet(B, ).
Note that the cofactor matrix B, isthe (n — 1) x (n — 1) matrix

B, =A, =M _,,

where A is the first cofactor matrix of the matrix A. By induction, det(B, 1) is a poly-
nomial of degree n — 1 with leading term (—1)""'A"~'. Multiplying this polynomial
by —X yields a polynomial of degree n with the correct leading term. 4

General Properties of Eigenvalues

The fundamental theorem of algebra states that every polynomial of degree n has
exactly n roots (counting multiplicity). For example, the quadratic formula shows
that every quadratic polynomial has exactly two roots. In general, the proof of the
fundamental theorem is not easy and is certainly beyond the limits of this course.
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Indeed, the difficulty in proving the fundamental theorem of algebra is to prove that a
polynomial p() of degree n > 0 has one (complex) root. Suppose that )., 18 a root of
p(2); that is, suppose that p(2,) = 0. Then it is easy to show that

pa) = (h — x)g(2) 8.2.4)

for some polynomial ¢ of degree n — 1. So once we know that p has a root, we can
argue by induction to prove that p has n roots.

Recall that a polynomial need not have any real roots. For example, the polynomial
p{(i) = A* + 1 has no real roots, since p(&)y > O for all real A. This polynomial does
have two complex roots 4 = /1.

- However, a polynomial with real coefficients has either real roots or complex roots
that come in complex conjugate pairs. To verify this statement, we need to show that
if 2, 1s a complex root of p(4), then so is Xg We claim that

pG) = p@).
To verify this point, suppose that
p()\‘) = Cn}\'” Aéw Cn'wl}"nm1 "im T + CO’

where each € R. Then

P —n—1 .
p(}\‘) = Cn}\’n + anlkn—i + A + C() = Crz)\' + Cn-—i)\‘ + T + CU = p(l)‘

If &, 1s aroot of p(i), then

p(iy) = Pl =0=0.

Hence m}:; is also a root of p.
It follows that:

Theorem 8.2.4 Every (real) n x n matrix A has exactly n eigenvalues SR
These eigenvalues are either real or complex conjugate pairs. Moreover,

(@) p,(0)= @G —A) - ~Ai), and

() det(A) =) - 2.

n

Proof:  Since the characteristic polynomial p, is a polynomial of degree n with real

coefficients, the first part of the theorem follows from the preceding discussion. In
particular, it follows from (8.2.4) that

Py =clh, —r)---(h, — 1)
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for some constant ¢. Formula (8.2.3) implies that ¢ = 1, which proves (a). Since
P, (k) = det(A — Al ), it follows that p 4{0) = det{A). Thus (a) implies that p L0 =
A thus proving (b). *

1 n’

The cigenvalues of a matrix do not have to be different. For example, consider
the extreme case of a strictly triangular matrix A. Example 8.2.2 shows that all of the

eigenvalues of A are 0.
We now discuss certain properties of eigenvalues.

Corollary 8.2.5 Let A be an n x n matrix. Then A is invertible if and only if 0 is not
an eigenvalite of A.

Proof: The proof follows from Theorem 8.1.7 and Theorem 8.2.4(b). *

Lemma 8.2.6 Let A be a singular n x n matrix. Then the null space of A is the span
of all eigenvectors whose associated eigenvalue is 0.

Proof: An eigenvector v of A has eigenvalue 0 if and only if

Av = 0.
This statement s valid if and only if v is in the null space of A. *
Theorem 8.2.7 Let A be an invertible n x n matrix with eigenvalues Aoy i Then
the eigenvalues of A~ are ', ... 17"

Proof: We claim that

1
P, () = (1) det{A)"p, (;) .

It then follows that 1/4 is an eigenvalue for A~ for each eigenvalue A of A. This makes
sense, since the eigenvalues of A are nonzero.
Compute:
1,,)

(—1)" det(A)\"p, (%) = (—A)" det(A) det (A“E —

= det(—1A) det (A“i - 11

}\. n
= det (_»A (

= det(A — Al)
= p,(A),

2| v

"

I

n

>—’!»—~ﬂ

which verifies the claim. L
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Theorem 8.2.8 Let A and B be similar n % n matrices. Then

Py= Pge

and hence the eigenvalues of A and B are identical.

Proof: Since B and A are similar, there exists an invertible n x n matrix § such that
B = 5 'AS. It follows that

det(B — AL )= det(S'AS — Al ) = det(S™'(A — 11 )$§) = det(A — A1),
which verifies that p, = p,. L 2

Recall that the trace of an n x n matrix A is the sum of the diagonal entries of A;
that 1s,

tr(A) =a, +---+a

nn’
We state without proof the following theorem:

Theorem 8.2.9 Let A be an n X n matrix with eigenvalues j., . . ., A, . Then

tH(A) = A, b+ A

i

It follows from Theorem 8.2.8 that the traces of similar matrices are equal.

MATLAB Calculations

The commands for computing characteristic polynomials and eigenvalues of square
matrices are straightforward in MATLAB. In particular, for an n x n matrix A, the
MATLAB command poly(A) returns the coefficients of (--1)"p, ().

For example, reload the 4 x 4 matrix A of (8.1.12) by typing 8.1 11. The char-
acteristic polynomial of A is found by typing

poly(A)
1o obtain

ans =
1.0000 -5.0000 15.0000 -10.0000 -46.0000

Thus the characteristic polynomial of A is
p,(A) = 1" =517 + 152" — 101 —~ 46.

The eigenvalues of A are found by typing eig(A) and obtaining
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ans =
~1.2224
1.6605 + 3.19581
1.6605 — 3.19581
2.9014

Thus A has two real eigenvalues and one complex conjugate pair of eigenvalues. Note
that MATLAB has preprogrammed not only the algorithm for finding the characteristic
polynomial, but also numerical routines for finding the roots of the characteristic
polynomial.

The trace of A is found by typing trace(A) and obtaining

ans =
5

Using the MATLAB command sum, we can verify the statement of Theorem 8.2.9.
Indeed sum(v) computes the sum of the components of the vector v, and typing

sum(eig(A))

we obtain the answer 5.0000, as expected.

HAND EXERCISES

In Exercises 1 and 2, determine the characteristic polynomial and the eigenvalues of each matrix.

— 2

Ik
LAa=| 3 2 3 2. B = -
s 5 o 00 3 -1

\ “ 00 1 1

3. Find a basis for the eigenspace of

31 ~1
- A= | —-1 1 1
22 0
corresponding to the eigenvalue A == 2.
4, Consider the matrix
-1 1 1
A = I -1 1

(a) Verify that the characteristic polynomial of A is p. (A) = (A — (4 + 2)°.
{b) Show that (1,1, 1}is an eigenvector of A Correspo'rading tor = 1.
(¢} Show that (1. 1.1} is orthogonal to every eigenvector of A corresponding to the
cigenvaiue b = —2.
5. Consider the matrix A = ( 83 )
-10 -7
{a) Find the eigenvalues and eigenvectors of A.
(b) Show that the eigenvectors found in (a) form a basis for R
(¢} Find the coordinates of the vector (x,, x,) relative to the basis in (b).
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6. Find the characteristic polynomial and the eigenvalues of

]
A= 2
3 -

(=00 NI S

2
2
-6

Find eigenvectors corresponding to each of the three eigenvalues.

7. Let A be an n x & matrix. Suppose that
A+ A+T =0

Prove that A is invertibie.

In Exercises 8 and 9, decide whether the given statements are true or false. If a statement is false,
give a counterexample; if a statemnent is true, give a proof,

8. If the eigenvalues of a 2 x 2 matrix are equal to 1, then the four entries of that matrix are each
less than 500.

9. The trace of the product of two n x n matrices is the product of the traces.

10. When n is odd, show that every real n = » matrix has a real eigenvalue.

COMPUTER EXERCISES

In Exercises 11 and 12, (a) use MATLAB to compute the eigenvalues, traces, and characteristic
polynomials of the given matrix. (b) Use the results from (a) to confirm Theorems 8.2.7 and 8.2.9.

11.
~12 -19 -3 14 0
-12 10 14 —-19 8§
A= 4 -2 I 7 -3 (8.2.5)*
-9 17 ~-12 -5 -8
-12 -1 7013 —-12
12,

~12 =5 13 -6 =5 12
714 6 1 8 18
] 8113 9 2 1 .
B=1 2 4 6-8-2 15 (8.2.6)
~14 0 -6 14 8 —I3

g 16 -8 3 5 19

13. Use MATLAE to compute the characteristic polynomial of the matrix

4 —67
A = 2 05
-10 23

Denote this polynomial by p, (1) = ~(1* + p,A* + p, & + p,). Then compute the matrix

B = (A" + p,A* + p A+ p,l).

What do you observe? In symbols, B = p, (4). Compute the matrix B for examples of other
square matrices A and determine whether or not your observation was an accident.




