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Abstract—Motivated by a problem in genetics involving one locus with two alleles, R. M.
May gave the example of the family of cubic maps x —ax’ + (1 —a)x of the interval [~ 1, 1]
and established the existence of a bifurcating sequence of cycles of period 2” over an interval
of parameter values. This paper extends the analysis of May beyond that region. We find
a critical value a* beyond which the map has a snapback repeller and hence chaotic
behavior: this value further marks the onset of the first cycle of odd order >1. Whena =4
the map is onto the interval and we find an associated invariant measure.

1. BACKGROUND

In this paper, we study the dynamics associated with a smooth map of an interval having two
critical points. The motivation for the problem is provided by a preliminary analysis by May
(1, 2] of a simple model in genetics involving one locus and two alleles A and a. Following May
we refer the reader to Clarke [3], Wright [4], and Endler (5] for more biological details. The
model in question addresses the case where the selective forces depend on the gene frequences
in such a way that the allele 4 has a selective advantage when rare and a disadvantage when
common. In these circumstances the gene frequency p of A tends to increase when low and
decrease when high. and, with the simplifying change of variable x =2p — 1, the map
f: x,—x,, , which relates the frequencies in successive generations takes the form shown in Fig.

1. As a specific example, May proposes the cubic map
f(x)=ax’+ (1 —a)x,

which is one of the simplest polynomial maps of the desired type. If ais restricted to the range
0 < a < 4 then fmaps the interval / = [— 1, 1]into itself and we shall study the family f = f, for
these parameter values. For an introduction to the dynamics of maps of the interval see Li and
Yorke [6], May [7], May and Oster (8], and the monographs by Collet and Eckmann (9] and

Gumowski and Mira [10].
In the remainder of this section, we briefly describe the standard nomenclature and stability

criteria for maps of the interval. In Sec. 2, we summarize May’s analysis of the map for
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Fig. 1. Graph f: a =1, 1.5, 2, 2.5, 3, 3.5, 4. The critical values increases with a.

relatively low values of the parameter and in the third section we describe a computer-drawn
bifurcation diagram for the family. Section 4 contains a proof of the existence of chaotic
solutions of x, , , = f,(x,), using the Li-Yorke definition of chaos, for parameter values larger
than a certain a = a*. This result is an application of the snapback repeller theorem of
Marotto [11] which provides sufficient conditions for chaotic behaviour in noninvertible maps
from R” to R". We conclude with a description of the dynamics of f, for two special parameters
values: 2 = a* and a = 4. In both cases, f maps an interval onto itself, and the number of
periodic points of f can be counted explicitly. When a = 4, fis, in fact, the third Chebyshev
polynomial which is topologically equivalent to a piecewise linear map and has a known
invariant measure [12]. The map is mixing, and hence ergodic, for this value of a. We thank
Phil Holmes for this reference.

We will use the following standard definitions and notation. If f: /—/ is a map of an
interval / < R, let /" denote the n-fold self-composition of f:

fO=identity, f'=f, f"=f(f"""), n=23...
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The orbit of x is the set {f"(x)} ., and the w-limit set of x is the set of limit points of the
orbit of x. The nth iterate of x under f is denoted by x,. A point xe/ is a fixed point of f"
if f*(x) = x and we say x has period n if f"(x) = x and f™(x) # x, 0 <m < n; in this case the
orbit of x is called an n-cycle or a cycle of period n.

A point x of period n is locally asymptotically stable if

lim | f4(x) = ") = 0

for near y near x. If f is differentiable a sufficient condition for x to be stable is that the
eigenvalue

dasr
dx

A" (x) =

(x)

has magnitude strictly less than one. If |4"(x)| > I, the periodic point x is unstable. Stable
periodic orbits will also be referred to as attractors or sinks and unstable ones as repellers
or sources.

In the following section, we describe the initial bifurcation sequence for the periodic points
of f as the parameter is increased from zero and here we describe the three types of bifurcation
we encounter. The stability type of a periodic point x can only change at a parameter value
a = a, for which |i""(x)| =1 and the generic bifurcations for families of functions with
negative Schwarzian derivative, which take place in each of the two cases 1“(x) = +1, are
described by Guckenheimer [13]. When 4"(x) = +1 we have a fold bifurcation as shown in
Fig. 2(a) for the case n = 1. Here two periodic orbits, one stable and one unstable, are created
as a passes through a = a,. If 1"Y(x) = — 1, we have the flip bifurcation pictured in Fig. 2(b)
again for n = 1. in this case, a stable orbit of period n becomes unstable and gives birth to
a stable orbit of period 2n at a = a,. '

The family /, also contains examples of the pitchfork bifurcation, shown in Fig. 2(c), where
a stable orbit of period n becomes unstable by the eigenvalue passing through + 1 and creates
two new stable orbits, each of period a. This bifurcation occurs in situations where the
nondegeneracy conditions required for the fold bifurcation and violated, perhaps due to the
presence of certain symmetries in the map under consideration. Here we do not state the
precise local conditions required for a pitchfork bifurcation to take place since in the only
example we meet the bifurcating periodic orbits and their stability can be determined
analytically.

2. A CASCADE OF PAIRS OF 2-CYCLES

In this section we summarize the salient features of the cubic family
f(x)=f(x)=ax’+(l —a)x

and discuss its bifurcation properties as previously outlined by May. The map has zeros at
x =0 and i\/(a — 1)/a and fixed points at x =0 and %1. For a > 1 there are two critical
points at x = F./(a — 1)/3a with corresponding critical values +%,/(a — 1)’/3a. The mag-
nitude of zeros and the critical points increase with a for a > 0, and when a = 4 the critical
values are + 1 so that f; maps the interval [ onto itself.

When a > 0, the fixed points + 1 on the boundary of the interval are unstable. To determine
the stability of the fixed point at the origin note that the eigenvalue 1(0)=1—a, so the
origin is a stable fixed point when 0 <a <2. When a = 2, AM0)= —1 and as a increases




Fig. 2. Fold Bifurcation (a); flip bifurcation (b); pitchfork bifurcation (c). Solid line line = stable and dashed
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beyond 2, a flip bifurcation occurs; the origin becomes unstable and a stable orbit of period
two is created.

The bifurcating orbit of period two may be found as follows. Since the map fis an odd
function, f(—x) = —f(x), for each periodic orbit

Xy =P Xy=Xy=" = X, X,
there is a corresponding orbit

—'.rl“’x:_" e — X, —x,.

Now in the flip bifurcation only a single orbit of period two is created so the two orbits above
(with n = 2) must coincide, and it follows that the orbit has the form

A——A-A

Thus the new fixed points of f* satisfy f(A) = —A; Le., A= /(a —2)/2.

The flip bifurcation from a stable fixed point to a stable orbit of period two is familiar
from the many studies of the quadratic map x—ax(l — x) (or some version of it) but the
sequence of period doubling bifurcation in this family does not immediately occur in the cubic
family. Instead, the antisymmetry in the map causes the next bifurcation to be a pitchfork.
The eigenvalue of f* at +A is calculated by the chain rule to be A®(+A) = (2a — 5. At
a = 2. the eigenvalue is + 1 (see Fig. 3). It decreases to zero at a = 2.5 and increases back
to + 1 at a = 3. As a increases through 3, four new fixed points of f* are formed as indicated
by Fig. 4; i.e.. a pair of 2-cycles are created which are stable for a slightly larger than 3.

These new period two points can also be found explicitly. The fixed points of f? satisfy
f3(x) = x and this leads to a polynomial of degree 9 in x from which we can cancel the factor
x(x*— 1)(ax* + 2 — a) corresponding to the fixed points and the first orbit of period two. This
leaves the quartic

a’x*+a(l - a)x*+1=0

or

1
xl=— [(a -1+ J(@-3)a+ l)].

2a :
Let the four solutions be denoted by x = +a, + 8, then it is easy to verify that the pair of
2-cycles created by the pitchfork are

a—+—f—a and B —a—pf.

The eigenvalue of f? at each of the points x = +a, +f is found to be 7+ 4a — 2a®. Thus
the period two orbits are stable in the parameter range 3<a <1 +/5=3.236.... At
a =1+ /5 the eigenvalue is — 1 and as a increases beyond this value a flip bifurcation occurs.
The two period two orbits become unstable and a pair of initially stable period four orbits
are created. According to numerical simulations carried out by May, as a increases further
a sequence of flip bifurcations occurs from each of the stable orbits, producing a hierarchy
of pairs of subharmonic cycles of period 4, 8, 16, etc.

3. THE BIFURCATION DIAGRAM

We now turn to the computer-drawn bifurcation diagram shown in Fig. 5. This consists
of the last 50 of 250 iterates of each of the two critical points plotted against the parameter
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Fig. 3. Graph % a = 1.0, 1.5, 2.0.

for 500 equally spaced values of the parameter in the range 3 < @ < 4. The reason for iterating
the critical points is that for a > 1, f; has negative Schwarzian derivative and, from the result
of Singer [14], it is known that for such a map any stable orbit attracts at least one of the
critical points. Thus the orbits plotted in the figure do approach any stable periodic orbits
which may exist. Note also that Singer’s theorem implies that £, can have at most two stable
periodic orbits for any particular parameter value, and as we saw in Sec. 2, f, does indeed
have two distinct attractors for some a. However, this is not the case for all values of a in
the range 3 <a <4, and the bifurcation diagram suggests there is a single stable orbit of
period four for a ~ 3.83, as we can easily show.

We look for a parameter values for which f has an orbit of period four containing both
the critical points; the orbit is then necessarily stable and is also the unique attractor for this
parameter value and must take the form

X‘.—’f(x‘.)—’ _xr—’f(_xr)—’xry

where 1 x, are the critical values. For such a cycle, we have f%(x.) = —x,, which leads to the
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equation 8a* — 324° — 6a* + 76a — 127 =0 for a. This has a root at a = 3.8308. . . giving the
orbit 0.4963. . .—0.9366. . .— —0.4963. . .— —0.9366. . ., which is the stable 4-cycle visible on
the bifurcation diagram. Using the fact that f is an odd function it is easy to see that there
is a unique attracting 4-cycle for a near 3.8308.... We can also find the parameter value at
which the orbit is created. Any orbit of the form
Xy —+—X—>+—)y—+X

clearly has f(x) = —x, i..,

alax’+ (1 —a)xP + (1 — a)fax’ + (1 — a)x] = —x.
Let z = ax?+ | — a, then we have

+@-D22+(N—-a)z+1=0.

Now if the orbit is created by a fold bifurcation it exists along with an unstable 4-cycle and

E— —
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Fig. 5. The bifurcation diagram for 3 < a < 4. A plot of high-order iterates of each of the two critical points.
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the two orbits coincide when the bifurcation occurs. At this parameter value we have orﬂy
four solutions of f*(x) = —x, i.e., only two solutions for z, opposed to eight solutions of
/f*(x)= —x and four solutions for = at slightly larger parameters. Thus at the point of
bifurcation where the 4-cycle is created the polynomial for = takes the form (z* + 4z — 1)’ =0,
and this is true iff A = (@ = 1)/2 and ¢*—2a —7=0; i.e., a =1 + 2,/2. Thus f, has a single
stable 4-cycle for l+2ﬁ<a <a,, where a, >3.8308.... Also from the diagram it
appears there may exist a single stable 6-cycle at a = 3.4, but this has not been pursued and
it is hard to see any general scheme for deciding which stable orbits occur in pairs and which
occur singly.

The bifurcation diagram suggests that there is an accumulation point of the values of a
which correspond to the bifurcations in the initial period-doubling sequence. It also seems
likely that the rate of convergence of these parameters values to their limit will involve the
universal constants found by Feigenbaum [15] in families of maps with a single critical point,
but no attempt has been made to verify this.

It is important to remember that Fig. 5 contains two orbits for each parameter value; we
note also that points in the two major branches which emerge in the first sequence of flip
bifurcations and appear to be two disjoint attractors, one in [— 1, 0] and the other in [0, 1],
for a < 3.6 approximately, are, in fact. mapped from one branch to the other. To see this
consider the subintervals J, =[—/(a — 1)/a.0] and J, =0, \/(a — 1)/a] whose boundaries
are the zeros of /. For xe(— 1, 0)\J,. f(x) > x, and for x &(0, 1)\J, f(x) < x so that all points
eventually map into J, UJs. Also, provided the magnitude of the critical values of f, is less
than or equal to that of the zeros, f maps J, into J, and vice versa. Thus in this case J,UJ,
forms a traping region which all points in (—1.1) enter and never leave. This behaviour
persists up to the parameter value where the critical values and the zeros of f, coincide; i.e.,
the value of @ for which the second iterate of each critical point is precisely the unstable fixed
point at the origin. This value of a =a* =1+ %\/2_7 = 3.5980. ... is the point at which the
two major branches in the bifurcation diagram coalesce and marks an important change in
the dynamics of the family f, (see Fig. 5). For a <a*. f, has no periodic points of odd period
since the nonwandering set of f|_,., is wholly contained in J, U J, and f, maps points from
each of these subintervals into the other. For a > a*, we show below that the origin is a
snapback repeller for f, and hence the recurrence x, ., = £.(x,) has chaotic solutions.

4. A SNAPBACK REPELLER

We now come to our main result. We show that for a > a* the cubic family f, admits
solutions which are chaotic in the Li-Yorke sense [6]: there are (i) periodic solutions of all
orders, N, N +1...beyond a given order, and (ii) there are an uncountable number of
nonperiodic orbits that are not even asymptotically periodic which, for x # y, satisfy the
“near—far” conditions 0 = lim inf |f"(x) — f"(»)| < lim sup [f"(x) x f"(y)|]- The well-known
Li-Yorke theorem says that if a point x satisfies F(x) € x <f(x) <fx), then fis chaotic,
in fact with N = 1, i.e.. all periods exist. The corollary “period 3 implies chaos” follows. Li
et al. [16] have recently improved this result: if there exists an x satisfying /™(x) < x < f(x)
for some odd n > 1, then f has a point of odd periods k, | <k <n, where k divides n; the
existence of such a point of odd period k& > 1 implies conditions (i) and (ii), i.e., Li-Yorke
chaos. Rather than search for odd periods directly, we turn to a sufficiency condition
formulated by Marotto [11] which appears to be remarkably useful. Chaos has been verified
in a variety of first and second-order difference equation models arising in population
dynamics, using this condition. The condition is an n-dimensional one, and it is most
convenient to state it as such, even though our map is only one-dimensional.

Let f:R"—R" and assume [ is differentiable in some ball B(z) of radius r about z. The
point z is called an expanding fixed point of fif f(z) =z and all eigenvalues of the derivative
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Df(x) exceed 1 in magnitude for all x € B,(z). The repelling fixed point z is called a snapback
repeller if there is a point x,€B,(z) with x,# z, f¥(x,) =z, and ||Df*™(x,)|| #0 for some
positive integer M > 1.

Marotto’s theorem states that snapback repellers imply chaos in R". We sketch the
following proof: Since || Df*(x,| # 0, /* is invertible in a ball B(z) centered at z and contained
in B(z). B.(z) maps to a neighborhood Q = B/(z) of x, by a map whose restriction to B(z)
is f~*. Then since z is repelling, all sufficiently high order iterates of f~', say f~**" for
N > N, map Q back into B,(z). Thus f~**™ has a fixed point in B,(z) by the Brouwer fixed .
point theorem. This point is a fixed point of f™*" as well.

We proceed to determine conditions which make the fixed point 0 a snapback repeller for
the cubic map. Whena > 2, f(0) = 1 —a < 1, so 0 is repelling for all @ > 2. We wish to find
an interval B(0) = I/ = [—r, r] with f’(x) < —1 for all xe/, and such that the other snapback
repeller conditions are met. We calculate f'(x) = 3ax*+ (1 —a) < —1 iff |x| < ((a — 2)/3a)"".
Denote g(a) = ((@a — 2)/3a)'".

In searching for preimages of 0 which lie near 0 it is reasonable to find conditions which
guarantee that the first few preimage sets of 0 are nonempty. Referring to Fig. 6, the only

- |.O

N

Y

- =1.0

Fig. 6. Graph f,; a =a®* =3.5980... . The directed line indicates a trajectory of inverse images of 0.
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negative preimage of 0 is the zero —((a — 1)/a)'”. Evidently there is some critical value of
the parameter a for which this negative zero in turn has some positive preimage, i.e., f~*(0)
is nonempty and has positive members; geometrically, we are saying the curve must be steep
enough. In_ fact the critical value of the parameter is precisely the value
a*=1+,/27/2=13.5980... found in the prevous section for which the set of second
preimages of 0 contains the critical points.

The bound on |t| for which f’(x) < — 1 becomes in the critical case

r=g(a*)= ((a*—2)/3a*)"* =0.38477. ..

Since g is increasing it follows that
f(x)< =1 forall |x|<r when a>a*

We denote [ =[—r,r], and calculate certain preimages of 0 when a = a* (see Fig. 6); the
selected preimages will make a counterclockwise spiral into a neighborhood of the fixed point.
The multivalued inverse iterates solve the recurrence

1 — 1
Xi._|+( aa).\’*_|—-‘;xk=0, k=0,—-1...

Consideg the case a = a*.

Take x,=0 and choose the negative preimage of 0 which from above is
x_, = —((a* — 1)/a*)'® = —0.84974. .. . For the critical point x_,, we choose the positive
root of x*,+ ((1 —a*)a*)x_,+(1/a*)((a* - 1)/a*)'? =0 to obtain x_,=049185... .
Similarly we choose the biggest negative root x_y= —0.19596. .. Note that x_,el.

Observe that the transversality condition |Df*(x_ )| # 0 is violated for M > 1 precisely
at the critical parameter value a* because the preimage x_, is a critical point. We will show
that for a > a*. 0 is a snapback repeller in 7, and in fact we may take M =3 for all such
a. For a > a*, we choose the iterates x _,(a) in a similar manner as when a = a* so that the
preimages spiral toward O counterclockwise, and always the preimage closest to 0 is chosen
which has opposite sign to the previous one. :

We show that x_,=x_y(a)el for all a >a* For this it is enough to show that
X_, = x _,(a) decreases with a when a > a*. In this parameter range, none of the iterates x _,,
X_y X_s. . . can be critical points, and the snapback repeller conditions would be verified with
M =3 for all a > a*. The derivative of x_, is

x_z(a)__l a®* \'"*/3—-2a
d a? 2\a -1 at

— (x_2a))=
da Ix? j(a) + (—-——1 ;“)

The numerator of this expression is positive if @ >a*. The denominator is negative if
x_(a) < ((a — 1)/3a)"™. This latter condition is satisfied because we have defined x_,(x) to
be the least positive root when k = 3, and ((a@ — 1)/3a)'? is the critical point corresponding
to the negative minimum value of f,. Therefore, x_,(a) decreases with @ when a > a*. We
infer that x_,(a*) < x_,(a) <0, and hence |Jc~ J(a)| < g(a*)=r. Then x_;(a) € I, and we have
verified the snapback repeller conditions for the cubic map with M = 3, r =0.38471. .. for
all a > a* = 3.5980. .. We may state the following theorem.

THeEOREM. The cubic map has the fixed point 0 at a snapback repeller, and is thus chaotic,
for all @ > a*.
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We remark that this is the best possible result of this type since f, has no snapback repeller
if @ < a*. This follows from the fact that the existence of a snapback repeller implies the
existence of periodic points of all periods larger than some integer N. In particular, / must
have an orbit of odd period > 1, but as noted above this is impossible when a < a*. The
geometry of this situation is typified by the graph of /7. in Fig. 7 and the graph of f 2 in
Fig. 8. '

There is a further connection between the parameter value a* above which the snapback
repeller exists, and the existence of odd periodic orbits. Given a parameter value a = a* +«¢,
¢ > 0, by the theorem, f, has a snapback repeller at the origin and hence an orbit of some
odd period M, say. By Sarkovskii's Theorem (see Stefan [17]), f, then has points of all even
periods together with points of all odd periods greater than M. For each odd integer k > M,
let g, denote the least parameter value for which f, has an orbit of period k. Now if we make
the assumption that the g, are the parameter values at which orbits of period k are created
by fold bifurcations then no two of the a, may coincide, as it follows from Singer’s Theorem
and the fact that f, is an odd function that no two stable orbits of different periods can exist
for the same parameter value. Thus for k >N we have a* <a,<a, and a* is an

—

-

A

N _

1

Fig. 7. Graph /2% a = a* = 3.5980. .. .
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Fig. 8. Graph /) a =a*® =3.5980... . There arc no points of odd period >1.

accumulation point for the sequence of a, which is approached from above. In this sense a*
is the parameter value where the “first” odd periodic orbit appears.

Now it is clear from the bifurcation diagram that the map has chaotic solutions for values
of a less than a*, and a similar analysis to that above, but this time searching for snapback
repellers in successively higher iterates of the map, would possibly lead to a sequence of
parameters a* corresponding to the appearance of a snapback repeller for /™. The sequence
will then converge to the parameter value at which chaos first appears. [This is the approach
taken by Marotto [11] in his study of the quadratic family x—ax(1 —x).] However, the
calculations involved in carrying out this program are sufficiently complicated that the
analysis soon becomes intractable.

5. THE DYNAMICS OF f,. AND f,

In this section, we study the map f, for two special parameter values where an interval
is mapped onto itself. The first case is @ = a*, the parameter value at which the snapback
repeller appears, and the second is a = 4, the extreme value beyond which points are mapped
out of the interval / =[—1,1].

When a = a*, f =/, maps the subinterval J, onto J, and vice versa, so that /* folds J,
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(or J,) onto itself 4 times, as indicated in Fig. 7. The number of cycles of / g 5, can be counted
using the technique of symbolic dynamics as explained by Guckenheimer [13] and Kaplan
and Yorke [18]. The three critical points of /2 in J, partition J, into four subintervals which
we label in order a, B, y, 8. Each of these intervals is mapped onto J, by f? so the action
of 2 on J, may be represented by the transition matrix

i) o
]
1
1
1

[
Bttt et et S

X
]
*< ™R

where
p

{ 1 if f2 maps a point in i into j

0 otherwise.

Here we have M;=1 for each i,j =a, B, 7, .
The number of fixed points of the kth iterate of f 2|,, is given by the trace formula

Trace(M*) = 4*,

and the number of distinct & -cycles is obtained by subtracting from Tr(M*) the number of
points whose period divides k, and then dividing by k (each point in a cycle is counted
separately in the trace formula). We may then successively compute the number of & -cycles,
and the first few are tabulated below.

k ] 2 3 4 5 6

No. of cycles of 4 6 20 60 204 670
J?,, of period k

Each k-cycle of f 2| 5, except the fixed point of fat x = 0, corresponds to a 2k -cycle of | 10y
Also f has no periodic orbits of odd period > 1 so the number of k-cycles of f}_,. ) are easily
seen to be as follows

k 1 2 3 4 5 6

No. of cycles of 3 3 0 6 0 20
Sli-1.y of period k

The same analysis can be applied to the case a =4 where f =/, folds the interval
I =[—1,1] onto itself three times. Here, partitioning the I by the two critical points leads
to a 3 x 3 transition matrix M, all of whose entries are 1. The number of k-cycles can then

be found from the formula
No. of fixed points of f* = Tr(M*) = 3*,

and a table such as that above is easily produced. However, when a = 4 we have a much more

detailed description of the dynamics of f.
We show the cubic map f; is topologically equivalent to a piecewise linear map with

T




Chaos in the cubic mapping 23

constant slope 3 in magnitude. Since the slope is greater than 1, the map is completely chaotic;
there can be no stable cycles. It turns out that f;(x) = 4x’ — 3x has the same invariant measure
as the much-studied quadratic map g(x) = | — 2x? defined on [—1, 1], found by Ulam and
Von Neumann [19]. The reason the two maps have a common measure is interesting. Both
maps are Chebyshev polynomials, a class of orthogonal polynomials T,, defined on [—1, 1]
in this case, each of which preserves the same measure. The quadratic map g is 7, and the
cubic map f, is T;.

The ergodic properties of the Chebyshev polynomials are described by Alder and Rivlin
[12] and we recall some of their results here. The Chebyshev polynomial of degree n is

T,(x)=cos(n0), where x =cos(0), 08 <.

Denote X =[—1, 1] and # = the family of Borel sets of X equipped with Lebesque measure.
Define the measure u as

wgy=2 =& Be®
8

Then u is absolutely continuous with respect to Lebesgue measure. With Ti(x) = 1/\/5, the
T,, n=0.1... form a complete orthonormal set in X. Each 7, maps X onto X and is
measurable almost everywhere. For our particular application, we have

Ty(x) = Ty[cos(0)] = cos(38) = 4 cos’(0) — 3 cos(f)) = 4x’ — 3x = fi(x).
Adler and Rivlin proved that each T,, n > 1, preserves the measure u. ie.,
u(T,'(B)) = u(B), BeA, n=12..

Thus any finite distribution of points on X will have the same density 2/n /1 — x* after any
number of iterations of the map T, [20]. Further each T, is strongly mixing in the sense that

. kq4nB _#(A)u(B)
}Ln;UI(T" A N B)] A

From the measure-preserving condition this is equivalent to

u(T,; *AB) — u(T*A4)—0,

as k —c0, so the mixing property refers to the “‘wearing off” of initial conditions [21]; initial
points under T, are stirred over the interval.

A corollary of the mixing property is that the T,, n > 1, are ergodic transformations, ie.,
T, 'B = Bimplies u(B) = 0 or u(B) = X. By the fundamental theorem of ergodic theory, this
implies that the trajectory of each point x of X enters B with limiting frequency u(B).

The key idea behind Rivlin's proof that the T, preserves the measure is the fact that the
transformations are conjugate to piecewise linear maps. Let R be the invertible map
R(x)=arccos(x) from X to [0,n], and define S,=RT,R-'. Partition [0,n] by
knjn<x <(k+ r/n. k=01...n—1. Then S(x)=nx—kn, k even and
S,(x) = —nx + (k + D)n, k odd. S, preserves Lebesgue measure. As simple calculation then
leads to the result that the T, preserve u.
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6. CONCLUDING REMARKS

(1) The known examples [9] for which maps of the interval have invariant measure have
the property that a critical point is mapped to an unstable fixed point. It is tempting to
conjecture that this property will always imply the existence of an invariant measure. Note
the map f,. of this paper satisfies the condition. For results along this line for unimodal
functions with negative Schwarzian derivative, see Misiurewicz [22] and Jakobson [23].

(2) Adler and Rivlin [12] point out that the strong mixing of 7, can be deduced from the
stong mixing of the discontinuous n-adic transformation Q,: x —nx(mod 1) defined on [0. 1]
(see Billingsley [21]).

(3) May (2] outlined a reasonable set of problems which would extend the analysis of f,
beyond his investigation of the map as outlined in Sec. 2. Although our paper does provide
a partial description of the chaotic region, with emphasis on the parameter value ¢* at which
odd periods first occur, there remains much to be done in describing the bifurcations of the
cubic map. Specifically a numerical analysis, verifying May's conjecture that the Feigenbaum
ratios remain the same for maps with more than one critical point, would be a uscful
achievement. May also showed how the cascade of pairs of 2"-cycles is generic with respect
to the family of smooth maps f with two critical points which, in addition. arc antisymmectric,
i.e., f(—x)= —f(x). We suspect that the major results of this paper carry over easily to the
general antisymmetric case as well.

(4) 1n terms of applications, May [2] explains how chaotic oscillations are unlikely to occur
in plausible one-dimensional genetic models; however, we regard this biologically-motivated
example as interesting in its own right as a prototype for the dynamics of maps with more
than one critical point.

(5) Since the cubic map is chaotic for a > a* we may apply Marotto’s perturbation
theorem [24, 25] to conclude the related planar map (x. y)—=(ax®+ (1 —a)x + by. x) has
transverse homoclinic points. This implies chaotic oscillations in the discrete version
xpa=axi+ (1 =a)x, + by, Va1 =Xa of the unforced Duffing’s equation
F—ax*—=( —a)x —bx=0.
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